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ABSTRACT 

This paper describes a developmental approach to the design of a humanoid 

robot. The robot, equipped with initial perceptual and motor competencies, explores the 

“shape” of its own body before devoting its attention to the external environment. The 

initial form of sensorimotor coordination consists of a set of explorative motor behaviors 

coupled to visual routines providing a bottom-up sensory-driven attention system. 

Subsequently, development leads the robot from the construction of a “body schema” to 

the exploration of the world of objects. The “body schema” allows controlling the arm 

and hand to reach and touch objects within the robot’s workspace. Eventually, the 

interaction between the environment and the robot’s body is exploited to acquire a visual 

model of the objects the robot encounters which can then be used to guide a top-down 

attention system. 

Keywords: development, humanoid robotics, body schema, top-down and 

bottom-up attention 

(1) Introduction 

In the past few years there has been significant technological advance in 

computer technology and robotics. Today computers are much more powerful than they 

used to be and they can be interconnected through fast networks, which allow efficient 

parallel computation. At the same time digital cameras have higher resolution, better 

quality and higher frame rate. This notwithstanding, we are still far from achieving the 

dream of artificial intelligence. Artificial systems (computer programs, expert systems or 

robots) are not able to face the challenges of the real world. We are still not capable of 
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building devices which are able to cope with the variability of the world where, on the 

other hand, even the simplest animal can thrive. Likewise there is a growing interest in 

the scientific community to the study of cognitive systems with the aim of implementing 

cognitive abilities in artificial systems. The study of cognition is still in the pre-

paradigmatic stage and, indeed, little agreement can be found even in its definition (see 

(Clark, 2001) for a review). According to cognitivism, cognition is “a computational 

process carried out on a symbolic representation of the world”. Symbols represent the 

world and can be shared across different entities (artificial or biological); they are a 

complete characterization of the world in which the entity is located, and as such are 

independent of the entity itself and its past experience. Somewhat at the other extreme, 

emergent approaches define cognition as the result of the interaction and co-development 

between the agent’s body and the environment in which it lives (Maturana and Varela, 

1998, Beer, 2000, Sandini et al., 2004). 

Although the definitive answer is still to be found, the observation of biological 

systems provides hints to plausible solutions. Two aspects look crucial: i) the existence of 

a body (embodiment) and ii) the fact that the internal representation of the world is 

acquired by acting in the environment. The two requirements are obviously intertwined, 

as the interaction between the agent and the environment is possible only by means of a 

physical body. As a consequence, internal representations become function of the 

particular embodiment and, perhaps more importantly, of the history of experiences of 

the agent. 

Subscribing to the emergent approach implies that internal representations 

cannot be built into the system “by design”; instead the cognitive system has to be able to 

create these representations by directly interacting with the environment or, indirectly, 
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with other agents. Through action, the embodiment and environment co-determine the 

resulting representations. 

Motivated by these considerations, this paper proposes a developmental 

approach to the realization of a number of cognitive abilities in a humanoid robot. 

Although a fair amount of cognitivism is still present, especially in the realization of the 

visual system, learning permeates the implementation at various levels. Learning and a 

certain degree of adaptation is clearly the prerequisite to a fully emergent design, 

although not yet an end or a definite answer to the understanding of cognitive systems 

altogether. 

We identified the minimum requirements for our robot as having an oculomotor 

system, an arm, and a hand. Although simplified this configuration suffices in allowing 

active manipulation of the world via reaching and grasping. The robot follows a 

developmental route that goes initially through the exploration of its body and terminates 

into the characterization of external objects (e.g. segmentation) by effect of grasping. 

Conceptually this process can be divided in three phases. The first stage is 

devoted to learning the internal models of the body (we call it “learning the body-map”) 

which provides basic motor and perceptual skills like gaze control, eye-head coordination 

and reaching. Based on these abilities the interaction with the external world is 

investigated in the second phase where the robot discovers properties of objects and ways 

of handling them (learning to interact). The robot tries simple stereotyped actions like 

pushing/pulling and grasping of objects which allow to start the acquisition of 

information about the entities that populate its environment and simultaneously discover 

new more efficient ways of interaction (for example different grasp types). Finally the 

third stage concerns learning to understand and interpret events; the robot has associated 
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its actions with the resulting perceptual consequences. Interpretation is achieved by 

inverting this association; perceptions are projected into the corresponding actions which 

work as a reference frame to give meaning to what happens in the environment. 

In our past work we have addressed some of the aspects related to this third 

phase (Natale et al., 2002, Fitzpatrick et al., 2003). In this paper we focus on the two first 

phases: learning a body-map and learning to interact. 

We show how the robot can acquire an internal model of its hand which allows 

the robot to localize it and anticipate its position in the visual scene during action 

execution. The hand internal model is then used to learn to reach a point in space and to 

accommodate the position of the hand with respect to the object during grasping. The 

robot uses these abilities to build a visual model of the objects it grasps. Once an object is 

grasped, in fact, the robot can move and rotate it to build a statistical model of its visual 

appearance. 

(1) Experimental Platform 

The experiments reported in this paper were carried out on a robotic platform 

called Babybot (Figure 1). The Babybot is an upper torso humanoid robot which consists 

of a head, an arm and a hand. The head has 5 degrees of freedom, two of which control 

the neck in the pan and tilt direction, whereas the other three actuate the two eyes to pan 

independently and tilt on a common axis. The arm is a Unimate PUMA 260, an industrial 

manipulator with 6 degrees of freedom; it is mounted horizontally to better mimic the 

human kinematics. The hand has 5 fingers; each finger has three phalanges, the thumb 

has an additional degree of freedom which allows it to perform a rotation toward the 

palm. Overall the number of joints is 16 but for reasons of space and weight they are 
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controlled by using only six motors. Two motors are connected to the index fingers: they 

are linked to the first (proximal) and second phalanges. The distal (small) phalange is 

mechanically coupled to the preceding one so that the two bend together (see Figure 1). 

Two motors control the motion of middle, ring and little finger. As in the case of the 

index finger, the proximal phalanges are actuated by a single motor, while the second and 

third phalanges are actuated by a second motor. The mechanical coupling between the 

joints is realized by means of springs to allow a certain degree of adaptation in case of 

physical contact or impact with solid objects. For example, during a movement of flexion 

of the fingers toward the palm, if the middle finger were to be blocked by an obstacle the 

others would continue to bend up to the equilibrium of the torque generated by the motor 

and that of the spring (Figure 1 b) and c)). The same would happen in case the distal 

phalanges had hit the obstacle. The thumb is different as one motor controls the rotation 

around an axis parallel to the palm and a second motor is connected to the three 

phalanges, whose independent motion is permitted by elastic coupling as for the other 

fingers. 

