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In this paper we describe an autonomous strategy which enables a humanoid robot to learn how

to reach for a visually identi¯ed object in the 3D space. The robot is a 22-DOF upper-body

humanoid with moving eyes, neck, arm and hand. The robot is bootstrapped with limited a-

priori knowledge, su±cient to start the interaction with the environment; this interaction allows
the robot to learn di®erent sensorimotor mappings, required for reaching. The arm-head for-

ward kinematic model and a visuo-motor inverse model are learned from sensory experience.

Learning is performed purely online (without any separation between training and execution)

through a goal-directed exploration of the environment. During the learning the robot is also
able to build an internal representation of its reachable space.

Keywords: Reaching; autonomous online learning; humanoids.

1. Introduction

The goal of the reaching action is to bring the robot end-e®ector to a speci¯c position in

space. This position can be obtained from a given model of the environment, or it can

be retrieved from vision; the latter solution requires a kinematic model of the eyes-head

system and calibration of the cameras. Moreover, a kinematic model of the arm is

needed to plan the appropriatemotion.When thesemodels are accurate enough and do
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not change over time, this approach allows planning and executing reaching actions

e®ectively. On the other hand, in common situations the estimation of the kinematic

parameters is di±cult and error-prone (consider for example a robot actuated with

elastic materials, such as steel tendons). Therefore, it is desirable that the robot is able

to: (i) perform this estimation autonomously and (ii) maintain proper calibration over

time despite changes in the kinematic structure or sensory system. The problem has

been addressed extensively in the literature1�18; however none of these works provides

a complete and general solution which tackles all the aspects of the problem.

Our contribution in this paper is to describe a learning behavior that allows a

humanoid robot to learn autonomously and online the models required for control-

ling reaching. In our approach the exploration of the state space, which is necessary

in any learning system, is goal-directed, i.e. it happens during the execution of

reaching trials and does not require an explicit distinction between learning and

execution. No initial motor babbling is needed: the robot learns autonomously (i.e.

from the interaction with the environment) and continuously.

We show experimentally that the robot is able to maintain updated the learned

kinematics models and adapt them to compensate for perturbations in the arm

kinematics or in the visual system. We also present preliminary results showing how

the robot can learn a representation of its own reachable space during the execution

of reaching trials. To the best of our knowledge, previous works do not provide

similar experimental results on real robots.

In the following, we discuss the lessons we took from human development in

designing our system (Sec. 2) and we review the state of the art (Sec. 3). Then, in

Sec. 4 we present James, the platform used in our experiments, while in Sec. 5 we

illustrate our approach in detail. Finally, in Sec. 6 we show the experimental results

and in Sec. 7 we report our conclusions.

2. Lessons from Biology

In general, biological systems do not learn \from scratch"; on the contrary they are

endowed at birth with a certain amount of knowledge and abilities.19,20 Newborn

human infants also possess a repertoire of coordinated movements that are probably

exploited to start the interaction with the environment.21 For example, during pre-

reaching the presence of the Asymmetric Tonic Neck Re°ex (ATNR) might have the

crucial role to (i) allow babies to see their hands and (ii) help investigating the

relationship between vision and proprioception.22,23

A primitive form of eye-hand coordination is present in newborns from the ¯rst

days of life: experimental results report extension movements of the arm toward

¯xated objects (goal-directed movements).24 Indeed, it has been hypothesized that

humans employ a gaze-centered frame of reference for reaching control,25,26 even in

the case of whole-body reaching.27

Until four months, the reaching motion seems to be just \ballistic", as trajectory

correction is absent.28,29 A noisy command generation (related to immature muscle
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control) is observed30 which may improve the exploration required for motor

learning. Visually guided reaching is used to correct the movement from ¯ve

months22,31 with performance that improves during developement.32 At about six/

eight months infants reach consistently for visually identi¯ed objects, rarely missing

the target.33

Following recent neuroscience results,34 it seems that when humans use a tool for

reaching the internal model of their body (i.e. the body schema) is updated as if the

hand were moved to the tip of the tool, allowing successful reaching. Moreover,

humans can adapt to spatial perturbations when moving their hands under visual

control. This adaptation mechanism a®ects internal kinematic models of the body by

exploiting the perceived errors in the movement35; for example, they can learn how to

control hand movements in a rotated reference frame.36

In addition, neurophysiological evidence shows that a representation of what is

reachable or not is somehow encoded in the human brain and is based on motor

information.37,38

Summarizing, these observations provide interesting suggestions for the realiz-

ation of reaching in robots:

. a limited a priori knowledge helps to initiate learning;

. noisy command generation may help the initial exploration;

. gaze anticipates reaching: ¯xation of the target object is achieved before reaching;

. the reaching action combines two phases: an \open-loop" (ballistic) movement

and a \closed-loop" (corrective) movement.

On the other hand, the abilities shown by humans suggest interesting ways to

benchmark the adaptive abilities of the robots we design by measuring their

abilities to:

. adapt to changes in the kinematic structure;

. adapt to perturbations in the visual system;

. build a representation of the reachable space.

3. State of the Art

Early works in robotics have proposed to perform gaze control before reaching3�6:

after the ¯xation of the target is achieved, the target position is encoded with the

current head motor con¯guration, which is then used as a reference for reaching.

