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Abstract— Tools can afford similar functionality if they share
some common geometrical features. Moreover, the effect that
can be achieved with a tool depends as much on the action
performed as on the way in which it is grasped. In the current
paper we present a two step model for learning and predicting
tool affordances which specifically tackles these issues. In
the first place, we introduce Oriented Multi-Scale Extended
Gaussian Image (OMS-EGI), a set of 3D features devised to
describe tools in interaction scenarios, able to encapsulate in
a general and compact way the geometrical properties of a
tool relative to the way in which it is grasped. Then, based on
these features, we propose an approach to learn and predict
tool affordances in which the robot first discovers the available
tool-pose categories of a set of hand-held tools, and then learns
a distinct affordance model for each of the discovered tool-pose
categories. Results show that the combination of OMS-EGI 3D
features and multi-model affordance learning approach is able
to produce quite accurate predictions of the effect that an action
performed with a tool grasped on a particular way will have,
even for unseen tools or grasp configurations.

I. INTRODUCTION AND RELATED WORK

Affordances were defined by J.J. Gibson in the late 70’s
within the context of psychology as the action possibilities
of an entity in the environment available to an agent [1].
However, this definition and its further formalizations, most
notably the one describing affordances as the relationship
between an action (executed by an agent), an object (in
the environment) and the observed effect [2], have had a
remarkable influence in the field of robotics. The reason
for this is that such formalization provides an effective
framework for robots to learn the effects of their actions
through interaction with the environment, a critical aspect in
developmental robotics.

Since the early study in that line carried out by Fitzpatrick
et al. [3], many groups have proposed different approaches to
learn object affordances. Montesano et al. proposed a model
in which Bayesian Networks are applied to learn the rela-
tionships among the terms of an affordances as conditional
probabilities [4]. Other groups have used general purpose
classifiers such as SVMs or K-NN in order to map between
the different elements of affordances [5], [6], although more
neurally plausible approaches such as Hebbian learning have
also been tried [7]. Common among many of these studies
has been the the application of clustering methods to the
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available objects [8], [9], effects [5], [10], or both [7], [6],
as a way to ease learning and enable better generalization.

A smaller number of authors have also tackled the problem
of robotic tool affordances, where an intermediate object
mediates the interaction between the robot and the target
object. An approach applied in the first studies in the topic
was to learn the affordances of a set of labeled tools
[11], [12]. While this approach does not allow to predict
the affordances of previously unseen tools, it has proven
quite successful in simple scenarios where the robot could
experiment with all available tools [13].

More recently, a few studies have been published where
descriptors, referred to as functional features, were applied
to represent the tool, with the aim to match the tool’s
characteristics expressed by such features with its possible
affordances. In [14], they focused on the features of the
tooltip, as it is this part of the tool that commonly determines
the interaction with target objects. On [15], they studied
how certain tool contour features matched particular targets
(the way the cross in a screwdriver matches the cross in a
screw) and hence afford their interaction, albeit in a very
fixed behavior scenario.

In [16] and [17], Jain & Inamura included for the first
time functional features in an affordance learning frame-
work, by merging them with the robot’s available actions
into a new term named Manipulator Pairs among which
functionally equivalent sets were inferred. Following their
work, Goncalves et al. applied simple geometrical features
to describe both the tool and the target object [18], while
Mar et al. proposed a more general set of shape features in
an approach where the grasp configuration of the handled
tool was also considered [19]. The recent work by Myers et
al. [20] applied for the first time functional features from 3D
images, but the tool affordances are not learned by interaction
but rather determined by a human.

The approach taken in these studies is also in line with a
growing body of evidence from neuroscientific studies which
suggests that primates and humans also perceive objects and
tools in terms of their affordances, rather than only their
category [21], [22], [23]. The recent experiments carried out
by Natraj et al. [24] even argue that the context and hand
posture modulate tool-object perception in the brain.

Yet, a question still unanswered both in neuroscience and
robotics is whether the set of functional features should
represent a particular tool in a particular grasp configuration
or an abstracted/canonical version of the tool, on which a
particular action and grasp could be applied later. In the
current paper we present a comparative evaluation of the



two alternatives, based on the proposed Oriented Multi-Scale
Extended Gaussian Image (OMS-EGI) descriptors. OMS-
EGI provide a representation of the 3D geometry of a tool
based on a concatenation of voxel-wise normal histograms,
which is dependent on how the tool is grasped, and hence
specifically suited to describe tools in robotic interaction
scenarios.

Furthermore, we argue that in order to ease learning
and enable more precise affordance predictions for tool use
scenarios, instead of learning a single model that tries to
relate all the possible variables in an affordance, the robot
should learn a separate affordance model for each set of
tool-poses sharing common functionality. This is akin to the
functionally equivalent sets of Manipulator Pairs proposed by
Jain & Inamura [16], but in this case the equivalence is not
found among pairs of action-tool features, but rather among
sets of 3D geometrical features, so that the consequences
of different actions can be learned separately for each of
these equivalent sets. In particular, we apply these models
to compare the affordances of a large set of handled tools
in different grasp configurations, based on of a set of drag
actions on a fixed target object.

II. MATERIALS AND METHODS

A. Experimental setup

The experiments carried out in the present study were
performed using the iCub simulator. The software controlling
the iCub is based on YARP middleware, which enables
functionally independent executables (modules) to exchange
information in order to achieve the desired behaviors on the
iCub [25]. Low level motor control and stability are achieved
using available general purpose YARP and iCub modules and
libraries [26], while modules for action execution, sensory
processing and experimental flow control were implemented
specifically for this study. Processing of 3D models and
feature extraction was implemented using the Point Cloud
Library [27], while experimental data analysis including
learning and visualization was implemented in MATLAB,
relying on the third party SOM Toolbox [28] for Self-
Organized Map analysis and on the built-in Neural Network
Toolbox for regression analysis.

As for the experiment itself, we have used 44 different
virtual tools which roughly correspond to 6 different cate-
gories, as can be observed in Figure 1. With these tools,
each grasped on a few different configurations, the iCub
robot performs a series of dragging actions in 8 possible
directions on a target object and observes the effects in terms
of displacement of the object. The target object is a cube
whose initial position before each drag action is fixed at 40
cm in front of the iCub and 10 cm to the right side of the
robot’s sagittal plane on a virtual table of known height, so
that the iCub will always use the right arm holding the tool
to perform the action.

Fig. 1: Tool 3D models used in the current study.

B. Oriented Multi-Scale Extended Gaussian Image for tool
representation in interaction scenarios

A few studies on tool use learning in robotics have applied
functional features in order to represent tool in a way that
would help predict their affordances [17], [18], [19]. How-
ever, to the best of our knowledge, all studies tackling tool
affordance learning from interaction with the environment
apply only 2D information. And yet, real world objects
functionality depends on, and in many cases emerges directly
from, their 3D geometry. Therefore we argue that moving
from 2D to 3D features to describe tools in affordance studies
is a desirable step. On the one hand, doing so will spare us
many of the most common drawbacks of 2D image analysis,
such as the objects’ representation dependence on perspective
or occlusion induced errors. On the other, it also provides
much richer information about the actual functionality of
tools and objects.

Within the fields of robotics and computer vision, 3D
features are mainly applied for object retrieval or recogni-
tion/classification [29], [30], [31], [32], [33]. Accordingly,
they are usually designed to be similar for similar objects,
and also, as opposite of desired in interaction scenarios,
independent of the object’s pose. Therefore, we introduce
Oriented Multi-Scale Extended Gaussian Image (OMS-
EGI), a set of features devised to describe grasped objects
(tools) in interaction scenarios. OMS-EGI are able to en-
capsulate in a general and compact way the geometrical
properties of a tool on a particular grasp configuration (which
we refer to as a tool-pose, borrowing the term from [34]).



Fig. 2: OMS-EGI Computation Steps: Starting with a 3D model oriented w.r.t the hand reference frame according to the way in
which it is grasped (a), its axis-aligned bounding box (AABB) is computed (b), as well as its normals (c). On the next step, the
volume enclosed by the AABB is iteratively divided into voxels of different resolutions (d), and for each of them the histogram
of normal orientations is computed (e). Finally, all histograms are concatenated in order to build the OMS-EGI feature vector
(not shown). For visualization purposes, only one resolution scale is displayed. Also, normal values and normal histograms are
represented by colors by mapping XYZ values to RGB values, and XYZ histograms to RGB histograms and averaging over color
space.

Figure 2 shows the steps for the computation of the OMS-
EGI features, where XYZ histograms have been mapped to
RGB to ease visualization.

The OMS-EGI descriptor is a modification and extension
of the Extended Gaussian Image (EGI), proposed by Horn
in 1984 [35]. The original EGI represents a 3D model as a
histogram on the spherical space of the normal orientations
of the model, weighted by the area of the faces with such
normals. The most important variation in the OMS-EGI with
respect to the original EGI formulation is that instead of
taking a single normal sphere histogram representing the
whole model, OMS-EGI consists of a concatenation of voxel-
based-EGIs computed at different resolution scales. We refer
by voxel-based-EGI as the EGI computed from the portion
of the model enclosed in a particular voxel, whereas scale
corresponds to the size and number of voxels from which
the voxel-based-EGIs are computed.

The other determining aspect of OMS-EGI is that voxels
are computed from octree subdivisions of the model’s axis-
aligned bounding box (AABB) with respect to the robot’s
hand reference frame. Considering that the tools 3D models
are oriented with respect to this according the way in
which they are grasped, this characteristic ensures that the
information on the OMS-EGI is relative to the current tool-
pose. Additionally, it also helps bypass the problem of initial
pose estimation, present in all other non-rotationally invariant
3D features. Nevertheless, if an actual canonical or preferred
pose exists for the model, its OMS-EGI can naturally be
computed in such pose, which would enable further analysis
in absence of any particular grasp.

When dealing with pointclouds instead of surface meshes,
as is the case in the present study, there are slight approxima-
tions to be made with respect to the original EGI formulation.
As faces do not exists on pointcloud representations, normals
can not be computed from them, but rather estimated from
the surrounding point neighborhood support of the point (also
called k-neighborhood) [36]. Therefore, the voxel-based-
EGIs can not be weighted by the area of the faces. Instead,

under the safe assumption that points in the pointcloud are
reasonably uniformly distributed along the model’s surface,
we normalized each voxel based histogram by the number of
points (each corresponding to one normal) enclosed by the
voxel, in such a way that the sum of all the values of each
voxel-based-EGI is 1.

Accordingly, there are two main parameters to control how
detailed the OMS-EGI representation of a 3D model is:

• The number of bins per dimension of the normal
histogram (nB), which reflects the accuracy with which
each voxel-based-EGI will represent the normals con-
tained in its corresponding voxel. Each voxel-based-EGI
consists of nB3 values.

• The number of octree levels explored (D from Depth),
starting from level 0, i.e. the whole bounding box. D
represents thus the resolution at which the voxel-based
EGIs will be computed, by controlling the number and
size of these voxels.

The total size of the OMS-EGI feature vector is computed
as: length(OMSEGI) =

∑D
l=0(8l · nB3), where l: octree

level.

C. Functional tool-pose clustering

As stated above, the main aim of this paper is to propose
a method that tackles the question of how could a robot
take advantage of the fact that different tools can afford
similar functionality if they share some common geometrical
features and are grasped in a similar way, or in other words,
that similar tool-poses have similar affordances. We have
already introduced OMS-EGI features, which we devised as
a means to encapsulate these properties (geometry and grasp)
of a handled tool in order to ease the rest of the analysis.
In order to make sense of it, though, the robot needs to
analyse a large set of tool-poses and find out the eventual
commonalities among them, thus discovering the available
tool-pose categories. To that end, unsupervised clustering is
applied on the OMS-EGI data. The method chosen to do so
was Self-Organized Maps based K-Means (SOM K-means),



due to the relative high-dimensionality of the feature vector
when compared with the available number of samples, which
would cause simple K-means to yield very irregular and
unbalanced results.

SOMs provide a lower dimensional representation of the
input data based on an iterative method of vector quantization
[37], on which K-means can be performed without the
issues appearing when applying it directly on the higher
dimensional data. Still, K-means is very sensitive to the
initialization conditions, and does not provide an automatic
way of selecting K. In our study, we select K in function of
an ad hoc implemented cluster quality index, defined as the
combination of the Davies-Bouldin index [38], commonly
used to assess cluster separation, and a value to promote
clustering trials that led to more balanced clusters (in terms
of number of samples per cluster). This last term was
computed as the standard deviation of the histogram of the
resulting cluster indices (normalized by dividing by maxi-
mum), multiplied by a constant that determines its influence
over the Davies-Bouldin index, which we set to 2.

D. Tool-pose category dependent affordance models

Once the set of available tool-pose categories has been
discovered by clustering the OMS-EGI features with the
methods described above, the robot should learn what the
common affordances of each tool-pose category are. In this
study, as we did in [19], we consider affordances as defined
by the relationship between the terms of the tuple {tool,
grasp, action, effect}. The target object is not included,
because its affordances are assumed to be learned in a
previous stage, after which they could be combined with
knowledge about tool affordances in order to model the
whole interaction scenario, but this is out of the scope of
this study. From the terms we do take in account, the tool is
represented by the OMS-EGI features described in Section
II-B. The other three terms {grasp, action, effect}, referred
together as affordance data, are formalized as described
below:

1) Grasp: The tool poses available for the robot in the
present study are described by 2 parameters, graphically
described in Figure 3a. These control the orientation (ϕ)
and displacement (∆) of the handled tool with respect to
its canonical pose (ϕ = 0 and ∆ = 0). Here, we consider
canonical pose as the one in which the tool’s handle axis is
oriented along the extended thumb axis, and the tool effector
pointing towards the the extended index finger axis (-Y and
X axis on the iCub hand reference frame, respectively).

2) Action: The set of actions that the robot can perform
in the current experiment was limited to a drag action
parametrized by the angle θ ∈ {0, 360} degrees along which
the robot tries to drag the object, as displayed in Figure 3b.

3) Effect: The effect of the robot’s tool use was measured
as the euclidean distance between the object’s position before
and after the action execution.

To the best of our knowledge, all previous affordance
studies apply a single-model approach, where only one
model aims at learning the relationships between the terms in

(a) Grasp parameters. ϕ con-
trols the rotation around the
tool’s handle axis, while ∆
controls the displacement re-
spective to the hand on the
same axis.

(b) Diagram of the drag ac-
tion. The tooltip is initially
placed slightly behind the ob-
ject, and then the tool is dis-
placed 15 cm along the radial
direction given by θ.

Fig. 3: Parameters controlling tool-pose and interaction: (a)
Grasp and (b) Action.

the affordance tuple for all their possible values. We propose
instead a multi-model approach, where a distinct affordance
model is learned for each tool-pose category, following the
assumption that tool-poses clustered together share common
geometrical properties and hence also similar functionality.
In order to train each of those models, the affordance data
is divided in as many subsets as tool-pose categories have
been discovered, in such a way that each subset contains
only affordance data generated by tool-poses belonging to
a particular cluster. Then, each affordance model is trained
separately with the affordance data subset corresponding to
the tool-pose category to which it is associated. An explana-
tory diagram of the proposed approach can be observed on
Figure 4.

Moreover, we wanted to assess whether grasp config-
uration information should be provided explicitly as an
input to the affordance model, or rather implicit as part
of the tool representation. Therefore, we used two different
training schemas, which differed on the information present
on the OMS-EGI feature set used to discover the tool-pose
categories, and hence in the number of affordance models
initialized and the affordance data that correspond to each
one. In the first schema, which we refer to as Oriented
features, the pose of the 3D models from which the OMS-
EGI descriptors were extracted matched the way in which the
actual tools were handled in the simulator to interact with the
environment. Here, the OMS-EGI features implicitly encode
grasp information, and hence the tool-pose category to which
each model is associated depends, albeit indirectly, on the
grasp parameters. Therefore, the models learned when using
Oriented features map directly action → effect, for all given
tool-pose categories.

In the second schema, referred to as Canonical features,
OMS-EGI features were extracted from the 3D models being
in their canonical pose, which did not match the pose of
the actual tool in the simulator. The grasp information is
thus not encoded by the OMS-EGI vector, which is therefore



Fig. 4: Diagram of the proposed multi-model approach for tool affordance learning. From left to right: OMS-EGI features are
extracted from the tools’ 3D models, and subsequently clustered using SOM K-means. Then, recorded affordance data is divided
according to the cluster to which the corresponding tool-poses belong, and used to train separate affordance models, so that
each of them models the affordances of a particular tool-pose category.

constant for each considered tool, independently of the way
it is grasped by the robot. Hence, the grasp parameters of
each trial are explicitly fed to each affordance model, which
thus performs the mapping {grasp, action} → effect, for all
given canonical tool-pose categories.

Independently of the feature schema, all affordance mod-
els’ inputs and outputs are real values, so the learning
problem becomes one of regression / function approximation:
ê = ftp(i) where ê ∈ R is the predicted effect, ftp the
affordance function to learn for each tool-pose category, and
i is the affordance input. For Oriented features, where the
only input is the action parameter θ, i ∈ R. For Canonical
features, where the grasp parameters are also fed to the affor-
dance models, i ∈ R3. Given that the elements present in the
tuple are relatively low dimensional, the regression models
do not need to be utterly complex. In the present work,
we use generalized regression neural networks (GRNN),
a modification of radial basis networks which is able to
approximate arbitrary functions and avoid local minima with
1-pass training [39]. This kind of networks have a single
hyper-parameter σ which serves a regularization parameter
by controlling the spread of its radial basis function. In
order to find the optimal σ for each affordance model, we
performed recursive line search based on cross-validation
results on the training subset. The parameter σ for which
the average cross-validation accuracy is highest is used to
train the final model for each tool-pose category.

III. RESULTS

A. Experimental data collection and separation

In the current experiment, 44 virtual tools represented by
between 1500 and 4500 points (see Figure 1) were used
by the iCub in simulation to gather interaction data. Each
tool was grasped in 9 different poses, corresponding to
the combinations of 3 different grasp orientations (ϕ =
{−90, 0, 90}) and 3 different grasp displacements (∆ =
{−2, 0, 2}), adding up to a total of 396 tool-poses. For each
tool-pose, two OMS-EGI feature vectors were computed:
Oriented and Canonical, as described in Section II-D. For
each of these tool-poses, the iCub performed the drag action
described in Section II-D.2 in 8 directions, corresponding to
angles θ from 0 to 315 degrees in intervals of 45 degrees
(θ = {0, 45, 90, 135, 225, 270, 315}), thus executing a total
of 3168 actions.

For each of these actions, all the affordance data val-
ues ({grasp, action, effect}) were recorded, in association
with the tool-pose that generated them. Before any further
processing, these data were separated in training and tests
sets, which remained constant throughout the experiment and
the off-line data analysis. 75% of all the tool-poses were
selected randomly, and all the data associated with them used
for training. For each tool-pose, these data consisted of the
Canonical and Oriented OMS-EGI vectors and the affordance
data tuples recoded for each of the 8 performed actions.
The data corresponding to the remaining 25% of the tool-
poses were used for testing. Thus, the training set consisted



of the Oriented and Canonical OMS-EGI vectors of 297
tool-poses, and the 2376 affordance data vectors associated
with those tool poses, while the test set was formed by the
OMS-EGI vectors of the remaining 99 tool-poses, and their
corresponding 792 affordance data vectors.

Furthermore, given that there is no ground truth for the
clustering process, and that interaction data is itself very
noisy, errors might appear even if both processing steps
worked perfectly. Hence, we needed to set a performance
baseline against which we could compare the performance of
our approach. To that end, we carried out two additional data
processing runs, corresponding respectively to the Oriented
feature schema and the Canonical features schema, where
after performing clustering, all the indices of the category
corresponding to each tool-pose were shuffled. Therefore,
the affordance data used to train and test the affordance
models in these runs were not corresponding anymore to
a particular tool-pose category for each model, but rather
distributed among them at random. We refer to these data as
Oriented-shuffled and Canonical-shuffled, respectively.

B. Discovery of tool-pose categories

Once the data had been sorted out, the first step in our
approach to model tool affordances was to discover the
available tool-pose categories by clustering the OMS-EGI
features of those belonging to the training data. In this study,
we set the parameters of the OMS-EGI algorithm to be
D = 2 and nB = 2, so the total length of the OMS-EGI
feature vector is of 576 features. On the analysis of Oriented
features, each tool-pose produced a distinct OMS-EGI vector,
which thus add up to a total 297 samples clustered. In the
case of Canonical features, as the canonical pose was always
the same for each tool, independently of the way in which
it was actually grasped by the iCub (in simulation), only
33 distinct OMS-EGI vectors were extracted and clustered.
The clustering results for both schemas can be observed on
Figure 5

C. Prediction of tool-pose affordances

Through the clustering procedure, 11 and 4 tool-pose
categories were discovered for the Oriented and Canonical
features schemas, respectively. An equal number of affor-
dance models were trained in each case, each of them
with the affordance data generated by the tool-poses in the
cluster associated with the affordance model. As described in
Section II-D, each affordance model was implemented using
a GRNN whose σ parameter was determined by recursive
line search based on cross-validation.

Then, in order to evaluate the validity of our approach,
we assessed the predicted effect values obtained with the
data from the tool-poses belonging to the test set, which
had not been used either on the clustering procedure or
for training the affordance models. To that end, the first
step was to classify the OMS-EGI features of each of the
test set tool-poses into the previously discovered categories.
This was done by finding the best matching unit (BMU) of
each test OMS-EGI feature vector on the trained SOM, and

(a) Oriented features.

(b) Canonical features.

Fig. 5: Clustering results on (a) Oriented features and (b)
Canonical features. Left side: cluster distribution on the SOM
with superimposed best-matching units of the clustered sam-
ples. Center: proportion of samples per cluster. Right: train-
ing tool-poses belonging to each cluster, i.e. tool-pose cate-
gory, represented as name of tool + [tool indices]

+ (grasp orientation).

determining the cluster to which that BMU belonged. Then,
all the affordance input data associated with each of the test
tool-poses was fed to the corresponding GRNN affordance
model, which produced a prediction of the effect for each of
the input data vectors. Finally, we computed the following
measures of prediction error between the average predicted
effect (ê) and the average recorded effect e for each action
of each tool-pose category:

• Mean Absolute Error (MAE): Average of the absolute
difference between the recorded and the predicted val-
ues:

MAE = mean(abs(e− ê))

• Mean Absolute Percentage Error (MAPE): Measure of
the absolute error in relation to the value of the recorded
effect:

MAPE = mean(abs(e− ê)/e)

Figure 6 shows the predicted effect for all actions per-
formed with each test tool-pose, compared with the recorded
affordance data. For Canonical features, the data was divided
according to the kind of grasp that generated it for visu-
alization and evaluation, but the number of trained models
remained equal to the number of categories discovered on
the clustering process, i.e., 3. Table I, in turn, displays the
numeric values of the achieved performances.



Oriented features Prediction Error Avg

MAE (cm) 1.29 1.73 2.82 1.73 1.89 0.67 4.27 1.67 5.78 1.37 4.47 2.06
MAPE (%) 15.12 14.21 19.20 14.34 21.03 8.74 92.49 18.79 30.85 27.40 63.31 21.75

Oriented-shuffled Prediction Error Avg

MAE (cm) 2.32 3.81 4.60 2.95 2.52 3.09 6.40 1.67 1.48 4.80 2.39 2.90
MAPE (%) 19.62 46.83 50.77 36.06 21.88 33.96 69.31 16.18 16.13 50.04 21.26 30.88

Canonical features Prediction Error Avg

MAE (cm) 4.40 2.57 3.54 7.81 0.80 4.92 2.15 1.49 1.41 2.72 2.75 2.73 2.72
MAPE (%) 36.42 20.14 28.99 73.36 7.11 46.24 27.90 18.73 17.59 31.43 34.64 31.71 28.52

Canonical-shuffled Prediction Error Avg

MAE (cm) 2.61 2.93 3.21 10.63 2.03 6.23 2.85 2.65 2.27 3.51 6.78 2.29 3.62
MAPE (%) 25.64 28.77 31.84 122.03 23.27 70.43 31.07 28.05 23.23 29.41 55.78 18.73 37.08

TABLE I: Prediction Error for Oriented and Canonical Features and baseline for comparison. Prediction Error on Oriented
features shows the error for each of the trained models (one per tool-pose category). On Canonical features, the results for each
of the considered grasp orientations (ϕ = {−90, 0, 90}) on each model are displayed, corresponding to the results plotted on
Figure 6b.

Observing subfigure 6a, we can see that for Oriented fea-
tures, the affordance models’ predictions match the average
recorded effect of their corresponding tool-pose categories
quite well in most cases, even in some of the categories
with larger variance among tool-poses’ individual effects.
These results mean that the clustering step was successful
in discovering and partitioning the oriented tool-poses into
functionally similar categories, which in turn means that
the OMS-EGI extracted from oriented tool models provided
enough information to do so. On subfigure 6b we can
notice that the distance between the predictions for Canonical
features and the recorded effects are larger than those for
Oriented features. This observation is also supported by the
numerical results on Table I, which shows that the Oriented
features schema enables smaller error on the affordance
prediction. It also shows, nevertheless, that in either case
the proposed clustering procedure leads to a considerable
improvement of the prediction accuracy when compared to
the baseline.

IV. CONCLUSIONS

In the present paper we have tackled the question of how
can robots take advantage of the fact that similar tool-poses
have similar affordances. In doing so, we have presented two
novel contributions to the field of tool affordance learning in
robotics. On the one hand, we introduced OMS-EGI, a set of
3D features devised specifically for tool use scenarios. This
set of features encapsulate the geometry of a tool and the
way in which it is grasped, and thus, as it has been shown,
relate nicely with the functionality of the tool and hence
its prediction. We have also determined that these features
provide more information about the tools’ functionality when
extracted from the oriented 3D models than when extracted
from a canonical pose, even if combined with explicit grasp

(a) Oriented features.

(b) Canonical features.

Fig. 6: Prediction results on the test data by (a) tool-pose
category for Oriented features and (b) considered grasp for
each tool-pose category for Canonical features. The blue
line represents the average affordance model’s prediction for
each possible action. The black line represents the average
recorded effect for all the tool-poses determined to belong
to the corresponding category, where the vertical errorbars
represent its standard deviation. The red line represents the
absolute error between recorded data and prediction. Effect
axis in all graphs spans from 0 to 20 cm, while Action-Pull
ranges from 0 360 degrees.



information.
On the other hand, we proposed a multi-model approach

where instead of a single model aiming at generalizing all
possible cases, a different affordance model is learned for
each tool-pose category, where categories are found by clus-
tering the tool poses based on their geometrical properties.

Results show that the combination of OMS-EGI 3D fea-
tures and multi-model learning approach is able to produce
quite accurate predictions of the effect that an action per-
formed with a tool grasped on a particular way will have.
Nevertheless, albeit promising, these results also leave plenty
of space for refinement and improvement; although the tool
representation has certain level of complexity, the possible
actions and the way of measuring the tool use effect are
admittedly limited. In order to move towards more realistic
tool use scenarios, these elements will need to be further
developed and studied in conjunction with the rest of the
system, and of course, in real robot experiments.
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