The sensory system of the Babybot consists of two cameras and two 

microphones for visual and auditory feedback. Tactile feedback is provided by 17 force 

sensing resistors mounted on the hand, five of which are placed on the palm and the 

remaining 12 evenly distributed on the thumb, index, middle and ring fingers. A JR3 6-

axial force sensor provides torque and force feedback measured at the wrist. Further 

proprioceptive information is provided by encoders mounted on all motors and by a 

three-axis gyroscope mounted on the head. More details about the Babybot architecture 

can be found elsewhere (Natale, 2004). 
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[FIGURE 1 about here] 

 

(1) Visual System 

One of the first steps of any visual system is that of locating suitable interest 

points in the scene (“salient regions” or events) and eventually direct gaze toward these 

locations. Human beings and many animals do not have a uniform resolution view of the 

visual world but rather only a series of snapshots acquired through a small high-

resolution sensor (e.g. our fovea). This leads to two questions: i) how to move the eyes 

efficiently to important locations in the visual scene, and ii) how to decide what is 

important and, as a consequence, where to look next. 

The literature follows two different approaches in the attempt of accounting for 

these facts. On the one hand, the space-based attention theory holds that attention is 

allocated to a region of space, with processing carried out only within a certain spatial 

window. Attention in this case could be directed to a region of space even in absence of a 

real target (the most influential evidences for the spatial selection come from the 

experiments of Posner, Snyder and Davidson (Posner et al., 1980) and Downing and 

Pinker (Downing and Pinker, 1985)). 

On the other hand, object-based attention theories argue that attention is directed 

to an object or a group of objects, and that the attention system processes properties of 

object(s), rather than regions of space. This object-based theory is supported by growing 

behavioral and neurophysiological evidence (Egly et al., 1994, Scholl, 2001). In other 

words, the visual system seems optimized for segmenting complex three-dimensional 

scenes into representations of (often partly occluded) objects for recognition and action. 
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Indeed, perceivers must interact with objects in the world and not with disembodied 

locations. 

Finally, another classification can be made depending on which cues are actually 

used in modulating attention. One approach uses bottom-up information including basic 

features such as color, orientation, motion, depth, and conjunctions of features. A feature 

or a stimulus catches the attention of the system if it differs from its immediate 

surrounding in some dimensions and the surround is reasonably homogeneous in those 

same dimensions. However higher level mechanisms are involved as well; a bottom-up 

stimulus, for example, may be ignored if attention is already focused elsewhere. In this 

case attention is also influenced by top-down information relevant to a particular task. 

In the literature a number of attention models that use the first hypothesis have 

been proposed (Giefing et al., 1992, Milanese, 1993, Itti et al., 1998); most of them are 

derived from Treisman’s Feature Integration Theory (FIT) (Treisman and Gelade, 1980). 

This model employs a separate set of low-level feature maps which are combined 

together by a spatial attention window operating in a master saliency map. An important 

alternative model is given by Sun and Fisher (Sun and Fisher, 2003), who proposed a 

combination of object- and feature-based theory (this model, unfortunately, requires 

hand-segmented images as input for training). 

While it is known that the human visual system extracts basic information from 

images such as lines, edges, local orientation etc., vision not only represents visual 

features but also the items that such features characterize. But to segment a scene into 

items, objects, that is to group parts of the visual field as units, the concept of “object” 

must be known by the system. In particular, there is an intriguing discussion underway in 

vision science about reference to entities that have come to be known as "proto-objects" 
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or "pre-attentive objects" (Pylyshyn, 2001). These are steps up from mere localized 

features, and they have some but not all of the characteristics of objects. 

The visual attention model we propose starts by considering the first stages of 

the human visual system, using then a concept of salience based on “proto-objects” 

defined as blob of uniform color in the images. Then, since the robot can act on the 

world, it can do something more: once an object is grasped  the robot can move and 

rotate it to build a statistical model of the color blobs, thus effectively constructing a 

representation of the object in terms of proto-objects and their spatial relationships. This 

internal representation feeds then back to the attention system of the robot in a top-down 

way; as an example we show how the latter can be used to direct attention to spot one 

particular object among others that are visible on a table in front of the robot. 

Our approach integrates bottom-up and top-down cues; in particular bottom-up 

information suggests/identifies possible regions in the image where attention could be 

directed, whereas top-down information works as a prime for those regions during the 

visual search task (i.e. when the robot seeks for a known object in the environment). 

(2) Log-polar images 

Figure 2 shows the block diagram of the first stage of the visual processing of 

the robot. The input data is a sequence of color log-polar images (Sandini and Tagliasco, 

1980). The log-polar transformation models the mapping of the primate visual pathways 

from the retina to the visual cortex. The idea of employing space-variant vision is derived 

from the observation that the distribution of the cones, i.e. the photoreceptors of the retina 

involved in diurnal vision, is not uniform: cones have a higher density in the central 

region called fovea, while they are sparser in the periphery. Consequently the resolution 
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is higher and uniform in the center while it decreases in the periphery proportionally to 

the distance from the fovea. 

The main advantage of log-polar sensors is computational, as they allow to 

acquire images with a small number of pixels and yet to maintain a large field of view 

and high resolution at the center (Sandini and Tagliasco, 1980). Moreover, this particular 

distribution of the receptors seems to influence the scan-paths of an observer (Wolfe and 

Gancarz, 1996), so it has to be taken into account to better model the overt visual 

attention. 

 

[FIGURE 2 about here] 

 

The radial symmetry of the distribution of the cones can be approximated by a 

polar distribution, whereas their projection to the primary visual cortex is well 

represented by a logarithmic-polar (log-polar) distribution mapped onto an approximately 

rectangular surface (the cortex). From the mathematical point of view the log-polar 

mapping can be expressed as a transformation between the polar plane ( )qr ,  (retinal 

plane), the log-polar plane ( )hx ,  (cortical plane) and the Cartesian plane ( )yx,  (image 

plane), as follows (Sandini and Tagliasco, 1980): 

 

0

,

log .a

qh q
r

x
r

= ×�
�
� =�
�

 (1) 

where 0r  is the radius of the innermost circle, q/1  is the minimum angular resolution of 

the log-polar layout and ( )qr ,  are the polar co-ordinates. 
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Figure 3 illustrates the log-polar layout by showing a standard rectangular image 

and its log-polar counterpart. It is worth noting that the flower’s petals, that have a polar 

structure, are mapped horizontally in the log-polar image. Circles, on the other hand, are 

mapped vertically. Furthermore, the stamens that lie in the center of the image of the 

flower, occupy about half of the corresponding log-polar image (the cortical 

magnification). 

 

[FIGURE 3 about here] 

 

(2) Visual attention 

As a first step the input image is smoothed, by taking the average between the 

current frame and the output of the color quantization (see later) on the previous frame. 

Then the red, green, and blue channels of each image are separated, and the yellow 

channel is calculated as the mean of the red and green one. These four channels are 

combined to generate three color opponent channels, similar to those of the retina. Each 

of these channels, typically indicated as (R+G-, G+R-, B+Y-), has a center-surround 

receptive field (RF) with spectrally opponent color responses. That is, for example, a red 

input in the center of a particular RF increases the response of the channel R+G-, while a 

green one in the surrounding decreases its response. The spatial response profile of the 

RF is expressed by a Difference-of-Gaussians (DoG) function. Each pixel is considered 

as the center of a RF, so that the output of the RF filtering is simply obtained by a 

convolution of the whole image with a DoG kernel, generating an output image of the 
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same size of the input. This computation, considering for example the R+G- channel, is 

expressed by: 

 ( ) ( ) ( ) ( ) ( ), , .c c s sR G a R b Gg s g s+ - = × Ä - × Äx x x x x  (2) 

The two Gaussian functions ( ),c cg sx  and ( ),s sg sx  are not balanced and the 

ratio b/a is 1.5, consistent with the study of Smirnakis et al. (Smirnakis et al., 1997) 

Similarly to what happens in the human retina (Billock, 1995) the unbalanced ratio 

implicitly code the achromatic information. It is worth noting that filtering the log-polar 

images with a standard space-invariant filter corresponds to a space-variant filtering in 

the original Cartesian image (von Seelen and Mallot, 1990). 

Edges are then extracted on the three channels separately by employing a 

generalization of the Sobel filter due to Li et al. (Li et al., 2003). The resulting edge maps 

are combined together to generate a single map as follows: 

 ( )( ) ( )( ) ( )( ){ }( ) max , , .RG GR BYE abs E abs E abs E=x x x x  (3) 

It has to be noted that the log-polar transform has the side effect of sharpening 

the edges near the fovea due to the already mentioned magnification factor. To 

compensate for this effect the edge map is multiplied by an exponential function, and 

normalized to a fixed range (0-255). 

It has been speculated, that synchronizations of visual cortical neurons may 

serve as the carrier for the observed perceptual grouping phenomenon (Eckhorn et al., 

1988, Gray et al., 1989). The differences in oscillator phase between spatially 

neighboring spiking cells could be used in principle to label different objects in the scene. 

We have used a watershed transform (rainfalling variant) (Vincent and Soille, 1991, Smet 

and Pires, 2000) on the edge map to simulate the result of this synchronization and to 
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generate the proto-objects. The activation is spread from the center of the image (in the 

edge map) until all spaces between edges are filled in. As a result the image is segmented 

into blobs with either uniform color or uniform gradient of color. 

Each blob is then tagged with the mean color of the pixels within its internal 

area (this leads to a sort of quantized image). The result is blurred with a Gaussian filter 

and stored: it will be averaged with the next frame to obtain a temporal smoothing and 

reduce the effect of noise. After an initial startup delay of 4-5 frames, the number of 

blobs and their size stabilizes. 

As discussed above, it is known that a feature or stimulus is salient if it differs 

from its immediate surrounding area. We chose to calculate the bottom-up salience as the 

Euclidean distance in the color opponent space between each blob and the average color 

in a ball surrounding it. The radius of the ball (the spot or focus of attention) is not fixed: 

it changes with the size of the objects in the scene. In the same way the definition of 

“immediate surrounding area” should be relative to the size of the focus of attention. For 

this reason the greater part of the visual attention models in the literature uses a multi-

scale approach and filters the salience map with suitable filters, or “blob” detectors (Itti 

and Koch, 2001). These approaches lack continuity in the choice of the size of the 

attention focus. We propose instead to vary dynamically the region of interest depending 

on the size of the blobs. In other words, we compute the salience of each blob in relation 

to a neighborhood region whose size is proportional to that of the blob itself. In our 

implementation we use a rectangular region 3 times the size of the bounding box of the 

blob. The choice of a rectangular window is not incidental, it was chosen because filters 

over rectangular regions can be computed efficiently by employing the integral image as 

in (Viola and Jones, 2004). Blobs that are too small or too big are discarded from the 
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saliency computation and will not be considered as possible candidates to be part of 

objects (proto-objects). 

The bottom-up saliency is computed as: 

 
2 2 2

1
.

3
bottom up

blob surround blob surround blob surround

S R G R G G R G R B Y B Y+ - + - + - + - + - + -
-

� � � � � �
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 (4) 

where  indicates the average of the pixel values over a certain area (as in the 

subscripts). 

The top-down influence on attention is, at the moment, calculated in relation to 

the visual search task. When the robot has acquired a model of the object and begins 

searching for it, it uses the visual information of the object to bias the saliency map. In 

practice, the top-down saliency map is computed as the distance between the average 

color of each blob and that of the target: 
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(5) 

The total salience is simply estimated as the linear combination of the two terms 

above: 

 .top down bottom upS S Sa b- -= × + ×  (6) 

The total salience map S is eventually normalized in the range 0-255, as a 

consequence the salience of each blob in the image is relative to the most salient one. The 

target of the next saccade is the center of mass of the most salient blob (this is in 

agreement with human behavior (Melcher and Kowler, 1999). 
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As a final note on efficiency, it is worth saying that the use of log-polar images 

allows to compute the saliency map in real-time (15 frames per second on a 2.8Ghz 

Pentium IV). 

(2) IOR 

Local inhibition is transiently activated in the salience map. This prevents the 

focus of attention to be redirected immediately to a location that was previously attended. 

Experiments in human psychophysics have demonstrated the existence of such an 

“inhibition of return” (IOR) coded in an allocentric reference frame (Posner and Cohen, 

1984) and in an object-based coordinates (Tipper, 1994). 