Then open-loop reaching is realized by exploiting a learned model of the head-arm

forward kinematics. In Ref. 4, learning of this model is performed during a training

phase separated from the subsequent execution phase, while in Refs. 3 and 5 the

model is updated during action execution: in Ref. 5 this is achieved by redirecting the

robot gaze to the end-e®ector after unsuccessful reaching movements. While Refs. 3

and 4 do not provide quantitative results, in Ref. 5 experiments with a robotic setup

are reported; the learned model maps two eye/head control parameters to two arm
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control parameters (a 2D nonredundant mapping). In a later version of the work6 the

authors add control of vergence (i.e. control of depth). Recently this approach has

been successfully extended to redundant manipulators,11 although in the case of a 2D

visual space. A di®erent strategy is investigated in, Ref. 10, in which the target

position is encoded with Cartesian coordinates computed from vision (thus requiring

calibration of the cameras): the forward model of the arm is learned through motor

babbling and then derived to obtain the Jacobian, which is used to control reaching.

This paper reports an experiment with a real robot in which, however, the head is

maintained stationary. In a simulated experiments this limitation is removed by

adding the measurement from the gyroscope, at the cost of a larger learning space.

The advantage of realizing gaze control before reaching is that calibration of the

cameras is not necessary and no additional transformations are needed to account for

neck movements: the head-arm forward kinematics can be learned as a single motor-

motor mapping. We favor this approach in our work.

Traditionally reaching has been achieved in closed-loop, by directly employing in

the control the measure of the distance between the hand and the target in the visual

space (visual servoing39). With respect to this solution, however, open-loop control

has the following advantages: it can be executed even if the hand is initially outside

the visual ¯eld and it does not su®er from velocity limits imposed by visual feedback

delays. However, it always performs with some residual error, as it crucially relies on

the accuracy of the kinematic model; visual feedback is necessary to reduce the hand

positioning error to zero. The work in Ref. 8 proposes to correct positioning errors

after the open-loop reaching by using visual feedback (as originally suggested in

simulation in Ref. 1); however, only the open-loop controller is learned from sensory

data. Following this idea we proposed a system in which both the open-loop and the

closed-loop controller are learned from experience and used for control13: learning is

performed o®line using sensory data collected during a training phase in which the

robot executes random movements. Redundancy in both the head and the arm is

considered.

Planning the reaching movement either in closed-loop or in open-loop requires an

inverse model. We group the approaches to this problem in two families: approaches

in which the forward model is learned ¯rst and then inverted 2,12,17,40 and approaches

in which an inverse model is directly learned from data.7,9,16 In general, in the case of

redundant robots, the forward model provides a richer description of the system (i.e.

it includes the redundancy) and gives more opportunities for control: several

methods can be used (e.g. extended Jacobian,41 augmented Jacobian,42 local mini-

mization through null space projection,43 numerical optimization44) to exploit the

redundancy in order to solve a secondary task (i.e. respect additional constraints)

while performing the main one. Possible choices for such a secondary task can be

joint limits avoidance, obstacle avoidance, energy optimization or many others.

Recent works have applied these techniques in the case of learned models.17,40

Nevertheless, the model inversion can generate instability problems if the Jacobian

matrix is ill-conditioned: large joints velocities are generated when the system is close
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to Jacobian singularities. On the contrary, the problem is avoided when the inverse

model is learned directly from the gathered velocity data (which is physically feasible

by de¯nition, as they are generated by the robotmotion), as proposed inRefs. 7 and 16.

In this case the drawback is that only a single solution of the inverse problem is learned.

The particular inverse solution that is learned depends on the nature of the training

data collected by the robot. If data is generated according to a special redundancy

resolution scheme (as in Ref. 7) then the mapping from task space velocities to joint

space velocities becomes unique, and the learned inverse solution shows the same

resolution of redundancy. On the contrary, if they do not present any special structure

the mapping is not unique: there could be multiple joint space velocities mapping the

same task space velocity. However, a speci¯c choice of the input representation and the

use of a spatially localized learning network allow to learn a valid inverse mapping also

from unstructured training data, as explained in Ref. 45 and recalled in Ref. 7 on page

13. In this case the inverse solution approximated by the learning network is a local

average of the solutions experienced by the robot (i.e. the solutions described by the

training data), which is still proved to be a valid solution.

Learning kinematic models for reaching is a particular case of learning the body

schema, a problem which has been addressed in recent works.14,15,18 In Refs. 14

and 15 algorithms for learning the kinematics of robotic structure using visual

information are proposed. In Ref. 18 the authors introduce a method based on active

learning. These works share the same limitation: in all cases learning is performed

following or during an exploration phase for which the robot has been speci¯cally

programmed. Indeed, the separation between exploration and exploitation is some-

how present in most works we introduced, namely Refs. 1, 4, 7, 9�18. This approach

has two problems. First, at some point the robot (i.e. learning system) should decide

to stop learning and activate the controller that uses the learned model. Besides the

problem of individuating the time at which the switch has to be performed (how can

the robot say that it has learned enough?), such a learned model would be no longer

useful if the system changes; even if the learned model is then re¯ned online (as it is

the case for many recent works), the initial exploration could take too much time in

high-dimensional space. Moreover, di®erent controllers are needed to drive the robot

during the two phases as the goal changes (i.e. during the exploration phase the goal

is just to gather data for learning). This is neither intuitive nor practical. Indeed, it

would be desirable that the exploration of the learning space was goal-directed; a

clear advantage is that this guarantees that the exploration is driven toward the

areas of the state space in which reaching is performed. This helps reducing the size of

such space since it focus exploration on those parts of the state that are more

important for the task. This could allow a faster convergence of the estimation error

in those areas, as we show in Ref. 46 for a similar problem; if the robot performs

actions in other regions of the motor space, the learned model is updated online.

