
Self-supervised learning of grasp dependent tool affordances on the
iCub Humanoid robot

Tanis Mar1, Vadim Tikhanoff1, Giorgio Metta1, Lorenzo Natale1

Abstract— The ability to learn about and efficiently use tools
constitutes a desirable property for general purpose humanoid
robots, as it allows them to extend their capabilities beyond the
limitations of their own body. Yet, it is a topic that has only
recently been tackled from the robotics community. Most of the
studies published so far make use of tool representations that
allow their models to generalize the knowledge among similar
tools in a very limited way. Moreover, most studies assume
that the tool is always grasped in its common or canonical
grasp position, thus not considering the influence of the grasp
configuration in the outcome of the actions performed with
them.

In the current paper we present a method that tackles
both issues simultaneously by using an extended set of func-
tional features and a novel representation of the effect of the
tool use. Together, they implicitly account for the grasping
configuration and allow the iCub to generalize among tools
based on their geometry. Moreover, learning happens in a self-
supervised manner: First, the robot autonomously discovers the
affordance categories of the tools by clustering the effect of their
usage. These categories are subsequently used as a teaching
signal to associate visually obtained functional features to the
expected tool’s affordance. In the experiments, we show how
this technique can be effectively used to select, given a tool, the
best action to achieve a desired effect.

I. INTRODUCTION

A practical way to approach tool use is by modeling it
as the relationship between the agent’s actions, the external
object effector being used (the tool), and the resulting effect
in the agent’s environment. These relationships can in princi-
ple be learned and used to predict future effects or to choose
appropriate tools or actions. The concept of affordances, first
proposed by Gibson [1], has proven to provide an adequate
theoretical framework to study of these interactions, also
within the field of robotics [2], [3].

The first approach to robotic tool use from a devel-
opmental perspective was conducted by Stoytchev [4], in
which affordances were learned for each available tool by
populating a list with behavioral parameters that led to
success in a sliding task when performed with that tool
(labeled by color). Using a very similar setup, Sinapov [5]
improved Stoytchev’s method by hierarchically clustering the
effects, which allowed the robot to discover new categories
of affordances. A more recent study by Tikhanoff et al. [6]

1 T. Mar, V. Tikhanoff, G. Metta and L. Natale are with
the iCub Facility, Istituto Italiano di Tecnologia, Via Morego
30, 16163, Genova, Italy (email: tanis.mar@iit.it,
vadim.tikhanoff@iit.it, giorgio.metta@iit.it
and lorenzo.natale@iit.it) This work was supported by
the European FP7 ICT project No. 270273 (Xperience), and project No.
288382 (POETICON++)

combined exploratory behaviors and geometrical feature ex-
traction in order to determine which tool of a small given set
affords better to pull into reach a toy otherwise unreachable
by the robot with its own hand. The major drawback of the
studies mentioned above is that the affordances were learned
for a given set of labeled tools, so the knowledge gained
remained limited to the tools in the original set.

A few studies have tried to overcome this problem by
using other forms of tool representation that could enable the
generalization of the knowledge to previously unseen tools
if they shared some characteristics. Some authors focused
in the effector part of the tool, such as in [7], where the
functionality is assumed to be on the tip of the tool, which
might be shared by similar tools, or in [8], where the degree
of matching between the tool and the target object contours
is assessed to predict the tool affordance possibilities on that
object. A similar concept was employed in [9] and [10]
where the authors propose to substitute the tool element
of the tool affordance tuple by the existence or not of a
set of tool functional features which combined with certain
actions result in predictable effects. The advantage of this
kind of features over previous approaches is that they allow
the inference of possible affordances of previously unknown
tools by observing them visually. Nevertheless, the functional
features considered are very few and specifically related to
the task at hand, so they would need to be redefined to
look for their relationship with other kind of affordances.
Other studies have in fact applied large sets of non-specific
or even non-specified functional features in object affordance
learning scenarios, where the robot interacted directly with
a target object [11], [12], [13], but never so far in tool use
scenarios.

Apart from tool representation, the other topic investigated
in the present paper is the effect of different grasps on the
tool’s affordances. Robotic tool grasping has indeed been
extensively studied but almost always assessed from the
perspective of stability of the grasp or the suitability of
the joint configuration [14], [15], [16], [17]. To our best
knowledge, only [18] considered tool-pose (equivalent to
grasping configuration) in the context of tool affordances.
Indeed, considering the grasping position as a variable in-
cludes additional complexity to the problem. However, we
believe that if it is conveniently approached, the problem of
grasping for tool use can not only be efficiently tackled, but
also lead to more robust tool use behaviors, as suggested in
[19].

This paper proposes a method which simultaneously tack-
les the aforementioned drawbacks. On one hand it allows the

mailto:tanis.mar@iit.it
mailto:vadim.tikhanoff@iit.it
mailto:giorgio.metta@iit.it
mailto:lorenzo.natale@iit.it


robot to autonomously discover the set of distinct affordances
that a group of tools provide, taking in account both how the
tool is grasped, and how the action is performed. On the other
hand, it also enables the robot to predict which will be the
affordance of a grasped tool based on the tool’s functional
features, defined as those features (visual or otherwise) that
can potentially influence tool’s functionality. In this manner,
it can set the parameters of its action towards maximizing a
particular goal, even if the grasped tool has not been observed
before.

II. MATERIALS AND METHODS

A. Experimental Setup

The experiments carried out in the present study were
performed using the iCub Humanoid Robot [20] as well
as its simulator [21]. The iCub has 53 degrees of freedom,
although in the current scenario we mainly use the 41 of
the upper torso. It is also equipped with force-torque, joint
angle and inertial sensors, binocular vision, and full body
skin sensing capabilities, although we do not use the latter
in this scenario. The software on the iCub is built based on
modules which communicate with each other using YARP,
enabling multi-machine and multi-platform integration [22].

For the current experiment, all modules concerning robot
motor actions as well as sensory extraction and processing
are written in C++, with extensive use of the OPENCV
library for feature extraction. The data analysis and learning
part has been programmed in MATLAB, making use of the
third party libSVM library [23] to implement SVM learning
algorithms.

We have used 7 different tools for the experiments on
the simulator and 4 for those on the real robot, which can
be observed in Figures 1a and 1b, respectively. In order to
study how the way in which a tool is grasped affects what it
affords, the iCub held each tool with the end-effector oriented
in three different ways, as shown on Figure 2: either to the
front, to the right, or to the left. Our method does not use
tool labels in any step of the process but nevertheless tools
have to be given to the robot in a particular configuration.
Therefore, we refer to each of the combinations between the
available tools and the given orientations of the end-effector
as a tool-pose, following the nomenclature used in [18]. The
effect of the tool use was measured as the displacement of
a small cube placed on a table in front of the robot, whose
approximate size is known.

B. Tool-pose based functional features

The first part of the method consists in the extraction of
2D geometrical features of the grasped tool. We argue that
these features will relate to the functionality of the tool-pose,
and hence could be later used to predict its effects. Therefore,
the first step is to determine the position of the tool. This
is done differently on the simulator and the real robot. On
the simulator the tooltip is set at a fixed position relative to
the hand center while on the real robot we used the method
developed in [6]. This method involves a discovery procedure
in which the robot swings the grasped tool in different

(a) Real Tools.

(b) Simulated Tools.

Fig. 1: Tools used on the experiment on the real robot (a)
and simulation (b).

Fig. 2: Tool Orientations applied: Left, front and right

positions, while the generated motion is detected by a variant
of the Lucas-Kanade optical flow algorithm extended to
compensate for ego-motion [24]. An optimization technique
analyzes the motion data to reliably establish the tooltip
position based on the minimum error between the predicted
position of the tooltip and the observed one. When the
position of the tooltip with respect to the hand is found,
it is annexed to the arm’s forward kinematics so it can be
used as an end-effector and retrieved at any moment.

In parallel, another module is running a graph-based
segmentation (GBS) algorithm [25] on the images from the
left eye to split them into uniform regions. The 2D projection
of the tooltip in the image plane is used as the seed for
the segmentation to extract the blob that corresponds to the
tool. It should be noted that while the pose that the robot
adopts in order to observe the tool and extract its features
is always such that the whole tool is within its visual field,
the specific position and orientation of the hand are slightly



randomized so that no two sets of extracted features will be
the same, even if the robot is holding the same tool in the
same orientation in several observations.

After the blob representing the view of the tool has
been isolated from the rest of the image, its orientation is
normalized with respect to the angle between the tooltip
and the hand center (computed from the robot’s kinematics).
Additionally, only a region of interest between the tooltip
and about 3/4 of the distance between the tooltip and the
hand center is selected, in order to keep only the part of
the tool corresponding to the end effector, which is the one
that differentiates among tools and poses. Finally, a set of
75 geometrical features is extracted from the contour of
the resulting blob. Before being applied for learning, each
feature value is normalized by being subtracted the mean
and divided by the variance of that feature computed from
the training subset of the data. The resulting normalization
constants (training mean and variance of each feature) are
then used to normalize any incoming test data. An example
of the image processing at different stages of the feature
extraction pipeline can be observed in Figure 3.

The list of features considered is detailed below, citing
which previous works have used them, if any. The number
in parenthesis corresponds to the number of values used to
represent that feature:

• Based on convex hull
– Depth of the 5 larger convexity defects1 (5).
– Histogram of bisector angles at convexity defects (8).
– Area of the convex hull.
– Solidity: Contour area / convex hull area.

• Based on thinning (from [26])
– Number of skeleton bifurcations to the left, right, under

and above the blob’s center of mass, respectively (4).
– Number of skeleton endings to the left, right, under and

above the blob’s center of mass, respectively (4).
• Moments:

– Normalized central moments nu11, nu02 and nu02 (as
implemented in OPENCV) (3).

• Shape descriptors (inspired by [27] and [28]).
– Area.
– Perimeter.
– Compactness.
– Length: major principal axis.
– Width: minor principal axis.
– Aspect ration: width/height.
– Extension to the right w.r.t. the center of mass.
– Extension to the left w.r.t. the center of mass.
– Elongation.
– Rectangularity.

• From the angle signature: outwards pointing normal angle
between each two points in the contour (based on [28]).

– Bending energy: sum of squares of the angle variation
along the contour), divided by the number of points in
the contour.

– Angle signature histogram (8).
• Domain transformations from the distance to the centroid

signature (from [28]).
– Fourier coefficients (15).
– Wavelet coefficients (15).

1A convexity defect is defined as any continuous deviation of the object’s
contour from its convex hull.

C. Discovering and Learning Pull Affordances

The method used in the present study divides the affor-
dance learning process in the following three stages:

1) Gathering tool use data through interaction and obser-
vation of the effects.

2) Discovering affordances by clustering the observed
effects.

3) Mapping functional features to the discovered affor-
dances.

The execution of explorative pulls action and the com-
putation of their effects, required to gather tool use data,
rely on 3 processes running in parallel modules that allow
the iCub to know where the tooltip is with respect to its
own hand, where the object is on the table, and how to
bring the former close to the latter and perform the pull,
respectively. The modules in charge of finding the tooltip
and tracking its location relative to the robot hand have been
already described in Section II-B as they are also involved in
segmenting the tool blob for contour extraction. The second
task is achieved by a tracker module that is able to constantly
locate the target object within the field of view, by making
use of a particle filter which is initialized at the beginning of
the experiment with a user provided template of the desired
target object [29]. This way, it is able to reliably provide at
any time the position of the pixel in the robot camera where
the center of the target object is located. The transformation
from the 2D coordinates in the image to the 3D coordinates
in the robot’s coordinate frame is achieved by the iKinGaze
module [30], which takes advantage of the robot’s kinematics
to determine the direction of the gaze and project the point
on the plane of the table, whose height w.r.t the robot is
known. Finally, once the tooltip and the object are located,
the control of the motor actions is performed by the Cartesian
Interface module [31], which handles the inverse kinematics
problem on the iCub and enables high level control of the
robot directly in the operational space. Therefore, in order
to perform a pull action, the only required parameter is the
approach position with respect to the object, as the object
position is tracked automatically and the actions required to
reach and pull are estimated and performed by the iCub’s
Cartesian Interface module.

Each training trial of the present study consists on 11 pull
actions, corresponding to approaches from -5 to 5 cm to
either side of the object, on integer centimeter values. When
reaching for the object, the tooltip is not directed exactly to
the coordinates where the object is detected, but 3 cm behind,
so that the end-effector is able, if the approach parameter is
adequate, to grab the object during the drag action, which has
a constant length of 20 cm. For each approach, the effect of
the tool use is computed as the distance between the position
of the object before and after the pull action, as provided by
the tracker. If the object has been displaced, it is put back
after the computation of the effect on approximately the same
position as it was before the action. The 11 pairs action-effect
obtained by this process represent an affordance vector which
describes how well a particular tool-pose affords pulling as a



Fig. 3: Visual Feature Extraction processing pipeline.

function of the approach position w.r.t the object. An instance
of the pull action can be observed in Figure 4.

In the current study, between 20 and 25 of such affordance
vectors have been recorded for each of the tool-poses con-
sidered in simulation, and around 10 vectors for each of the
tool-poses considered on the real robot, making up a total
of 567 vectors (6237 pulls) on simulation and 138 vectors
(1518 pulls) on the real robot.

On the second stage of learning, the aim is to enable the
iCub to autonomously discover if the individual affordance
vectors recorded in the previous stage are distributed into
certain categories, and to observe whether these might be
commonly shared among different tool-poses.

To that end, we performed a series of K-means clustering
runs among all the affordance vectors, regardless of the tool-
pose that generated them, varying the number of clusters
from the minimum (K = 2) to half of the number of the
considered tool-poses, that is, to K = 11 for simulation data
and K = 6 for real robot data. For each run, the quality of
the clustering is assessed with the Davies-Bouldin clustering
index [32], which measures how well separated the clusters
are as the ratio between the average of the mean scatter of the
points in each cluster and the average distance among their
centroids. Thus, the number of clusters that better separate
the affordance vectors can be determined as the K which
produces the lowest DB-index, Kbest.

This clustering procedure provides two valuable results
for the next learning stage. On one hand, the cluster index
given to each affordance vector serves as a class label
to classify the feature vectors. On the other, the centroid
vector of each cluster is also the prototype vector of the
corresponding affordance category, which can be used to
evaluate the learning process as well as to compute the best
action parameter.

The third learning stage deals with learning the mapping
between the feature vectors extracted from the tool-pose con-
tour and the affordance cluster to which their corresponding
affordance vectors belong. To this end we applied Support
Vector Machine classifiers, due to their good performance
and readily available implementations.

In all the training schemes that have been carried out,
the SVMs are batch trained offline using the full normalized
feature matrix as input and the corresponding cluster indexes
determined in the previous stage as target. As SVMs are al-

ways binary classifiers, Kbest SVM classifiers are trained on
one-versus-all discrimination. The SVM c and γ parameters
are estimated using recursive grid search based on cross-
validation results on a training subset. The parameters for
which the average cross-validation accuracy is highest are
used to train the SVM model. When evaluating the model, a
fraction of the data is kept apart only for testing, while the
rest is used to carry out the training processes just described.

A schematic diagram representing the flow of information
and the modules involved in the process of discovering and
learning affordances described above is shown on Figure 5.

D. Affordance Prediction and Action Execution

After the training process, the robot has learned the
mapping between the geometrical features of the different
tool-poses and the category of affordance that they are likely
to achieve. By retrieving the prototype vector of the predicted
affordance category, the robot is able to compute the ex-
pected effect for each of the possible values of the approach
parameter. Based on this information, the parameter value
that is expected to maximize the displacement of the object
is chosen and the respective pulling action subsequently
performed. This process is shown on Figure 5 superimposed
to the diagram of the training process, on which it relies. The
effect caused on the object by the robot’s action is measured
as in the training trials, by retrieving the coordinates of the
object before and after the action has been performed, and
measuring the euclidean distance between them. A video
presenting a condensed version of the whole experiment can
be watched at: https://www.youtube.com/watch?
v=neiX_eP4qq4.

III. RESULTS

A. Discovering Affordances

Due to the random initialization of the K-means clustering
algorithm, the Kbest number of clusters which minimizes
the DB-index can vary significantly from run to run. In
order to cope with this inconsistency, we ran 1000 times
the procedure to find Kbest described above. The histograms
on Figure 6 show that the number of clusters which was
more likely to be Kbest was 3. This means that the effects
that the different tool-poses achieve on the object naturally
group into 3 affordance categories, both in real and simulated
experiments. Moreover, if we observe the prototype vectors

https://www.youtube.com/watch?v=neiX_eP4qq4
https://www.youtube.com/watch?v=neiX_eP4qq4


Fig. 4: Pull action sequence.

Fig. 5: Diagram of the proposed affordance learning and prediction method. Black and red arrows represent the flow of
information in the training and prediction phases, respectively. The three stages of the training procedure are indicated by
the circled numbers as follow: (1) Gathering of tool use data through explorative actions and observation of the effects; (2)
Discovering affordance types by clustering the observed effects; (3) Mapping functional features to the discovered affordance
classes.

of each affordance cluster, as represented by their centroids
(shown on Figure 7), they resemble the different effects that
one would expect to find: large effect when the approach is
either on the right, the center or the left of the object 2.

B. Affordance Prediction and Generalization

The assessment of the prediction performance of our
system has been carried out in two different ways. On one
hand, we measure how well the robot is able to predict the
affordance from tool-poses which it has already experienced,
while on the other we wanted to evaluate the generaliza-
tion capability of this method to predict the affordance of
previously unseen tool-poses, based only on their functional
features.

Accordingly, on the first test the training subset is built by
randomly gathering 3/4 of the vectors obtained with each
tool-pose, while the test subset contains the remaining 1/4
of the vectors. These data is subsequently fed to the SVM

2Prototype vectors from simulated data represent more distinct behaviors
than those from robot data. This is due to the larger noise in the effect of
real robot actions, which leads to smeared out centroids, and the fact that
due to the angle of approach, the object was only seldom displaced when
the approach position was to its right, even if the tool end-effector was
oriented to the left.

(a) Simulated data (b) Robot data

Fig. 6: The histogram shows the number of times that each
possible K was Kbest based on the Davies-Bouldin index
(left: simulated data, right: real robot).

classifier to learn the mapping between the set of tool-pose
functional features of each training trial and the affordance
category to which their corresponding affordance vectors had
been clustered. For testing, the SVM classifier is presented
only the feature vectors of the testing subset, for which it
returns the indexes of the predicted affordance categories.

By comparing the indexes predicted by the SVM classifier
with the ones that the recorded affordance vectors were as-
signed to, we can quantify the prediction accuracy. Moreover,



(a) Simulated data

(b) Robot data

Fig. 7: Prototype Vectors from the affordances discovered by
K-means.

Test Env. Class. Acc. (%) rMSE [m]

Prediction Sim. 81.9 % 0.064
Prediction Robot 64.1 % 0.051

Leave-One-Out Sim. 56.9 % 0.077
Leave-One-Out Robot 53.9 % 0.054

TABLE I: Prediction Performance for known (prediction)
and unknown (Leave-One-Out) tools.

by confronting the prototype affordance of the predicted
cluster with the real affordance vector recorded during the
experiment, we can graphically assess if the predicted affor-
dance resembles the recorded one, and compute the mean
square error from the distance between them. Table I shows
the resulting values of accuracy and rooted mean square error
(rMSE) obtained on this test with simulated data as well as
with data from the real robot.

The second test determines how well the system is able
to predict the affordance of previously unseen tool-poses.
To this end, we performed a leave-one-out test, whereby
data from one tool-pose at a time is used to test an SVM
classifier which has been trained with all the data of all the
remaining tool-poses. Therefore, this test involves training
and evaluating as many SVM classifiers as tool-poses are
being considered, so the overall performance displayed in
Table I is measured by averaging across them.

Results of the first test show that the method allows the
iCub to predict quite reliably the affordance category of tool-
poses that have been previously observed, based only on its
visual features. Results yielded from simulation are almost
as high as we could expect, given the self-supervised nature
of the method, which already introduces inaccuracies on the
target signal. On data from the real robot, however, while
accuracy is still almost double over chance, it is considerably
lower than on the first case. This decrease in performance
can be explained by the fact that both affordance vectors
and segmented tool blobs on the real robot experiments are
noisier than those on simulation, as well as by the smaller

Environment Goal Acc. (%) Avg. Diff [m]

Simulation 86.51 % 0.064
Robot 86.11 % 0.056

TABLE II: Online Experiment Performance

amount of data available to train the classifier.
Results yielded by the leave-one-out test are slightly

worse, but still about about 20% over chance, which means
that although there is plenty of room for improving the
method, it already allows the robot to generalize its knowl-
edge to previously unseen tools.

One of the issues that drove down the performance of
the classifiers, other than inaccuracies in the blob extrac-
tion and clustering procedures, is class imbalance, meaning
that one of the affordance clusters usually dominated over
the remaining. This led the classifiers to disproportionally
classify feature vectors as corresponding to the dominating
affordance category.

C. Affordance based action execution

The last experiment that was carried out to evaluate our
method consisted in applying everything that the iCub had
learned so far in order to steer its behavior online. The
procedure involved the iCub holding a tool in its hand and
visually extracting its geometrical features, using them to
perform online prediction of the affordance category of the
tool, selecting the best action for the aim of displacing the
object, and finally performing the action.

In this scenario there is no ground truth or labels against
which to compute the performance accuracy, so instead we
used the 2 following measures to assess the performance. On
one hand, the amount by which the goal of displacing the
object is achieved is measured by the percentage of trials
in which the object was actually displaced (i.e. the distance
measured by the tracker is more than 5 cm, to account for
tracking error). On the other hand, the error in prediction
performance was computed as the average of the absolute
difference between the predicted effect of the action and the
measured object displacement after the robot’s action was
performed.

In order to carry out this evaluation, 6 trials were per-
formed with each tool-pose on simulation, while the real
robot performed 3 trials per tool-pose, thus having a total
of 126 trials in simulation and 36 trials on the real robot.
Results, which can be observed in Table II, show that for a
large majority of trials, the robot achieves its goal of moving
the object with the tool, and does so with an average error
very similar to the one achieved in the off-line experiment
for affordance prediction on known tools. It is noteworthy
that the accuracy in achieving the displacement of the object
is higher than the affordance prediction accuracy. This can be
supported by the fact that, sometimes, even if the affordance
category is wrong, it is usually close enough to the correct
one that the maximum values of its prototype vector leads
to an action that still achieves the goal.



IV. CONCLUSION

This paper presents a novel approach to the study of
tool affordances in robotics, introducing several contributions
to the state of the art. In it, we expanded the application
of functional features for tool representation beyond the
limited sets used before. We applied a comprehensive set
of geometrical features extracted from vision which is not
task-specific and whose features might relate to a number of
different functions, as well as enable generalization among
geometrically similar tools. Furthermore, affordances are
discovered by evaluating the effects of the robot actions, con-
sidering a set of effects generated by a parametrized action
as a single affordance entity. This allows the robot to predict
not only a single effect for a particular action, but a whole
set of them which can be used then to select the best action.
Moreover, it accounts for the way in which the tool is grasped
when determining its affordances. This is achieved due to
the fact that both the affordance vectors and the functional
features vary in function on the way in which the tool is
grasped, so the learned mapping between them implicitly
retains information about the grasp configuration. Finally, the
proposed system learns tool affordances without the need for
external labeling or supervision for classification, based only
on the observation of the effects of tool use.

Yet, we are aware of the many shortcomings of the
experiment, which will need to be studied carefully in the
future. One of the main drawbacks of the present approach
is that whereas it permits the iCub to take in account the
grasp pose to select the action that maximizes the desired
effect, it does not yet encode the grasp pose explicitly, and
so it needs to start with a tool placed in the hand. Future
work will tackle this issue as well as introducing features
based on 3D representations of the tool, which shall greatly
reduce the variability due to perspective.

REFERENCES

[1] J. J. Gibson, “The theory of affordances,” in Perceiving acting and
knowing Toward an ecological psychology, R. Shaw and J. Bransford,
Eds. Lawrence Erlbaum, 1977, vol. Perceiving, ch. 3, pp. 67–82.

[2] E. Sahin, M. Cakmak, M. R. Dogar, E. Ugur, and G. Ucoluk, “To
Afford or Not to Afford: A New Formalization of Affordances Toward
Affordance-Based Robot Control,” Adaptive Behavior, vol. 15, no. 4,
pp. 447–472, 2007.

[3] N. Krüger, C. Geib, and J. Piater, “Object-Action Complexes:
Grounded Abstractions of Sensorimotor Processes,” Robotics and
Autonomous Systems, vol. 59, no. 10, pp. 740–757, 2011.

[4] A. Stoytchev, “Robot Tool Behavior: A developmental approach to
autonomous tool use,” Ph.D. dissertation, Georgia Institute of Tech-
nology, 2007.

[5] J. Sinapov and A. Stoytchev, “Detecting the functional similarities
between tools using a hierarchical representation of outcomes,” in 2008
7th IEEE International Conference on Development and Learning.
Ieee, Aug. 2008, pp. 91–96.

[6] V. Tikhanoff, U. Pattacini, L. Natale, and G. Metta, “Exploring
affordances and tool use on the iCub,” in Humanoids, 2013.

[7] C. C. Kemp and A. Edsinger, “Robot Manipulation of Human Tools:
Autonomous Detection and Control of Task Relevant Features,” in
IEEE International Conference on Development and Learning, 2006.

[8] T. E. Horton, “A Partial Contour Similarity-Based Approach to Visual
Affordances in Habile Agents.” Ph.D. dissertation, 2011.

[9] R. Jain and T. Inamura, “Learning of Tool Affordances for autonomous
tool manipulation,” 2011 IEEE-SICE International Symposium on
System Integration SII, pp. 814–819, 2011.

[10] ——, “Bayesian learning of tool affordances based on generalization
of functional feature to estimate effects of unseen tools,” Artificial Life
and Robotics, pp. 1–9, Sep. 2013.

[11] L. Montesano, M. Lopes, A. Bernardino, and J. Santos-Victor, “Learn-
ing Object Affordances: From Sensory–Motor Coordination to Imita-
tion,” IEEE Transactions on Robotics, vol. 24, no. 1, pp. 15–26, Feb.
2008.

[12] B. Ridge, D. Skocaj, and A. Leonardis, “Self-Supervised Cross-Modal
Online Learning of Basic Object Affordances for Developmental
Robotic Systems,” in IEEE International Conference on Robotics and
Automation, 2010, pp. 5047–5054.

[13] T. Hermans, J. M. Rehg, and A. Bobick, “Affordance Prediction
via Learned Object Attributes,” in IEEE International Conference on
Robotics and Automation (ICRA 2011), 2011, pp. 1–8.

[14] M. Stark, P. Lies, M. Zillich, J. Wyatt, and B. Schiele, “Learned
Affordance Cues,” Tech. Rep., 2008.

[15] L. Montesano and M. Lopes, “Learning grasping affordances from
local visual descriptors,” in 2009 IEEE 8th International Conference
on Development and Learning. IEEE, 2009, pp. 1–6.

[16] R. Detry, E. Baseski, M. Popovic, Y. Touati, O. Kroemer, N. Krüger,
J. Peters, and J. Piater, “Learning Continuous Grasp Affordances by
Sensorimotor Exploration,” in From Motor Learning to Interaction
Learning in Robots. Springer-Verlag Berlin Heidelberg, 2010, pp.
451–465.

[17] E. Ugur, E. Sahin, and E. Oztop, “Self-discovery of motor primitives
and learning grasp affordances,” 2012 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pp. 3260–3267, Oct. 2012.

[18] S. Brown and C. Sammut, “Tool Use Learning in Robots,” in Advances
in Cognitive Systems, 2011, pp. 58–65.

[19] F. Guerin, N. Krüger, and D. Kraft, “A Survey of the Ontogeny of Tool
Use: From Sensorimotor Experience to Planning,” IEEE Transactions
on Autonomous Mental Development, vol. 5, no. 1, pp. 18–45, 2013.

[20] G. Metta, L. Craighero, L. Fadiga, A. Ijspeert, K. Rosander, G. San-
dini, D. Vernon, and C. von Hofsten, “A Roadmap for the Devel-
opment of Cognitive Capabilities in Humanoid Robots,” