
Object segmentation using Independent Motion Detection

Sriram Kumar1,2, Francesca Odone2, Nicoletta Noceti2, Lorenzo Natale1

Abstract— Independent motion detection aims at identifying
elements in the scene whose apparent motion is not due to
the robot egomotion. In this work, we propose a method
that learns the input-output relationship between the robot
motion – described by the position and orientation sensors
embedded on the robot – and the sparse visual motion detected
by the cameras. We detect independent motion by observing
discrepancies (anomalies) between the perceived motion and
the motion that is expected given the position and orientation
sensors on the robot. We then perform a higher level analysis
based on the available disparity map, where we obtain dense
profile of the objects moving independently from the robot.
We implemented the proposed pipeline on the iCub humanoid
robot. In this work, we report a thorough experimental analysis
that covers typical laboratory settings, where the effectiveness
of the method is demonstrated. The analysis shows in particular
the robustness of the method to scene and object variations and
to different kinds of robot’s movements.

I. INTRODUCTION

Humanoid robots use vision as the primary source of
information to interact with the environment. Motion cues
are important for a variety of tasks, including (i) navi-
gation, to avoid collision or self-localizing and (ii) fore-
ground/background segmentation to detect objects and hu-
mans. Unfortunately, in humanoid robots, motion detection
is made difficult by the fact that cameras are not stationary
and the perceived visual motion is heavily affected by the
robots’ own movement during gazing or locomotion. Correct
interpretation of the scene requires, therefore, to estimate the
perceived scene motion and to separate the elements which
are only apparently moving due to motion of the cameras
(egomotion) from the ones that are moving independently
(independent motion). This problem is usually referred to as
independent motion detection (IMD [1], [2], [3], [4]).

Using the kinematics it is possible to estimate the visual
motion of the scene based on the information provided by the
motor encoders and the output of the inertial measurement
units, when available. However a good kinematic model of
the robot (including the placement of the inertial sensors)
may be unavailable or difficult to derive, especially in
presence of elastic elements at the joints (a situation that
is quite common in walking humanoid robots). In this case
it may be more practical to learn a model that predicts the
visual motion that is induced by the robot’s own movement.

1S. Kumar, L. Natale are with iCub Facility, Istituto Italiano di Tec-
nologia, Genova, Italy {sriram.kishore, lorenzo.natale}
at iit.it

2S. Kumar, F. Odone, N. Noceti is with the Dipartimento di In-
formatica, Bioingegneria, Robotica e Ingegneria dei Sistemi, Univer-
sità degli Studi di Genova, Genova, Italy {francesca.odone,
nicoletta.noceti} at unige.it

Our model learns the relationship between the actual robot
velocity and the apparent motion estimated on the image
frames. We assume that a global model is sufficient to
represent the observed motion independently of the scene
structure and that variability due to parallax can be captured
by the flow statistics.

In this work we build on an early implementation of
the method [5] and extend it to improve the quality of the
segmentation and the robustness in various scenarios.

In the learning phase, we gather representative data by
letting the iCub move randomly while it is observing a
static environment. At run-time, we detect anomalies in the
estimated optical flow, i.e., points which do not seem to move
coherently with the robot’s velocity. Such anomalies form
a sparse description of the independent motion. Finally, we
obtain a dense segmentation by combining anomalous points
with an appropriately quantized disparity map.

Our algorithm has been implemented and validated on
the iCub humanoid platform [6]. We provide a thorough
experimental analysis of the method performances for dif-
ferent types of robot’s movements, independent motions and
scenes.

A. iCub Vision System

The iCub vision system consists of a pair of Dragonfly
cameras mounted over an eye mechanism with 3 DoF. The
cameras have a resolution of 320x240px and can stream at 33
Hz frame rate. The eye mechanism can pan, tilt and version
(both eye pan independently based on depth of the fixation
point). Eyes are mounted on a neck mechanism with 3 DoF
(roll, pitch and yaw) which is further actuated by a 3DoF
torso [7], [6].