Our system implements a simple object-based IOR. The robot maintains a list of 

the last five positions (Wolfe, 2003) it has visited, coded in a body centered coordinate 

system. The color information of the relative blobs is also stored in the list which is 

updated with a First-In First-Out policy. When the robot moves its gaze – for example by 

moving the eyes or the head in coordination – it keeps memory of the blobs it has visited 

earlier. Inhibition occurs only if the blob presents the same color that is stored in the list; 

in case the object moves or its color changes the location becomes available for fixation. 

(1) Learning about the Self  

Internal models are thought to be available to the brain and responsible for 

formulating predictions about the world or simulating the body (Wolpert and Miall, 

1996). In general the collection of the internal models required to represent the body is 

called the body-schema: it involves, for example, the relative positions of the limbs, and 

their weight and size. In humans and biological systems the internal representation of the 
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body is shaped during development and maintained adapted to the physical modification 

occurring in life. In artificial agents (where the body does not change with time) 

adaptation can spare the tedious operation of manually tuning the system’s internal 

models and their calibration. The latter might be required to compensate changes in the 

visual appearance of the body or drift in the sensors (e.g. the motor encoders). 

In infants this sense of the body is acquired during development and emerges a 

few months after birth (Rochat and Striano, 2000). This is a cause-effect problem because 

on the one hand the brain uses internal models to recognize the body whereas on the 

other it has to acquire the body-schema and maintain it up to date. To solve it, the brain 

needs a “bootstrapping” mechanism which allows the identification of the body and, in 

this way, the acquisition of the internal representation. To distinguish the body from the 

rest of the world the brain is thought to take advantage of extra information. For example, 

while a child waves the hand in front of his eyes, his brains “knows” what kind of motion 

is producing since it has exclusive access to the motor commands it sends to the muscles 

and the relative proprioceptive feedback (Rochat and Striano, 2000). 

In robotics there have been attempts to replicate self-recognition mechanisms. 

Yoshikawa and colleagues (Yoshikawa et al., 2003) exploit the invariance of the body 

with respect to the external world to train a neural network to segment the arm of the 

robot. Their idea is that during learning, when the robot moves in the environment, the 

background changes, whereas the arms remain stationary with respect to the 

proprioceptive feedback. 

Instead, the active behavior of the robot is used by Metta and Fitzpatrick (Metta 

and Fitzpatrick, 2003); in this case the robot identifies its body because it moves with 

respect to the background. Since motion alone is not sufficient to segment out external 
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objects that move in the environment, the system seeks similarities between 

proprioceptive and visual feedback. Among the others, periodic actions may add 

robustness because offer the possibility to exploit repeatability (Fitzpatrick and Arsenio, 

2004). 

(2) Segmentation of the hand 

Repeated, self-generated actions were performed by the robot during the 

learning phase. In particular the robot was programmed to execute periodic movements 

of the wrist. The resulting motion of the hand was detected by computing the image 

difference between the current frame and an adaptive model of the background. The 

period of motion of each pixel in the resulting motion image was then computed with a 

zero-crossing algorithm; similar information was extracted from the proprioceptive 

feedback of each motor encoder. As a result, the hand of the robot was segmented by 

selecting, among the pixels that moved periodically, those whose period matched that of 

the wrist joints. Conversely non-periodic pixels or pixels moving with different periods 

were identified as being externally originated and discarded. Figure 4 shows an example 

of the detection for two different pixels whose motion was (a) correlated and (b) 

uncorrelated with that of the robot’s hand. Low-pass filtering and a threshold was applied 

after the detection to obtain a dense segmented image (see Figure 5). 

 

[FIGURE 4 about here] 

 

This algorithm forces the robot to stop and wait until the periodic movement of 

the wrist is performed. For this reason it is not useful during action or to drive a feedback 
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control loop; it is instead ideally suited as a bootstrapping mechanism to acquire an 

internal model of the hand which can provide faster localization. In practice this was 

implemented with two neural networks: one trained to compute the position of the hand 

in the visual field given the current arm and head posture, and another to estimate the 

hand’s shape and orientation (in this case the hand was represented as an ellipse). Indeed, 

these neural networks can also predict the expected location and the (simplified) 

appearance of the hand in the visual field given the current posture of the robot (its “felt” 

position). The approach we followed here to perform the segmentation of the hand is 

similar to the one of Metta and Fitzpatrick (Metta and Fitzpatrick, 2003); the main 

difference with our approach is the use of periodicity that allows the detection of the hand 

in real time at high resolution. The result is a dense segmentation from which it is 

possible to derive additional information like shape and orientation. 

(2) The hand internal model, expectation and prediction 

To gather the training data the robot moved the arm randomly and then waved 

the hand for a few seconds; for each spatial location the segmentation of the hand was 

performed as described in the previous section. For each trial the center of mass of the 

segmented area was computed along with the best fitting ellipse parameters. The 

complete algorithm is reported in Figure 6. 

 

[FIGURE 5 about here] 

 

The resulting ( ),x y  coordinates were used to train the first neural network 

whereas the ellipse parameters (orientation, major and minor axis) constituted the 
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training samples for the second neural networks. It is important to take into account that 

the position of the hand in the visual field depends both on the posture of the arm and 

head (other parameters like orientation and size of the hand are less influenced, if not at 

all). Unfortunately this enlarges the learning space and increases the time required for 

exploration (to collect the training set) and learning (higher dimensionality). For this 

reason the position of the hand was projected into an egocentric reference frame before 

being used to train the neural network. This last operation significantly reduced the 

dimensionality of the input space of the neural network. When needed, the output of the 

neural network is projected back to the retinocentric reference frame. Both projections 

(back and forth from egocentric and retinocentric reference frame) require knowledge of 

head inverse and direct kinematics. In the experiments reported here they were hardwired 

in the system, a possible procedure to learn a model of them is suggested by Arsenio 

(Fitzpatrick and Arsenio, 2004). Figure 7 reports the block diagrams of the two models. 

 

[FIGURE 6 about here] 

 

As learning module we employed a multi-layer perceptron network with 

sigmoidal units trained with backpropagation; learning was performed online by storing 

all new samples and performing batch learning every 100 new samples. The learning 

process was validated by testing the ability of the network to predict new samples; when 

a new sample was obtained the network was used to predict the output given the input. 

The resulting output was compared to the current sample and the error computed. The 

increasing ability of the network to predict new samples proved that learning was 

effective. Figure 8 (left) reports the plot of the error during an experiment (in this case the 
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error is computed in the image plane to simplify visualization of the results); the total 

time of this experiment was about two hours. 

 

[FIGURE 7 about here] 

 

At the end of the exploration phase the robot had trained an internal model of 

the hand by which it could i) localize its center of mass ii) estimate its orientation and 

approximate size. The output of these models is not based on actual visual feedback, but 

on the mere projection of the proprioceptive information about the hand: they represent 

the expectation the robot possesses about its body (in this case, the hand).  

 

[FIGURE 8 about here] 

 

These measures were used in numerous ways. The center of mass was employed 

to close a visual loop to direct gaze towards the hand (see Figure 8 right). For this task 

the internal model was addressed with the proprioceptive feedback of the arm. Another 

possibility was to address the model with the arm motor command (final joint position) to 

obtain the position of the hand at the end of the movement. In general this model offers a 

means of computing a prediction of the position, size and orientation of the hand from a 

given arm configuration or, in other words, of simulating a motor action. In the next 

section this will be used to learn the reaching map and estimate the visuomotor Jacobian 

matrix for a reaching task. 
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(2) Reaching 

The solution we propose is based on the use of a direct mapping between the 

eye-head motor plant and the arm motor plant (Metta et al., 1999). Flanders and 

colleagues (Flanders et al., 1999) suggested that the information about gaze direction 

might be employed by the brain to establish a reference point for reaching. They analyzed 

the error when reaching in the dark and showed how this correlates to the error of the 

gaze (the gaze drifts away from the target in the dark). Accordingly one premise we make 

is that the position of the fixation point coincides with the object to be reached. In other 

words, reaching for an object starts by looking at it. Under this assumption, the fixation 

point can be considered as the “end-effector” of the eye-head system. The position of the 

eyes with respect to the head, determines uniquely the position of the fixation point in 

space relative to the shoulder. The arm motor command can be obtained by a 

transformation of the eye-head motor/positional variables. We called this approach 

“motor-motor coordination”, because the coordinated action is obtained by mapping 

motor variables into motor variables: 

 )( headarm qfq =  (7) 

where headq  and armq  are head and arm posture respectively (joint space). 

What is interesting in this approach is not equation (7) per se, which, after all, 

implements the inverse kinematics of the arm, but the mechanisms used to learn it. In 

fact, this mapping can be easily learnt when the tracking behavior described in the 

previous section is active. The robot explored the workspace by moving the arm 

randomly, while simultaneously, it tracked its hand; whenever the eyes fixated the hand a 

new sample consisting of the arm and head joint angles was acquired and used to train a 
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neural network approximating equation (7). In this case learning was performed online by 

using the Schaal at al. model (Schaal and Atkeson, 1998). The exploration was conducted 

in two ways. A first movement of the arm was performed by sampling a random uniform 

distribution within the part of the arm workspace in front of the robot. Small subsequent 

movements were performed randomly with Gaussian distribution with zero mean and 

standard deviation equal to 5 degrees. This last step while not strictly required sped up 

learning by sampling quickly large portions of the arm’s workspace: i.e. for small 

movements of the order of 5 degrees the arm fixation was achieved rapidly and thus a 

new sample was added to the training set. When a sufficient number of samples were 

acquired, the robot started using the motor-motor map to actively reach for visually 

identified objects while learning could continue. 

Learning can be further improved by reducing the dimensionality of the input 

vector headq . In fact, only three variables are needed to code the position of the fixation 

point; for this purpose we decided to use azimuth, elevation, and distance – in 

substitution for the five angles of the head joints. This transformation is motivated by 

practical reasons, but it is also biologically plausible (Lacquaniti and Caminiti, 1998). 

 

[FIGURE 9 about here] 

 

Similarly to the previous section, learning was tested by comparing every new 

sample to the output of the network (see text for details). The graph of the error during an 

experiment is reported in Figure 9 (left) for each sample (dotted line) and the moving 

window average over 20 samples (the total time of the experiment was about one hour 

and a half). From the first plot it is hard to determine a real increment of performance as 
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several samples at the end of the learning session present relatively large errors. This is 

due to noise in the training data, which affects not only learning, but also the measure of 

performance. In particular noise is higher in those configurations of the arm where the 

hand is closer to the head and the system fails to control the angle of vergence between 

the eyes. In these situations the error is large because the position of the fixation points 

varies significantly (from very far to very close). The average error, however, has a 

distinguishable uniform trend. Figure 9 (right) shows a sequence of images taken from 

the robot left eye during an exemplar reaching action. 

It is worth mentioning that there is no need to separate the exploration/training 

phase and reaching (exploitation). An initial “reflex” can be employed as substitute for 

the reaching map at the very beginning; this simple behavior could, for example, populate 

the robot workspace with three positions (left, center and right). Exploration in this case 

would still be guaranteed by a random procedure, similar to the one described earlier. 

This approach was followed in (Metta et al., 1999, Metta, 2000). 

The reaching problem can also be solved in the image plane. Consider the planar 

case (i.e. no 3D information is available and one of the arm joints is maintained to a fixed 

position) and suppose to measure the position of the end point in the image plane handx . 

We want to control the arm to reach a target point *
handx . If the robot is not in a singular 

configuration we can solve the problem by following a standard visual servoing approach 

(Espiau et al., 1992, Hutchinson et al., 1996): 

  ( ) xqJq D××-= -
armk 1� , (8) 

where: 

 *-=D handhand xxx , (9) 
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0>k  is a scalar and ( )armqJ  is the Jacobian of the transformation between the image 

plane and the arm joint space. ( )armqJ 1-  is 2 by 2 matrix whose elements are a non-

linear function of the arm joint angles. Given ( )armqJ 1-  it is possible to drive the 

endpoint toward any point in the image plane. At least locally 1-J  can be approximated 

by a constant matrix: 

 ( ) ( ) �
�



�
�

�
=» --

2221

121111 ˆ
aa

aa
J armarm qJq . (10) 

Since following the procedure described in the previous section the robot has 

learnt a direct transformation between the arm joint angles and the image plane (see for 

example Figure 7), it can now recover the position of the endpoint from a given joint 

configuration: 

 )( armhand qfx = . (11) 

Indeed, to compute a local approximation of 1-J , a random sampling of the arm 

joint space around a given point ( )qx,  can be performed: 

 =i iq q + � q  (12) 

with 

 =i� q � (0,� )  (13) 

and where � (0,� )  follows a normal distribution of zero mean and standard deviation of 

5 degrees. 

For each sample, by applying equation (11) we obtain a new value ii xxx D+=  

that can be used to estimate 1-J around q  with a least squares procedure: 
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( )qJ 1ˆ -  can then be used in the closed loop controller to drive the arm toward a specific 

position in the image plane. However, there is no need to close the loop with the actual 

visual feedback. By using the map in equation (11), in fact, we can substitute the actual 

visual feedback with the internal simulation provided by the model. From the output of 

the closed loop controller we can estimate the position of the arm at the next step, by 

assuming a pure kinematic model of the arm; in this way the procedure can be iterated 

several times to obtain the joint motor commands required to perform a reaching 

movement. The flowchart below explains this procedure. 

In principle the inverse Jacobian could be learnt by using the visual feedback of 

the hand. In practice however this is often impractical because continuous visual 

feedback from the hand is rarely available. The approach we propose here requires only 

knowledge of the forward kinematics (as estimated in the previous section); the 

estimation of the inverse Jacobian with the approach we described is fast and can be 

easily performed online. Note also that the inverse Jacobian could have been computed 

analytically by taking the first derivative of equation (11). By selecting a least square 

solution, in our case, we added an extra smoothing factor that is beneficial in considering 

a control application. Also, in theory, our approach is more flexible since it does not 

require the knowledge of the number of units and structure of the neural network 

employed to approximate equation (11) and can be completely automatic. 

 

[FIGURE 10 about here] 
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The main limitation of this approach is that we do not make use of three-

dimensional visual information; while this is a clear limitation of this implementation, the 

same approach can be easily extended to the full 3D case. The implementation is 

consistent with the hand internal model which provides the position of the hand in the 

image plane of one of the eyes only (left). Since in the Babybot the hand position is 

uniquely described by three degrees of freedom (the first three joints of the Puma arm), 

this technique was used to control only two of them (arm and forearm). Given the 

kinematics of the Puma arm this allowed to perform movements on the plane defined by 

the shoulder joint. Another point worth discussing is that the closed loop controller does 

not use real visual feedback, and, therefore, its accuracy depends on the precision of the 

hand internal model. To achieve better performances, actual visual feedback might be 

required. 

 

[FIGURE 11 about here] 

 

Let us summarize what we have described in this section. We have introduced 

two approaches to solving the inverse kinematics of the manipulator. The first method 

uses a mapping between the posture of the head (whose fixation point implicitly 

identifies the target) and the arm motor commands; it allows controlling the arm to reach 

any point fixated by the robota. The second approach uses the hand internal model to 

compute a piecewise constant approximation of the inverse Jacobian and simulate small 

movements of the arm in the neighborhood of the desired target. The procedure is iterated 

                                                
�  During the learning of the motor-motor map, the robot tracks the palm of the hand. 
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several times to compute the motor command required for reaching the target. Reaching 

in this case is planned in the image plane; however, since the internal model is two 

dimensional, the approach is limited to the plane identified by the shoulder. For these 

reasons, the two methods were mixed in the experiment reported in the next section. The 

motor-motor mapping is employed to plan a first gross movement to approach the target, 

whereas the “closed-loop approach” allows a finer positioning of the fingers on the 

target. This second part of the movement is planned by considering the point of the 

ellipse at maximum distance from the robot’s body (which corresponds to the fingers) as 

the arm endpoint (Figure 11). This strategy proved successful because it substantially 

increased the probability to grasp the objects on the table. 

Once the robot has computed the final arm posture, planning of the actual 

movement is still required. This was done with a simple linear interpolation between the 

current and final arm configuration. The trajectory was divided in steps which were then 

effected by the low level controller; to this purpose we employed a low-stiffness PD 

controller with gravity compensation. The gravity load term for each joint was learnt 

online as described in Natale (Natale, 2004). 

(1) Learning about Objects 

In this section we describe a method for building a model of the object the robot 

grasps. We assume for a moment that the robot has already grasped an object; this can 

happen because a collaborative human has given the object to the robot (as we describe in 

the next section) or because the robot has autonomously grasped the object. In this case 

the robot may spot a region of interest in the visual scene and apply a stereotyped action 

involving the arm and hand to catch it. Both solutions are valid bootstrapping behaviors 
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for the acquisition of an internal model of the object. When the robot holds the object it 

can be explored through movements of the arm and rotations of the wrist. 

In short, the idea is to represent objects as collections of blobs generated by the 

visual attention system and their relative positions (neighboring relations). The model is 

created statistically by looking at the same object several times from different points of 

view (see Figure 12). At the same time the system estimates the probability that each 

blob belongs to the object by counting the number of times each blob appears during the 

exploration. 

In the following, we use the probabilistic framework proposed by Schiele and 

Crowley (Schiele and Crowley, 1996a, Schiele and Crowley, 1996b). We want to 

calculate the probability of the object O given a certain local measurement M. This 

probability P(O|M) can be calculated using Bayes’ formula: 

 ( ) ( ) ( )
( )
|

| .
P M O P O

P O M
P M

=  (15) 

where P(O) is the a priori probability of the object O, P(M) the a priori probability of the 

local measurement M, and P(M|O) is the probability of the local measurement M when 

the object O is fixated. In the following experiments we carried out only a single 

detection experiment, there are consequently only two classes, one representing the 

object and another representing the background. For lack of better estimations we set 

P(O) and P(~O) to 0.5 (this is equivalent to doing a maximum likelihood estimation). 

Since a single blob is not discriminative enough, we considered the probabilities 

of observing pairs of blobs; the local measurement M becomes the event of observing 

both a central (i.e. fixated) and surrounding blobs: 

 ( ) ( )( )| |  and  adiacent .i c i cP M O P B B B B=  (16) 
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where Bi is the i th blob surrounding the central blob Bc which belongs to the object O. 

That is, we exploit the fact the robot is fixating the object and assume Bc to be constant 

across fixations of the same object – this is guaranteed by the fact the object is being hold 

by the hand. In practice this corresponds to estimating the probability that all blobs Bi 

adjacent to Bc (which we take as a reference) belong to the object. Moreover the color of 

the central blob Bc will be stored to be used during visual search to bias the salience map. 

This procedure, although requiring the “active participation” of the robot (through 

gazing) is less computationally expensive compared to the estimation of all probabilities 

for all possible pairs of blobs of the fixated object. Estimation of the full joint 

probabilities would require a larger training set than the one we used in our experiments. 

For the same reason we assumed statistical independence of the blobs of the objects; 

under this assumption the total probability P(M1,…,MN|O) can be factorized in the 

product of the probabilities P(Mi|O). The probabilities P(M|~O) are estimated during the 

exploration phase with the blobs not adjacent to the central blob. An object is detected if 

the probability P(O|M1,…,MN) is greater than a fixed threshold. 

Our requirement was that of building the object model with the shortest possible 

exploration procedure. Unfortunately, the small training set might give histograms 

P(M|*) with many empty bins zero counts bins. To overcome this problem a probability 

smoothing method was used. A popular method of zero smoothing is Lidstone’s law of 

succession: (Lidstone, 1920) 

 ( ) ( )
| .

( )
count M O

P M O
count O v

l
l

Ù +
=

+
 (17) 

for a v valued problem. With � =1 and a two valued problem (v=2), we obtain the well-

known Laplace’s law of succession. Following the results of Kohavi et al. (Kohavi et al., 
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1997) we choose � =1/n where n is equal to the number of frames utilized during the 

training. The model of an object is trained in real-time; the duration of the training is 

determined by the time required by the robot to rotate and move the object with the hand 

(currently about 30 seconds). 

When an object is detected after visual search, a possible figure-ground 

segmentation is attempted, using the information gathered during the exploration phase. 

Each blob is segmented from the background if it is adjacent to the central blob and if its 

probability to belong to the object is greater than 0.5. This probability is approximated 

using the estimated probability as follows: 

 ( )( ) ( )( ).adiacent   and|adiacent   and| cicicici BBBBPBBBOBP @Î  (18) 

As an example Figure 13 shows the result of the segmentation procedure. These 

results could be further improved by adding some hypothesis about the regularity of the 

object boundary. However for the purpose of this paper (object identification for the 

manipulation task) these refinements were not necessary. 

In table 1, results are shown of using a toy car and a toy airplane as target 

objects; 50 training sessions were performed for each object. The first column shows the 

recognition rate, the second the average number of saccades (mean ± standard deviations) 

it takes the robot to locate the target in case of successful recognition. The recognition 

rate of the toy airplane is lower than the one of the toy car because the former is more 

similar (by virtue of its color and number of blobs) to the background. 

 

[TABLE 1 about here] 

 

[FIGURE 12 about here] 
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[FIGURE 13 about here] 

 

(1) Grasping Behavior 

The modules described in the previous sections can be integrated to achieve an 

autonomous grasping behavior. Figure 14 can be used as a reference for the following 

discussion. The action starts when an object is placed in the robot’s hand and the robot 

detects pressure in the palm (frame 1). This elicits a clutching action of the fingers; the 

hand follows a preprogrammed trajectory, the fingers bend around the object toward the 

palm. If the object is of some appropriate size, the intrinsic elasticity of the hand 

facilitates the action and the grasping of the object. The robot moves the arm to bring the 

object close to the cameras and begins its exploration. The object is placed in four 

positions with different orientations and background (frames between 2 and 6). During 

the exploration, the robot tracks the hand/object; when the object is stationary and 

fixation is achieved, a few frames are acquired and the model of the object trained as 

explained above. At the end of the exploration the object is released (frame 4). At this 

point the robot has acquired the visual model of the object and starts searching for it in 

the visual scene. To do this, it selects the blob whose features better match those of the 

object’s main blob and perform a saccade. After the saccade the model of the object is 

matched against the blob that is being fixated and its surrounding. If the match is not 

positive the search continues with another blob, otherwise grasping starts (frames 7-8-9). 

At the end of the grasp the robot uses haptic information to detect whether it is holding 

the object or rather the action failed. In this process the weight of the object and its 
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consistence in the hand is checked (the shape of the fingers holding the object). If the 

action is successful the robot waits for another object, otherwise it performs another trial 

(search and reach). 

It is fair to say that part of the controller was preprogrammed. The hand was 

controlled with stereotyped motor commands. Three primitives were used: one to close 

the hand after pressure was detected, and two during the grasping to pre-shape the hand 

and actually clasp the object. The robot relied on the elasticity of the hand to achieve the 

correct grasping. To facilitate grasping, the trajectory of the arm was also programmed 

beforehand; waypoints relative to the final position of the arm were included in the joint 

space to approach the object from the top. 

 

[FIGURE 14 about here] 

 

(1) Discussion and Conclusions 

In this paper we have presented a developmental approach to the realization of 

cognitive abilities in a humanoid robot which starts from the exploration of the body and 

unfolds by eventually exploring the external world. The robot starts from a limited set of 

initial motor and perceptual competencies and autonomously develops more sophisticated 

ways to interact with the environment. This knowledge is used to begin the exploration of 

the environment and to build a visual model of the objects that are grasped. 

We have presented an implementation of a visual attention system properly 

taking into account top-down and bottom-up information. The top-down system divides 

the visual scene into color blobs; each blob is assigned a saliency depending on the ratio 
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between its color and the color of the area surrounding it. The robot actively explores the 

visual appearance of the objects it grasps: every time an object is placed on the palm a 

statistical model of the blobs that are part of it is constructed. This information is 

subsequently fed to the attention system as a bottom-up primer to control the visual 

search of the same object. Thus the robot experience allows it to build a representation of 

the object with which it interacts while, at the same time, modulates the visual attention 

system. The robot’s ability to act is used together with the body internal model to drive 

the exploration of the environment. This facilitates learning in different ways. Firstly it 

helps the robot to focus attention both in space and in time. During the acquisition of the 

object visual model, in fact, the robot can track the object because it knows the position 

of the hand from its proprioceptive feedback. The latter is also useful to detect when the 

acquisition of the model can be initiated because the object does not move and the eyes 

have acquired a stable fixation on it. Finally, the fact that the object is being held by the 

hand guarantees the link between different sensory modalities (for example the sight of 

the object and the kinesthetic information from the hand). The object model makes use of 

visual information; in (Natale et al., 2004) we show how it is possible to build a model of 

the objects based only on haptic information. In the future we would like to investigate 

the integration of the two approaches. 

We support the enactive view of cognition in showing how much the body and 

the ability to build the representation of the external world through the interaction 

between the body and the environment can be useful for an autonomous agent. Even a 

simple set of behaviors (such as the one initially provided to the robot) is sufficient to 

begin the exploration of the environment and acquire an internal representation of it. On 

the other hand it is fair to say that much of the system presented in this paper is still 
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“cognitivist” and more or less carefully handcrafted into the robot. For practical reasons, 

our implementation lays in between a full emergent and a cognitivist approach although 

biologically informed choices were made when possible. 

We have also shown how this initial body-environment interaction is sufficient 

to start linking actions with their resulting consequences to form prediction about the 

behavior of the robot. Very often prospective control is required to plan a successful 

action. During grasping, for example, the correct timing of preshaping and closure of the 

fingers is required; the lags in the sensory streams (visual and tactile) typical of artificial 

and natural systems make feedback control ineffective. To be able to anticipate the 

impact of the hand with the object, the robot is required to control the timing between 

preshaping and actual grasping; clearly this cannot be based only on visual and tactile 

feedback. Prospective control, however, is not only important for action. It gives an agent 

the possibility to create expectations on which to base the interpretation of the world and 

the actions performed by others. By means of the interaction with the world the agent 

builds a model of the behavior of external entities (objects, people, etc.) and the 

associated sensory feedback. This link can be used afterward to anticipate the 

consequences of a similar action and, eventually, to compare them with the real feedback. 

In the same way new situations can be interpreted by matching them against the robot’s 

past experience. For example, the event of a ball that falls on the floor (and the resulting 

visual and auditory sensations) can be associated to the action of dropping it. 

Anticipation and predictions enhance the agents’ ability to understand and interact with 

the environment and, for this reason, are important aspects of cognition. The results of 

this paper represent the first steps into the implementation of cognitive abilities in an 

artificial system. It is difficult to think, at least from an emergent perspective, of a 
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shortcut that prescinds from sensorimotor coordination in achieving cognitive skills to be 

used in the real world. 

To conclude, we would like to comment on the effort required to build a 

complete robotic platform on the one hand, and the software architecture on the other. 

Presently the Babybot is an integrated robotic platform where it is extremely easy for 

software modules controlling different subparts (arm, head or hand to mention just a few) 

to exchange information and coordinate with each other (Metta et al., 2006). This is not 

very common, as usually in the literature papers report single experiments where the 

robotic platform is specifically programmed to perform the desired task, but care is not 

taken to realize a system which can grow in complexity as new modules are added. The 

experiment reported in the last section does not only show the integration between the 

visual attention system and the motor system but also the complexity of the system as a 

whole. We believe that this is a necessary prerequisite to carry out research in humanoid 

robotics as the complexity and number of skills increase. 
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Figure 1. a) The experimental setup, the Babybot. Left: details of the hand. b) and c): 

elastic compliance. d)-f): mechanical coupling between phalanges. 
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Figure 2. The visual attention system: block diagram (see text for details). 
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Figure 3. Log-polar mapping. The original image (left) and the result of the log-polar 

mapping in the cortical plane (right). 
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Figure 4. Correlated versus uncorrelated motion, an example. The plots represents the 

time course of the variables involved in the detection procedure for two exemplar pixels 

whose motion matched (a) and did not match (b) that of the hand. (a1) and (b1) show the 

value of the motion for the pixel (normalized between 0 and 1). The result of the zero-

crossing algorithm is reported in (a2) and (b2). The same procedure is replicated for the 

wrist proprioceptive feedback: (a3) and (b3) show the speed of the joint (normalized 

arbitrary scale), whereas (a4) and (b4) show the result of the zero-crossing algorithm. 

Compare (a2) to (a4) and (b2) to (b4). 
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Figure 5. An example of the detection procedure. From left to right: the original image at 

the beginning of the procedure, the result of the detection (that is the pixels whose motion 

was correlated with that of the hand), the result of the low-pass filtering, the 

segmentation after the ellipse fitting. Notice that the ellipse tends to collapse towards the 

center, because the log-polar transformation gives more weight to the pixels close to the 

fovea. 
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Figure 6. Detection algorithm, block schema. Images are captured from the camera. The 

“motion detector” block compares the motion in the image with the proprioceptive 

feedback from the arm (the wrist). A series of low-pass filters identify the blob which 

contains the hand. The blob is used to mask the result of the “motion detector” to remove 

possible outliers. An ellipse shape is fitted on the remaining pixels and, eventually, the 

hand is segmented. 
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Figure 7. Left: hand position predictor. Right: hand shape predictor. In the experiments 

reported in this paper the learning modules were multi-layer perceptrons with a hidden 

layer and sigmoidal units. 
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Figure 8. Hand localization error trend (left). As new examples are presented to the 

network the performance improves. Example of the localization after learning (right). 

The cross corresponds to the position of the hand, whereas the ellipse represents its 

approximate shape and orientation. The size of the network was 20 units in the hidden 

layer, the total time of this experiment was about two hours. 
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Figure 9. Reaching error (left). As new examples are gathered and presented to the 

network the performance increases. This improvement is less remarkable; we believe this 

is due to noise in the training data which affects not only learning, but also the measure 

of performance. An exemplar sequence of a reaching action after the learning is reported 

on the right. The number of units of the network after the learning was 12, the total time 

required to perform this experiment was about one hour and a half. 
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Figure 10. Closed-loop approach to reaching, flowchart. See text for further details. 
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Figure 11. Arm trajectories for two reaching actions (a) and (b). T0 marks the position of 

the hand at the beginning of the action. Crosses correspond to the position of the palm; 

circles show the position of the fingers. The action is divided in three phases. From T0 to 

T1 arm prepositioning. From T1 to T2, reaching: in this case the motor-motor map is 

used to move the palm towards the center of the visual field (the target). A small 

adjustment with the arm Jacobian is performed to position the fingers on the target (T2 to 

T3). 
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Figure 12. Object exploration and corresponding blobs (1-3 and 4-6 respectively). The 

blobs used in training the object model are the central and the adjacent ones. An example 

of the resulting segmentation is reported in Figure 13. Notice that fixation is maintained 

on the object by using the hand localization module (see text). 
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Figure 13. Visual search. The robot has acquired a model of the airplane toy during an 

exploration phase (not shown); this information primes the attention system. The blue 

blob at the center of the airplane is selected and a saccade performed. (a) and (b) show 

the visual scene before and after the saccade. (d) and (e) show the output of the visual 

attention system synchronized with (a) and (b) respectively. The result of the 

segmentation after the saccade is in (c). 
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Figure 14. A sequence of the robot grasping an object. The action starts when an object is 

placed on the palm (1). The robot grasps the object and moves the eyes to fixate the hand 

(2). The exploration starts in (3) when the robot brings the object close to the camera. 

The object is moved in four different positions while maintaining fixation; at the same 

time the object model is trained (3-6). The robot drops the object and starts searching for 

it (7). The object is identified and a saccade performed (7-9). The robot eventually grasps 

the toy (10-12). 
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Table 1. Performance of the recognition system measured from a set of 50 trials. 

Object Recognition rate 
Number of saccades when 

recognized 

Toy car 94% 3.19±2.17 

Toy airplane 88% 3.02±2.84 

 