On the other hand, the other works we introduced2,3,5,6,8 apply online learning

only to some parts of the whole system (e.g. they learn only the open-loop control)

and they generally present results on simpler systems (e.g. not redundant).

Autonomous Online Learning of Reaching Behavior in a Humanoid Robot
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A central purpose of our work is to merge exploration and exploitation in a unique

behavior, achieving pure online learning; this is also the main improvement with

respect to our previous work.13 Moreover, we provide novel experimental validation

to demonstrate: (i) adaptation to kinematic modi¯cations, (ii) adaptation to per-

turbations in the visual system, (iii) incremental building of reachable space rep-

resentation. Concerning the latter point, recent studies have tested numerical

methods in order to build a representation of the robot reachable space 47,48: the main

di®erence of our approach is that we encode positions in space with head motor

coordinates (i.e. the same encoding we use for reaching control) and we build the

reachable space during an active and goal-directed exploration of the environment.

Moreover, we create a compact representation which can be easily updated and used

in real-time.

4. The Humanoid Robot

As in our previous work,13 the experiments described in this paper have been carried

out on the robot James.49 James is an upper body humanoid with 22 DOFs (see

Fig. 1). It is actuated using rotary DC motors, whose angular position is measured by

magnetic incremental encoders. Torque is transmitted to the joints by belts and

stainless-steel tendons. Tendon driven systems are getting popular in robotics

Fig. 1. The humanoid robot James.
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because they allow sophisticated routing of the actuation to reduce the weight and

inertia of the mechanical structure. Nevertheless, tendons also introduce a nonlinear

elasticity which is di±cult to model; this further justi¯es the use of machine learning

in our work.

The head structure has a total of seven DOFs. Four motors are used to inde-

pendently actuate the pan and tilt movements of the left and right eyes. Even though

the eyes can be moved independently, our strategy was to couple their movements so

to achieve a more human-like motion: we used common tilt, vergence and version.

Two CCD digital cameras (PointGray Dragon°y remote head) are mounted into the

eyeballs, providing 320� 240 pixels images at 15 fps. The neck has three degrees of

freedom, which allow rotation (i.e. yaw), elevation/depression (i.e. pitch) and

adduction/abduction (i.e. roll) of the head (see Refs. 40, 50 and 51 for a detailed

description of the neck structure and control). The arm has seven DOFs: three of

them are located in the shoulder, one in the elbow and three in the wrist. The hand

has ¯ve ¯ngers and is under-actuated with a total of eight DOFs. Tactile sensors

have been realized and mounted on the internal side of the ¯ngers (see Ref. 49 for

details).

For the experiments reported in this paper, a green ball (2 cm radius) has been

attached to the robot wrist as a marker for the hand, in order to simplify its visual

recognition: the ball center can be localized with pixel precision using standard image

processing, and constitutes the robot end-e®ector for the experiments. From here on,

when we refer to \the hand" we mean the center of the ball. We actuate four DOF of

the arm (adduction/abduction, elevation/depression and rotation of the shoulder,

°exion/extension of the elbow) and three DOF of the head (vergence of the eyes, yaw

and pitch of the head), so the motor variables relevant to understand the remaining

of the paper are:

. qarm 2 R4

. qhead 2 R3

A cluster of standard PCs (Intel Core2 Duo @2.00GHz) and a Blade system

(Primergy RX200 server with six additional blades, Intel Xeon @2.00GHz) are

interconnected through a 1GB ethernet and constitute the core of the brain of

James. These machines are dedicated to the high-level software, which is more

computationally demanding (e.g. coordinated control, visual processing, learning),

while the low-level motor control is implemented on the DSPs embedded in the robot

body. All this software has been written using YARP.52

5. Our Approach

The key features that characterize our approach are listed hereinafter:

. ¯xation of the target object comes ¯rst, and the head motor con¯guration obtained

after ¯xation is used as a frame of reference for controlling reaching;

Autonomous Online Learning of Reaching Behavior in a Humanoid Robot
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. the goal of the reaching movement is to bring the hand to the ¯xation point (i.e.

the center of both cameras);

. the reaching controller combines open-loop and closed-loop control;

. the models required for controlling reaching are learned purely online through a

goal-directed exploration of the environment;

. the system is bootstrapped with limited a priori knowledge, which is then

gradually replaced by the one acquired from sensory experience;

. noise is added to the initial motor commands in order to improve the exploration

and facilitate motor learning.

The learning behavior described in this paper is independent of the particular learning

algorithm used for regression. The only requirements are that the algorithm is fast (as

the learned models are used for control purposes), online and spatially localized (the

latter requirement is discussed in Sec. 3). In this paper, the systemwas validated using

RFWR (Receptive Field Weighted Regression53). This algorithm has been used suc-

cessfully in similar scenarios for robot learning7,17 in its recently modi¯ed version

(LWPR, Locally Weighted Projection Regression54). However, the choice of this

particular algorithmwas dictated by practical considerations. More recent algorithms

can be used as well, like for instance Local Gaussian Process Regression (LGPR,55).

In the experiments reported in Sec. 6 we show how the learned models that are

used for reaching control are updated continuosly during goal-directed reaching

movements; in particular, the robot is able to adapt to sudden modi¯cations of its

own kinematics and perturbations of the visual perception. Then, preliminary results

are provided about learning a representation of the reachable space. To the best of

our knowledge, such experimental evaluations are not provided in previous works.

The following subsections describe the di®erent components of the system in detail,

namely:

. the gaze controller;

. the open-loop controller;

. the closed-loop controller;

. the goal-directed exploration;

. the representation of the reachable space.

5.1. Gaze controller

The head is controlled with a simple proportional controller in order to ¯xate either

the hand or the object. To the sake of clarity we will refer to both entities as the

\target" (i.e. target of the gazing action) to explain how this controller works. Then,

in the remaining of the paper, when we use the verbs \to gaze at" or \to ¯xate" we

mean that this controller is activated.

If the target is visible (i.e. inside the image plane) head joints velocities are

generated as follows:

_qheadðtÞ ¼ �GxðtÞ; ð1Þ

L. Jamone et al.
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where G 2 R3�3 is a positive de¯nite gain matrix and the position of the target

x 2 R3 is de¯ned as follows:

x ¼
x0
x1
x2

2
4

3
5 ¼

uL � uR
uL þ uR

2
vL þ vR

2

2
66664

3
77775
¼

1 �1 0 0

1

2

1

2
0 0

0 0
1

2

1

2

2
66664

3
77775

uL
uR
vL
vR

2
664

3
775 ð2Þ

being uR and vR the coordinates of the target on the right image plane and uL and vL
the coordinates of the target on the left image plane.

The goal of the controller is to reduce to zero ½uL uR vL vR�T , which entails

bringing the target in the center of both cameras (i.e. the ¯xation point). However,

since vL ¼ vR (perceived targets have the same vertical position on both images) it is

su±cient to reduce to zero ½uL � uR
uLþuR

2
vLþvR

2 �T . This condition always holds in our

system since we do not actuate the independent tilt of the eyes. In particular, the two

cameras have been mechanically calibrated so as to guarantee that the alignment

condition (vL ¼ vR) holds.

If the target is not visible a stereotyped motion strategy (i.e. random left-right

and up-down movements of the neck) is used to detect it; then controller 1 is

activated.

After ¯xation is achieved we encode the target position in space using the head

joints values; since we actuate only 3DOF of the head the mapping from head joints

to the target position is unique. If more DOFs of the head are used the redundancy

should be solved by the gaze controller, as we did for instance in Ref. 13.

5.2. Open-loop controller

The control scheme for the open-loop controller is depicted in Fig. 2. The

desired arm con¯guration which brings the hand in the ¯xation point is

obtained by balancing two contributions with the coe±cient � (which will be

Fig. 2. On the left, the control scheme of the open-loop controller. On the right, the trend of the

coe±cient � in comparison with the growth of the arm-head forward kinematic map (namely, N , the

number of points that have been learned).
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discussed later):

qarm ¼ �~q S
arm þ ð1� �ÞqN

arm: ð3Þ
The ¯rst contribution ~q S

arm is the output of the Motor Synergies block (qS
arm),

plus an additional white Gaussian noise (which improves the exploration of the

state space, as suggested by observations on infants development). The Motor

Synergies block chooses one among four pre-de¯ned arm con¯gurations

according to the current head con¯guration qhead in order to bring the hand

roughly in the ¯eld of view (this is implemented as a nearest neighbor look-up

table). These four arm con¯gurations constitute the a priori knowledge provided

to the system.

The second contribution qN
arm is the output of the part of the controller that relies

on learning. An RFWR neural network is trained online to approximate the arm-

head forward kinematics, de¯ned as qhead ¼ fwdKinðqarmÞ: we call this model the

arm-head forward kinematic map. This model maps an arbitrary arm con¯guration

qarm to the head con¯guration qhead that allows the ¯xation of the hand. The model

is inverted in order to retrieve the appropriate arm con¯guration which brings the

hand to the ¯xation point. Inversion is realized using IpOpt (Interior Point Opti-

mizer56), a minimization algorithm which has been proven to be fast and reliable: a

precise evalutation of its performance is provided in Ref. 44 for solving an inversion

problem in a system which is very similar to the one presented here. To solve the

redundancy of the arm (qarm 2 R4 while qhead 2 R3), we choose the solution which

minimizes the distance from the current arm con¯guaration qC
arm to the target one.

This choice prevents the controller from generating \useless" motion in joint space.

More formally, the target arm con¯guration qN
arm is obtained as follows:

qN
arm ¼ argminqarm2�jjqarm � qC

armjj2; ð4Þ
s:t: 0 � jjqhead � fwdKinðqarmÞjj � ²; ð5Þ

where � � ½qL
arm;q

U
arm�, being qL

arm and qU
arm the lower and upper bounds on qarm

(joints limits), and � is an arbitrary low error threshold (we set � ¼ 0:0001). In case

condition 5 is not satis¯ed (this could happen if the target is not reachable) the error

threshold is increased until a solution is found; if no solution is found the controller

uses ~q S
arm alone.

The coe±cient � is a function of the number of points that have been used to train

the arm-head forward kinematic map: this means that in the initial stages of

development the robot mainly moves using the pre-coded motor synergies, and it

gradually switches to the use of the learned model with the growth of the learned

data set. The sigmoid function which relates the increase of N to the decrease of �,

depicted in Fig. 2 on the right, is described by the following equation:

�ðNÞ ¼ a � a N
b � b

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bþ N

b � b
� �

2
q ð6Þ
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in which we chose a ¼ 0:5 and b ¼ 8 for our implementation. These parameters have

been tuned manually (i.e. de¯ning the shape of the sigmoid function) in order to have

the neural network trained with a minimum number of samples before using it for the

control (e.g. for our system, about 100 training samples are enough to achieve a

decent estimation of the forward model). Furthermore, thanks to a number of

simulations (not reported in this paper), we determined that the proposed method is

quite robust with respect to the choice of these parameters.

5.3. Closed-loop controller

The closed-loop controller exploits a learned inverse model of the visuo-arm Jaco-

bian to cancel the visual error (i.e. the distance of the hand from the object): we will

refer to this model as the visuo-arm inverse map. This controller is activated after

the open-loop controller, when the hand has arrived close to the target object (i.e.

inside the central part of the visual ¯eld). The visuo-arm inverse map is

implemented as an RFWR neural network which is trained online with the data

collected by the robot during the movements. Di®erently from previous work, data

gathering and training of the neural network are performed during the robot

movements, whenever the hand moves inside the visual ¯eld (also during the bal-

listic movement). The input for the RFWR is the robot con¯guration q ¼
½qarm qhead � and the measured hand displacement in the visual ¯eld (�x). The

output is the arm joints displacement (�qarm). The RFWR learns the following

mapping:

�qarm ¼ f Jinvðq;�xÞ ð7Þ
that approximates the arm inverse kinematics. The inclusion of the robot con-

¯guration in the input vector and the use of a spatially localized learning algorithm

(RFWR) allow to learn a valid inverse solution, as explained before in Sec. 3. In

particular, when the training data present multiple �q i
arm in the vicinity of q�

mapping the same �x, the learned solution is the average of all the solutions,

h�q i
armii. This is still a valid solution, as proven in Ref. 45, because the following

relation holds:

�x ¼ �xh ii ¼ Jðq�Þ�q i
arm

� �
i ¼ Jðq�Þ �q i

arm

� �
i ð8Þ

due to the local linearity of the Jacobian JðqÞ.
The closed-loop controller generates motor velocities _qarm at 200Hz rate by using the

following equation:

_qarmðtÞ ¼ Kf JinvðqðtÞ;xðtÞÞ; ð9Þ
where K 2 R4�4 is a positive de¯nite gain matrix, and f JinvðqðtÞ;xðtÞÞ is the visuo-

arm inverse map. The goal of the controller is to reduce x to zero by moving the arm

(i.e. to bring the hand to the ¯xation point), therefore the visuo-arm inverse map is

queried with x instead of �x (�x ¼ x� xd ¼ x� 0 ¼ x).

Autonomous Online Learning of Reaching Behavior in a Humanoid Robot
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The output of the RFWR (in this case, the visuo-arm inverse map) is null if no

local model is associated with the current input. This always happens in the

beginning, when still no samples have been collected and used for training, but can

occur also later, for instance if the system works in regions of the motor space that

have not been explored yet. If the estimated inverse model is null, the motor com-

mands generated by the controller 9 are equal to zero. Anyway the robot must move

in order to collect data for training the neural network. Therefore, when the RFWR

outputs zero we modify Eq. (9) as follows:

_qarmðtÞ ¼ KJ INIT
inv ðqarmÞxðtÞ; ð10Þ

where J INIT
inv ðqarmÞ 2 R4�3 is a matrix representing a coarse estimation of the inverse

Jacobian (and therefore J INIT
inv ðqarmÞxðtÞ can replace the f JinvðqðtÞ;xðtÞÞ term in

Eq. 9). This matrix is the outcome of what we call the initialization map: an RFWR

neural network which is queried with the current qarm as input, and gives a local

J INIT
inv as output.

The neural network is updated during the movement as follows:

(1) collect new sample ð�x;�qarmÞi at time i

(2) retrieve J INIT
inv i ¼ RFWRðq i

armÞ
(3) update J INIT

inv i with ð�x;�qarmÞi ! J INIT
inv i þ 1

(4) train RFWRðq i
arm; J

INIT
inv i þ 1Þ

where the update of J INIT
inv i from ð�x;�qarmÞi at step 3 is done with incremental

least squares, as in Ref. 2.When this RFWR outputs zero (no local model is associated

with the input) an arbitrary constant matrix is used as output. This ensures that the

closed-loop controller is always able to generate motion. In our implementation we

chose a matrix with all coe±cients equal to one (J INIT
inv ði; jÞ ¼ 1 8i; j). The motion

generated using such a matrix will not necessarily bring the hand closer to the target

but will produce exploratorymovements. As for the open-loop controller, the choice to

rely on noisy initial motor commands has been suggested by observations on infants

development. In Fig. 3, we show a closed-loop movement using the matrix with all

coe±cient equal to one, without any update (left image), and the improvements

provided by the online learning (right image). For visualization purposes, we plot only

two components of x, namely x1 and x2, since these are the dimensions on which more

motion is visible. However, the trend of the convergence to zero of x0 is similar to

the other two components. This way of depicting visual trajectories will be kept in the

remainder of the paper. The light gray cross indicates the starting point, while the

dark gray cross is the goal (center of the image, i.e. ¯xation point). While in the left

image the hand is driven in a direction opposite to the target (and it moves out of the

visual ¯eld), in the right image the updated matrix eventually brings the hand in the

¯xation point, with a straight trajectory. Here we are considering J INIT
inv as a function

of the arm con¯guration only; theoretically, J INIT
inv is a function of both the arm

con¯guration and the head con¯guration. Anyway, if we consider movements of the

hand near the ¯xation point, we can reasonably approximate J INIT
inv ðqarm;qheadÞ with
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J INIT
inv ðqarmÞ, being qhead a function of qarm (qhead ¼ fwdKinðqarmÞ). This approxi-

mation has been used in Ref. 13 and is explained with more details there. The more the

hand drifts away from the image center (i.e. the ¯xation point), the larger the

approximation error. As for the initialization map we do not require high accuracy

(this map is then replaced by the visuo-arm inverse map) but we do need fast adap-

tation, we decided to de¯ne it as a function of the arm con¯guration only: learning in

such a reduced state space can be performed faster.

Summarizing, during the closed-loop control the two maps are used as follows:

. at every control step both the initialization map and the visuo-arm inverse map

are queried;

— if the visuo-arm inverse map gives a non-null response it is used for control,

exploiting Eq. (9);

— if the visuo-arm inverse map gives a null response, the initialization map is used

instead, as described in Eq. (10).

5.4. Goal-directed exploration

We describe here the goal-directed behavior of the robot, and how data is gathered

and used to train the RFWR neural networks. Exploration, learning and execution

collapse in the same process, which is fully autonomous and continuous. Practically

speaking, the robot is switched on and operates without external intervention from

the experimenter (except from showing some objects periodically).

The behavior of the robot comprises the steps listed hereinafter.

. A simple attention system based on color segmentation (whose details are not

relevant for the understanding of the paper) provides the robot with a salient point

Fig. 3. Online adaptation of the initialization map. On the left, the closed-loop visual trajectory using the

initialization matrix with no update. On the right, the map is updated online. The light gray cross is the
starting point, the dark gray cross is the goal (center of the image, i.e. ¯xation point).
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in the image planes, which corresponds to a target object in space. The robot gazes

at the object.

. Once the robot has ¯xated the object, the open-loop controller is activated.

. When the hand falls inside the central part of visual ¯eld (or when the ballistic

movement is ¯nished) the closed-loop controller is activated.

. If the hand does not fall inside the visual ¯eld (the closed-loop controller cannot be

activated) the robot gazes at the hand (this condition rarely happens).

. During the closed-loop control the robot continuously checks the visual error:

– if the error increases too much (the hand is falling outside the visual ¯eld) or if it

has not been zeroed after a certain amount of time (the target lies outside the

robot reachable space), the robot stops moving the arm and gazes at the hand;

– otherwise the closed-loop movement continues until the visual error is reduced

to zero.

. During both open-loop and closed-loop movements data are collected and used to

update the visuo-arm inverse map.

. As soon as the reaching action is ¯nished (either successfully or not) the robot

gazes at a new target (provided by the attention system).

Whenever the robot is ¯xating the hand, the arm-head forward kinematic map is

trained with the arm con¯guration qarm as input and the head con¯guration qhead as

output. Fixation of the hand occurs either when the reaching controller brings the

hand to ¯xation or when the robot gazes at the hand (i.e. in case of both successful

and unsuccessful reaching actions). That being so, it becomes more clear how the

addition of noise to the motor synergies could improve the initial exploration: if the

closed-loop controller is not activated (the hand does not fall inside the visual ¯eld

after the open-loop movement) this noise extends the variability of the data gathered

to train the arm-head forward kinematic map. Furthermore, whenever the hand is

moving inside the visual ¯eld the visuo-arm inverse map is trained with the robot

con¯guration q ¼ ½qarm qhead � and the measured hand displacement (�x) as input,

and with the arm joints displacement (�qarm) as output.

5.5. Representation of the reachable space

The results of reaching actions are used to learn incrementally a representation of

the robot reachable space: a reachable space map. This map allows the robot to

estimate whether a ¯xated point in space (or a ¯xated object) is reachable or not.

The map is implemented using an RFWR neural network which is trained online

during the sequence of reaching trials: the input is the head con¯guration qhead and

the output is a value S 2 f0; 1g which indicates the failure/success of the reaching

action.

Every time the arm-head forward kinematic map is trained with a new sample

hqarm;qheadi, the reachable space map is trained with hqhead ; S ¼ 1i, because a

feasible arm con¯guration which brings the hand in the ¯xation point de¯ned by
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qhead exists. Conversely, if a reaching task has not been accomplished the map is

trained with hqhead ; S ¼ 0i.
Some reaching trials could fail even if the target lies inside the workspace: for

example because in the beginning of learning both the arm-head forwad kinematic

map and the visuo-arm inverse map are not su±ciently precise. This generates

incorrect training data for the reachable space map. Nevertheless, this can be

interpreted as noise in the input data, decreasing as the whole reaching system

develops. This noise should not a®ect learning considerably, since the learning net-

work is characterized by a forgetting factor that decreases as more samples are

learned: the network forgets more at the beginning and less as learning occurs.

When queried with the head con¯guration (i.e. the ¯xation point) as input, the

map gives as output a real number estimating the probability of the ¯xated point to

be reachable.

6. Experimental Results

We conducted an experiment to determine the performances of the learning. The

robot executed 1200 reaching trials toward randomly distributed 3D target positions

in space. All these positions were inside the reachable workspace. This space has

been de¯ned in the head con¯guration space by limiting the head joint angles as

follow: qmin
head ¼ ½�2:0� 20� � 20�� and qmax

head ¼ ½2:0� 60� 20��. The special 3D pos-

itions of the targets do not in°uence the learning performances as long as they cover

the robot reachable workspace more or less uniformly (i.e. without leaving big

unexplored areas); this has been veri¯ed in simulation using the dynamic simulator of

the iCub robot,57 which has been modi¯ed to match the kinematics of our robot

James. Therefore, the experiment we conducted on the real robot can be considered

general enough.

Apart from some initial reaching trials (among the ¯rst 25), the robot was always

able to reach for the desired targets. The sequence of images in Fig. 4 shows the

improvements of the trajectories of the hand in the robot visual ¯eld; only some

representative trajectories are shown (among the ¯rst 500 reaching trials). The

closed-loop control is activated as soon as the hand enters in the central part of the

visual ¯eld (the highlighted central square).

After 500 reaching trials, the position of the hand marker (i.e. the green ball

attached to the robot wrist, as described in Sec. 4) was moved of 6 cm. This change

was arti¯cially induced to simulate di®erent situations, like a modi¯cation of the

robot kinematics (e.g. links length) or the use of a tool for reaching.

Then, several tests have been performed to analyze the performance of the system

at di®erent learning stages. In particular, we present results concerning the open-loop

controller (i.e. ballistic reaching) and the closed-loop controller separately, in Sec. 6.1

and in Sec. 6.2, respectively.

Finally, the learning process has been executed again from the beginning with

1400 reaching trials directed to both reachable and nonreachable 3D target positions,
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in order to build a reachable space map. Here the head joint angles limits were:

qmin
head ¼ ½�5:0� 10� � 30�� and qmax

head ¼ ½5:0� 90� 30��. Results concerning the esti-

mation of the reachable space map are provided in Sec. 6.3.

6.1. Ballistic reaching adaptation

In order to precisely assess the accuracy of ballistic reaching, we tested the robot

while reaching for eight di®erent positions within its workspace by using only the

open-loop controller. These positions have been chosen to cover the robot workspace

nearly uniformly. The attention system has been replaced here by a \simulated"

attention system which was just driving the robot ¯xation toward precise 3D points

in space (i.e. moving the head toward eight di®erent pre-selected con¯gurations).

After the robot has ¯xated each point, ballistic reaching is performed (without any

correction based on visual feedback) until the arm reaches its target con¯guration; at

this point the visual error jjxjj is computed.

The sequence of eight movements has been repeated several times, using the arm-

head forward kinematic map at di®erent stages of the learning (i.e. increasing the

number of learned samples). In Table 1, the eight di®erent head con¯gurations

(corresponding to eight di®erent target points in space) used during the test are

reported. Figure 5 plots the RMSE (Root Mean Square Error) on the eight target

Table 1. The eight head con¯gurations (corresponding to eight di®erent 3D

target points in space) used in the test experiment for the assessment of

ballistic reaching performances.

# 1 2 3 4 5 6 7 8

Vergence �1.0� �1.0� �0.5� 0.0� 0.5� 1.0� 1.5� 1.5�

Yaw 25� 30� 40� 35� 40� 50� 45� 55�

Pitch 5� 15� 0� �10� 10� 0� �5� �15�

Fig. 5. Position error of the end-e®ector after ballistic reaching. On the x-axis the number of training

samples of the arm-head forward kinematic map is reported (which is also the number of reaching trials

during the goal-directed exploration). Ballistic motions toward eight target locations within the robot
workspace have been performed at di®erent (discrete) learning stages. RMSE of the position errors at each

learning stage is reported on y-axis (mean and standard deviation of the eight di®erent target locations).
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points (the vertical bars indicate the standard deviation). As expected, the RMSE

decreases as more samples are learned by the robot. Since the robot collects one

training sample for each reaching trial during the goal-directed exploration, the

number of samples is equal to the number of trials. The RMSE after 500 trials is

about 10 pixels, with 5 pixels of standard deviation. Considering the average

absolute position of the hand with respect to the eye cameras, 1 pixel corresponds to

about 1.0 cm.

The change in the hand marker position introduced at trial 500 causes a sudden

increase of the RMSE, which raises to 62 pixels. Nevertheless, the robot continues to

update the arm-head forward kinematics map and as a consequence the RMSE

decreases again as more and more samples are collected and used for training.

The ballistic controller relies on the knowledge of the arm-head forward kin-

ematic map, which is learned incrementally through experience. Therefore, we

expect the error of the ballistic controller to be consistent with the arm-head for-

ward kinematic map estimation error. To verify this, we computed the instan-

taneous estimation error of the arm-head forward kinematic map during the

learning process described in Sec. 5.4: every time a new sample is collected the map

is queried with that input sample, the estimation error is computed, and then

the sample is used to update the map. Figure 6 depicts the trend of this error as the

number of training samples increases. The residual estimation error justi¯es the

position error shown by the ballistic controller in Fig. 5. Again, the error suddenly

increases when the marker position is changed, at trial 500, and then is progressively

reduced.

Moreover, around trial 800 and 1000 the robot has been switched o® and then

recalibrated. In our system, calibration of the motor encoders is based on absolute

position sensors, which are noisy. This induces small changes in the kinematic model

after every recalibration. As a consequence, the estimation error raises a bit and then

Fig. 6. Estimation error of the arm-head forward kinematic map (average of the three output dimen-

sions). On the x-axis the number of samples used for training (which is equal to the number of reaching

trials performed).
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quickly decreases, as evident in the plot. This is a further example of the e®ectiveness

of online learning as opposed to the employment of a ¯xed analytical model.

6.2. Closed-loop control adaptation

The performance of the closed-loop controller (which depends on the quality of the

visuo-arm inverse map estimation) has been tested by using it to drive the hand

toward eight symmetrical targets around the robot ¯xation point (forward and

backward motion), while keeping the gaze still; x0 (which is not shown in the plots)

was controlled to zero, while x1 and x2 were controlled to either �50, +50 or zero

(pixels).

Figure 7 reports the results obtained at di®erent learning stages (i.e. map trained

with increasing number of samples). The ¯rst plot on the left shows the trajectories

after 25 reaching trials. At that point, the visuo-arm inverse map had been trained

with about 400 samples; the initialization map was not used anymore, since the

visuo-arm inverse map always gave a non-null response if queried. Anyway, the

visual trajectories are very irregular, indicating a poor quality of the estimation; in

fact, a perfect estimation would produce straight trajectories in the visual space.

A good estimation is obtained after 1200 reaching trials (last plot on the right, map

trained with about 15,000 samples), as trajectories are almost straight. The change

in the position of the hand visual marker at trial 500 causes the trajectories to change

suddenly, even if, di®erently from what happened for the open-loop control, this

Fig. 7. Evolution of the closed-loop visual trajectories in performing the test movement. As learning

progresses trajectories become more and more straight.
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a®ected the performances of the closed-loop control to a minor extent; in fact, such a

structural modi¯cation does not change the visuo-arm Jacobian much.

To test the ability of the robot to adapt to changes in the visuo-arm Jacobian, a

45� counterclockwise (CCW) rotation around the x0 axis of the visual space was

introduced. The perceived position of the hand was modi¯ed as follows:

xMOD
0 ¼ x0

xMOD
1 ¼ cos 45�x1 � sin 45�x2

xMOD
2 ¼ cos 45�x1 þ sin 45�x2

The consequences of this kinematic perturbation can be seen in Fig. 8: while in the

¯rst iteration of the test movement trajectories were curved and ungracious (¯rst

plot on the left), already during the second iteration the robot was showing

improvements, recovering a good estimation after eight iterations. A similar e®ect

was observed when the perturbation was removed (the related plots are not

shown here).

6.3. Reachable space estimation

Figure 9 depicts two di®erent visualizations of the reachable space map after

1400 samples have been gathered and used for training: a 3D plot in the head

con¯guration space, on the left, and a projection of the same map on the pitch/

vergence plane (with yaw = 90�), on the right. Figure 10 shows projections of

the map on the vergence/yaw plane, considering di®erent values of pitch orien-

tation, precisely h�30�;�15�; 0�; 15�; 30�i. Black color means high values of

the map output (high probability of the point to be reachable). Generally, it

can be noticed that the map output increases with increasing values of vergence

(i.e. ¯xated point closer to the robot eyes). Morover, the output is overall higher in

the central part of the yaw axis (these are positions in space that the robot can

reach more easily, with the arm joints far from the physical limits); on the other

hand, for yaw values close to 90� the map output is typically low, especially

if vergence is negative.

Fig. 8. Evolution of the closed-loop visual trajectories in performing the test movement after a 45� CCW
rotation of the perceived visual space.
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If we analyze the robot physical structure (which is indeed similar to the human

one), it is clear that if we consider targets placed at a certain distance from the eyes

(encoded by vergence) they are more likely to be reachable if the neck is bent forward

(positive pitch) rather than backward (negative pitch), being the shoulder positioned

below the head (see Fig. 1). Noticeably, increasing the pitch value the map output

points become generally higher. This is also evident in the right image in Fig. 9,

where head yaw is 90�.

7. Conclusion

In this paper, we propose a novel strategy which allows a humanoid robot to learn

autonomously and online how to reach for visually identi¯ed objects. Di®erently

from previous works, in our approach there is no separation between the exploration

Fig. 10. The reachable space map, after training with 1400 samples. Projections on the vergence/yaw
plane, considering di®erent values of pitch orientation, h�30�;�15�; 0�; 15�; 30�i. Dark gray (black)

means high probability to be reachable, light gray (white) means low probability.

Fig. 9. The reachable space map, after training with 1400 samples. Dark gray (black) means high

probability to be reachable, light gray (white) means low probability. On the left, 3D visualization in head
con¯guration space. On the right, projections on the vergence/pitch plane, with yaw = 90�.
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and the exploitation phase; on the contrary, the robot shows a continuous goal-

directed behavior, whose performance evolves with time. The reaching controller

combines an open-loop controller that brings the hand near to the target and a

closed-loop controller that cancels the residual hand position error. The open-loop

controller relies on an arm-head forward kinematic model, while the closed-loop

controller exploits an inverse model of the visuo-arm Jacobian. Both models are

learned autonomously by the robot during the execution of reaching actions towards

visual stimuli. We show experimentally how the errors of the controllers are pro-

gressively reduced, and the reaching trajectories become rectilinear and regular, as

learning is performed. The ability of the robot to continuously adapt to changes in

the kinematic structure or sensory system has been demonstrated by simulating a

sudden change in one of the arm links and by introducing a perturbation (45� CCW
rotation) in the perceived visual space. Furthermore, the robot is able to learn a

representation of its reachable space, based on motor information, while performing

reaching attempts directed to both reachable and nonreachable points.
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