In this work we use the the GazeControl software which
coordinates the robot’s eyes, neck and torso as explained
in [8]. The observed egomotion is an outcome of pure
rotation of the motors of the eyes and/or in combination with
the rotation of those of the neck (in the experiments in this
paper we do not actuate the torso). iCub is equipped with
motor joint encoders and inertial sensors (accelerometer, gy-
roscope, magnetometer). In absence of external perturbations
acting on the robot, egomotion can be estimated using the
inertial measurements and/or by differentiating the encoder
feedback.

The GazeControl coordinates the DoF of the robot to
obtain a human-like coordinated movement. It allows moving
the robot head by asking the it to gaze at random fixation
points in the 3D world and obtain various velocity profiles.
The following scenarios can be generated through GazeCon-
trol: (1) stationary neck with moving eyes, (2) coordinated



movement between the neck and eyes to achieve fixation in
same direction (small velocity), (3) moving neck and moving
eye in opposite direction (for stabilization), (4) moving neck
and moving eye in random direction. Other combinations
(like random neck and eye movements) are possible but
unnatural and have not been considered in our analysis.

II. RELATED WORKS

In the earlier methods, the egomotion was modeled from
the scene only. Irani et al. [1] combined 2D affine transfor-
mation for 2D scenes with parallax analysis for 3D scenes
in a unified approach for intermediate scenes. Nelson et
al. [2] proposed two complementary approaches: constraint
ray filtering which constraints the velocity of the scene
due to moving camera and animate motion detection which
constraints the rate of change of the projected velocity to
detect rapid movements. Argyros et al. [3] used LMedS to
find the model parameters of stereo and optical flow. Jun
et al. [4] computed the egomotion by reducing the error of
bilinear transformation on optical flow positions on a subset
of feature points. MotionCUT [9] inspects the locations
where optical flow is disrupted by background occlusions and
disocclusions generated by moving object(s). These methods
estimate egomotion from the assumption that moving objects
occupy a larger portion of the scene and may fail otherwise.

One way to resolve the dominant motion problem is to
use the robotic motor encoder values and the scene together.
Currently, two such methods have been proposed for the iCub
robotic platform and we outlined them here:

1) Heteroscedastic Approach to Independent Motion De-
tection (HIMD) [10] relies on a 3D calibrated stereo system
and assumes knowledge of the robot’s kinematics. The
method compares the tracking of sparse points with the
projected movement of corresponding 3D points transformed
using the robot kinematic model. This method performs well
in the presence of many outliers, occlusions and cluttered
background.

2) Learning egomotion with sensor data [5] method is a
simplified version of HIMD, where the robot kinematics is
not available and, instead of a full 3D vision system, a 2D
estimate of apparent motion (optical flow) is exploited. The
method models egomotion by learning the relationship of
the observed optical flow statistics and the robot’s motor
velocities; then it detects anomalies by thresholding the
Mahalanobis distance of the optical flow estimated at run-
time and the learned model. The assumption in this case
is that egomotion is dominated by camera rotation and that
objects in the scene are located far away from the robot.
With respect to HIMD, this simplified version is faster
and, as demonstrated empirically, able to deal with most
practical circumstances. In this paper we build on the latter
approach where we enrich the learned motion model with
additional information. We extend the input vector to the
motion predictor to include inertial data. We also use depth
information in the processing to improve the result of the
segmentation. Finally, we perform an extensive experimental
validation to validate empirically to what extent the learned

model manages to capture the variability of the observed
motion.

III. THE METHOD

The framework for independent motion detection we pro-
pose and evaluate is illustrated in Fig. 1. It is composed of 5
steps: (A) data generation, (B) training (egomotion learning),
(C) testing (sparse anomaly detection), (D) post-processing,
(E) dense segmentation. Training and testing follow [5].

A. Data generation

We now discuss how we obtain data from the robot sensor,
encoder values and flow statistics from image pairs.

1) Motion generator: We use the iCub GazeControl to
generate different head configurations and various velocity
profiles of the head joints; to do this we randomly sample
a predefined rectangular 3D area in the workspace to select
targets for the controller. This allows us to sample effectively
the input space and thus to produce a representative set of
data to be fed to the machine learning algorithm.

As mentioned in Sec. III-A.2 there are certain cases in
which the head is controlled to produce opposite motion of
the eyes and the neck joints. This happens because the eyes
are faster than the neck to achieve target fixation; therefore
after the eyes have achieved fixation the remaining part of
the motion is dedicated to move the neck to orient the head
to face the target while the eyes compensate this movement
to maintain stable fixation. This is visible, for example, in
Fig. 2: V 1 represents the horizontal velocity of the head
and V 4 represents the horizontal velocity of one of the eyes
(both along the X-axis, in reference to Cartesian coordinate
system of the robot). To stabilize the eyes while the neck
moves, the controller maintains the relation V 4 = −V 1.
A similar relation is enforced between neck and eye along
the vertical direction (the Y-axis), i.e. V 5 and V 2. These
are special cases for our motion model, since the motor
velocities are not null, but the observed apparent motion is
zero because the acquired images are identical. Examples of
these relationships need to be included in the training set,
but would be very unlikely to be explored if training was
purely random in the space of the velocity of the individual
joints.

2) Velocity vector: Velocity vector q̇t is a vector rep-
resentation of velocity motor encoders and sensors values
that represent the egomotion of the robot at time t. Method
[5] uses the iCub motor encoders as the input velocity
vector. Apart from the motor encoders, iCub is equipped
with inertial sensors. Our velocity vector comprises of (i)
velocity of 3 joint encoders of the eyes, (ii) velocity of 3 joint
encoders of the neck, (iii) linear acceleration and difference
of Euler angle values of inertial sensor places on the head.
Different combinations of these quantities are used to test
their effectiveness: 6D (speed of motor encoders, i.e. d = 6),
9D (speed of motor encoders and linear acceleration, i.e.
d = 9), 12D (speed of motor encoders, linear acceleration
and difference of Euler angle values, d = 12) and 9Di (eye
motor encoders, linear acceleration and difference of Euler



Fig. 1: Pipeline of independent motion detection algorithm.

Fig. 2: Correlation between neck and eyes motion. This
figure shows thats the GazeControl joint movements are not
independent, in particular here we show the the stabilization
effect when the neck and the eyes are moved in opposite
direction (notice that the mean and standard deviation of the
optical flow components mu, mv , siguu are close to zero).

angle values, d = 9). These results are discussed in Sec. IV-
A

3) Image acquisition: RGB images of the stereo camera
pair are captured by the iCub vision system. We use a single
(left) camera to learn the egomotion and the stereo pair for
computing the disparity map which is later used for dense
independent motion segmentation.

4) Apparent motion analysis: We consider two consecu-
tive images It−1 and It. We compute a sparse optical flow
following a very standard procedure: we extract Harris corner
points from each image [11] zi(t) = (xi(t), yi(t)), with
i = 1 to N .

Each corner zi(t+1) detected in image It is mapped to its
corresponding point zi(t) using KLT optical flow technique
[12] i.e. vi(t) = zi(t)−zi(t+1). The quality of the obtained
results depend on a number of factors, as we will discuss in
the experimental analysis. If the robot moves at a high speed
the effects of motion blur and inadequate frame rate could
influence negatively on the estimated motion.

From the set of optical flow vectors for a frame It we ob-
tain a global optical flow statistics vector µt,Σt, describing
optical flow mean and variance.

B. Training phase or Egomotion Learning

We learn a vector-valued input-output relationship f :
X → Y with X ⊆ Rd and Y ⊆ Rp. A velocity vector
q̇t ∈ X describing the robot movement represents the input
of the learning algorithm. In this paper, we investigate the
cases in which d = 6, 9, 12. The computed global optical
flow statistics pt ∈ Y is the output of the learning algorithm,
in this work pt = (µu, µv, σ

2
uu, σ

2
uv, σ

2
vv), thus Y ⊆ R5.

For the learning algorithm, we adopt vector-valued RLS
[13] with an RBF kernel — implementation available in the
GURLS library [14].

C. Anomaly detection

In testing phase, multiple objects could be moving inde-
pendently. The velocity vector of the robot is given as input
to the learning model and the flow statistics are predicted
for the egomotion. The independent moving objects can
be distinguished from the egomotion by thresholding the
Mahalanobis distance between the computed optical flow and
the predicted egomotion flow statistics. More details can be
found in [5].

D. Post processing

In this step, we discard isolated frames where more than
80% of their key-points are detected as anomalies. There
are at least two possible causes for this to happen. First, the
learned model may not be able to generalize to the observed
scene because the latter is not well represened in the training
set. Second, when the iCub is starting to accelerate its head,
the abrupt change in the motion model is in contrast with the
smoothing effect of the regularizer in the regression model.
On an average 8 frames are rejected in 100 frames when
the robot is moved with maximum speed that is 30% of the
limit; but this can increase if the egomotion is larger. In
future works, we will address these problems by means of



(a) Sparse anomaly 1 (b) Sparse anomaly 2 (c) Sparse anomaly 3

(d) Disparity 1 (e) Disparity 2 (f) Disparity 3

(g) Segmentation 1 (h) Segmentation 1 (i) Segmentation 3

(j) Dense Profile 1 (k) Dense Profile 2 (l) Dense Profile 3

Fig. 3: Dense Anomaly segmentation steps (Blue circles
represent the center of mass).

a more complex scene modeling and by exploring a larger
part of the input space with online learning.

E. Sparse to dense segmentation

So far apparent motion is estimated only at the corners and
therefore the detected independent moving objects are sparse.
We now observe that we can exploit complementary visual
information, i.e. the disparity map (we use the software
described in [15] which computes a robust dense disparity
map using the approach proposed in [16]).

We first quantize the disparity map into set of bins
computed from equally split cumulative histogram. Then we
find the segment(s) containing anomalies. To contrast the
effect of anomalies lying at object boundaries, we consider
only 50% of those which are close to the center of mass.
Fig. 3 shows three consecutive RGB frames with sparse

(a) Average (b) Cumulative

Fig. 4: Depth probability distribution.

Fig. 5: Various train/test scenarios

anomalies and their disparity maps, disparity quantization
and dense motion segmentation.

An analysis of the average depth distribution (Fig. 4a)
reveals that most of the pixels are located far away from
the camera; which means that the probability of detecting
the points far away is higher. If equal sized bins are used to
quantize the disparity map, then the moving object might
be split between two or more depths. To get a balanced
quantization of the disparity map, we compute the histogram
bins size by equally splitting the cumulative histogram in 0.1
size portions (Fig. 4b ).

IV. EXPERIMENTAL ANALYSIS

To our knowledge, there is no available benchmark which
provides appropriate scenarios for our analysis. We acquired
sets of data in-house – Fig. 5 shows different configurations
in the training and test sequences used to explore various
parameters configuration and how the algorithm performs
in different situations. Fig. 6 shows the different test en-
vironments, which depict a typical laboratory setting with
various depths and degrees of complexity/clutter. The object
boundaries of moving objects in the testing sequence (200
images) are annotated using LabelMe annotation [17]. The
training and test sequences are captured at 11 fps. The drop
of frame rates is due to the computation time dedicated to
calculating the disparity map.

In the learning stage parameters, we set the regulariza-
tion parameters with 10 fold cross validation (provided by
GURLS libraries). To explore the input space completely,
3000 data of velocity vector (motor encoders and inertial
sensors) as input and flow statistics as output are collected.

Performance of the method is reported in terms of ROC
curve. In a ROC Curve, the True Positive (TP) detection
is plotted against the False Positive (FP) detections. In our
case, these values are computed at point and frame level. To
calculate the ROC Curve at frame level, a frame is considered
as TP if more than 80% of the points are TP, the same for FP,
False Negative (FN), True Negative (TN). The frame level
ROC Curve shows how considering the points of a frame
collectively helps in making a decision. The two measures
have shown to be very coherent (since one is derived from
the other). Thus, for space reasons, most experiments in the
section are described in terms of frame based ROC.



(a) View 1 (b) View 2 (c) View 3

(d) 40 cm (e) 70 cm (f) 110 cm

Fig. 6: Test scenarios. Objects with different views:
(a),(b),(c); Objects with different depths: (d), (e), (f)

A. Different input dimensions

In reference with Sec. III-A.2, the comparative study of
using different combinations of input space for modeling
egomotion is performed and Fig. 7 shows point-based and
frame-based ROC curves. From these plots, we can derive
the following observations. First: performance in the case
6D, 9D and 12D are similar. On the other hand, detection
rate remains acceptable when inertial input is used instead of
the neck motor velocity. This suggests that the inertial input
does carry useful information, however, in our experimental
scenario it was redundant with respect to the one carried by
the motor encoders. Inertial input may turn out to be critical
in cases in which motor encoders are not informative, i.e.
during locomotion or in presence of external disturbances
(these situations will be explored in the future).

B. Object variance

The purpose of this test is to see whether the algorithm
has any bias towards objects of different appearance. The
appearance of objects affects the corner detection density,
the accuracy of optical flow and disparity maps. For this test,
seven different objects having different size, color and texture
are used (see Tab. I). All the moving objects are placed at a
constant distance 70 cm away from the robot. Fig. 8a shows
the frame level analysis of these objects. Since texture is very
important for corner detection, pig, red ball and octopus are
the most challenging and the overall performances are rather

(a) Point based ROC Curve (b) Frame based ROC Curve

Fig. 7: Comparison of ROC curves when the learned model
uses different input velocity vectors.

(a) Frame based ROC Curve when
different objects are used.

(b) Frame based ROC Curve when an
object move against a different scene
structure.

(c) Frame based ROC Curve when an
object move at different distance.

(d) Frame based ROC Curve when an
object moves at different speed with
small egomotion.

Fig. 8: ROC Curves

poor. Objects presenting a relatively rich texture, no matter
the size, have instead been detected accurately.

C. Different scene view

In this case, the framework is trained and tested at
different scenes (i.e. different environments) as shown in
Fig. 6a, 6b, 6c. The three views which are selected, have dif-
ferent and complex depth scenarios in the scene. We learned
4 different models: one was trained including all views
collectively, the other three were trained on each individual
view. We then tested each view against its corresponding
model, as well as the collective model. A collective trained
model of all three views was trained with 5000 data and

TABLE I: Object Characteristics

Size Color Texture Image

Rubik cube Small Multi Yes

Octopus Small Blue No

Red ball Small Red No

Tiger Medium Grey Yes

Textured box Medium Black&White Yes

Pig Medium Pink No

Big box Large White No



Fig. 9: Depth histogram of 100 frames from 3 different views

test results against the three conditions separately (3model-
view1, 3model-view2 and 3model-view3, respectively). The
frame based ROC curves are shown in Fig. 8b. Notice that all
models produced lower performance when tested against the
scenario view2 (including the model tested collectively on all
three views). This is because view2 is a more challenging
scenario in which depth has higher variability than view1
and view3 (see depth histograms in Fig. 9). From this figure
it is evident that for view2 the depth is distributed from 0
to 50 with a large variance compared to view1 and view3.
In future work, we will include representation of the scene
structure in the learned model so to capture larger variability
in the observed optical flow.

D. Scene structure variance

In support of Sec. IV-C, a further scene structure variance
experiment is conducted. In this experiment the system is
trained on view1 and tested on a stationary object placed at
different depths while the robot moves horizontally. In this
case, there is no independent motion and the system should
detect no anomalies. In Fig. 10a we plot the false positive
count as a function of the different depth of the object in the
scene. As the object is introduced in the scene at a particular
depth, the average depth of the test sequence differs from
the training sequence. The only exception is when distance
is zero, in which the object is absent (the testing and training
sequence are the same). The difference between the testing
and training sequences decreases as the distance increases
and it is observed that the number of false positive decreases.
This shows that the average depth in the scene of test data
should be similar to that of the training data.

E. Depth variance of independent motion

In this experiment, the system is trained on view1 and
tested on objects which are moved at different depths from
the robot as shown in Fig. 6d (40 cm), Fig. 6e (70 cm) and
Fig. 6f 110 cm. The performance measure in Fig. 8c shows
that, irrespective of the depth, the algorithm performs well
on a well trained data set. So, the algorithm is invariant to
a considerable depth in the scene provided that the average

(a) Detected anomaly count. In this
case the head moves horizontally and
a stationary object is placed at in-
creasing distance. The point at zero
distance corresponds to the control
situation in which the object is ab-
sent.

(b) False positive and corner count
for different head speed without in-
dependent motion. Head speed limit
is expressed as % of maximum mo-
tor speed and the anomaly count in
multiples of ten.

Fig. 10: False positives analysis

variance of the test scene is approximately equal to that of
the training set.

F. Motion variance in speed

Humans have a tolerance limit of the speed of independent
moving object and the egomotion at which the independent
motion is detected [18], [19]. A similar tolerance check is
conduced on the robot.

1) Independent moving object: This experiment is per-
formed to test how well the independent motion detection
performs, by moving an object at different speeds before
the camera with slow egomotion (10% of the maximum
speed limit). The result observed in Fig. 8d shows that
on increasing the speed of independent moving object it
becomes harder to detect the anomalies.

2) Egomotion: In this experiment, the robot is moved hor-
izontally at a constant speed with no observed independent
motion in the scene. This experiment is conducted to explore
the minimum and maximum egomotion that the algorithm
can withstand by moving the robot at different speed. The
result seen in Fig. 10b, shows that as the speed of egomotion
increases the anomaly count increases. This is because the
camera moves fast and the pixels get blurred. This in turn
results in less textured scene and detection of fewer corners.
In this case the optical flow does not approximate the motion
field well which results in more anomalies being detected.

G. Frame level inspection

In this experiment, we investigate the relation between the
anomaly detection, depth image and ground truth annotation
to understand the reason behind some of the incorrect de-
tections. Fig. 11 shows the detection for 20 frames image
sequence and 2 situations in which motion detection failed.
Further inspection shows that in frames 17, 18 the object
is correctly segmented using depth but no anomalies are
detected because the object is stationary (motion goes to zero
because the object is about to invert the direction of move-
ment). This situation is responsible for 6% of the false nega-
tives and is indeed due to incorrect ground truth/labeling. In
frame 6, a similar situation occurs. In this case, however, the
object is incorrectly segmented using depth. This is due to



Fig. 11: Comparison of anomaly detection, annotation and
disparity map to understand frame level detections

the image blur generated by the movement of the object. This
is again supported by the results of the experiment reported
in Sec. IV-F.1.

V. CONCLUSION

Independent motion detection allows exploiting motion
cues while the robot is moving. This is a fundamental
capability that simplifies the visual interpretation of the scene
to detect moving obstacles. In this work, we considered a
sparse representation of the scene (a set of corner points)
and the robot sensor values to learn the egomotion; we then
complement the sparse model with a dense representation of
the scene (disparity maps) to segment the object boundaries
of independently moving objects. The contribution of this
paper are: (i) the identification of a set of experimental
scenarios that represent a typical indoor setting, (ii) the
construction of a model able to exploit a complex set of
sensor information available on the robot, both for learning
the egomotion and for identifying anomalies, (iii) a simple
and efficient computational process to extract the object
contour from anomalous points and depth map. Our method
was able to perform well on rich textured objects provided
the speed of the robot and the structure of the environment do
not differ between the training and testing conditions. The
method described in this paper assumes that egomotion is
dominated by camera rotation and that flow statistics can
model variability due to parallax. This assumption works
well in our experimental conditions but may be too restrictive
in those cases in which egomotion is induced by external
perturbations or is due to complex whole-body movements
(i.e. walking or balancing). We will address these issues in
future works by incorporating depth and inertial information
into the learned model.

REFERENCES

[1] M. Irani and P. Anandan, “A unified approach to moving object detec-
tion in 2d and 3d scenes,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 20, no. 6, pp. 577–589, 1998.

[2] R. C. Nelson, “Qualitative detection of motion by a moving observer,”
International journal of computer vision, vol. 7, no. 1, pp. 33–46,
1991.

[3] A. A. Argyros and S. C. Orphanoudakis, “Independent 3d motion
detection based on depth elimination in normal flow fields,” in
Computer Vision and Pattern Recognition, 1997. Proceedings., 1997
IEEE Computer Society Conference on. IEEE, 1997, pp. 672–677.

[4] B. Jung and G. S. Sukhatme, “Detecting moving objects using a single
camera on a mobile robot in an outdoor environment,” in International
Conference on Intelligent Autonomous Systems, 2004, pp. 980–987.

[5] S. R. Fanello, C. Ciliberto, L. Natale, and G. Metta, “Weakly super-
vised strategies for natural object recognition in robotics,” in Robotics
and Automation (ICRA), 2013 IEEE International Conference on.
IEEE, 2013, pp. 4223–4229.

[6] G. Metta, G. Sandini, D. Vernon, L. Natale, and F. Nori, “The icub
humanoid robot: an open platform for research in embodied cognition,”
in Proceedings of the 8th workshop on performance metrics for
intelligent systems. ACM, 2008, pp. 50–56.

[7] R. Beira, M. Lopes, M. Praga, J. Santos-Victor, A. Bernardino,
G. Metta, F. Becchi, and R. Saltarén, “Design of the robot-cub (icub)
head,” in Robotics and Automation, 2006. ICRA 2006. Proceedings
2006 IEEE International Conference on. IEEE, 2006, pp. 94–100.

[8] U. Pattacini, “Modular cartesian controllers for humanoid robots:
Design and implementation on the icub,” Ph.D. dissertation, Ph. D.
dissertation, RBCS, Italian Institute of Technology, Genova, 2011.

[9] C. Ciliberto, U. Pattacini, L. Natale, F. Nori, and G. Metta, “Reexamin-
ing lucas-kanade method for real-time independent motion detection:
Application to the icub humanoid robot,” in Intelligent Robots and
Systems (IROS), 2011 IEEE/RSJ International Conference on. IEEE,
2011, pp. 4154–4160.

[10] C. Ciliberto, S. R. Fanello, L. Natale, and G. Metta, “A heteroscedastic
approach to independent motion detection for actuated visual sensors,”
in Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ Interna-
tional Conference on. IEEE, 2012, pp. 3907–3913.

[11] C. Harris and M. Stephens, “A combined corner and edge detector.”
in Alvey vision conference, vol. 15. Manchester, UK, 1988, p. 50.

[12] J. Shi and C. Tomasi, “Good features to track,” in Computer Vision
and Pattern Recognition, 1994. Proceedings CVPR’94., 1994 IEEE
Computer Society Conference on. IEEE, 1994, pp. 593–600.

[13] L. Baldassarre, L. Rosasco, A. Barla, and A. Verri, “Multi-output
learning via spectral filtering,” Machine Learning, 2012.

[14] A. Tacchetti, P. K. Mallapragada, M. Santoro, and L. Rosasco,
“Gurls: a least squares library for supervised learning,” The Journal
of Machine Learning Research, vol. 14, no. 1, pp. 3201–3205, 2013.

[15] S. R. Fanello and G. Pasquale, “Stereo vision,”
https://github.com/robotology/stereo-vision, 2015.

[16] A. Geiger, M. Roser, and R. Urtasun, “Efficient large-scale stereo
matching,” in Asian Conference on Computer Vision (ACCV), 2010.

[17] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman,
“Labelme: a database and web-based tool for image annotation,”
International journal of computer vision, vol. 77, no. 1-3, pp. 157–173,
2008.

[18] O. Kawakami, Y. Kaneoke, K. Maruyama, R. Kakigi, T. Okada,
N. Sadato, and Y. Yonekura, “Visual detection of motion speed in
humans: spatiotemporal analysis by fmri and meg,” Human brain
mapping, vol. 16, no. 2, pp. 104–118, 2002.

[19] L. Ferman, H. Collewijn, T. Jansen, and A. Van den Berg, “Human
gaze stability in the horizontal, vertical and torsional direction during
voluntary head movements, evaluated with a three-dimensional scleral
induction coil technique,” Vision research, vol. 27, no. 5, pp. 811–828,
1987.


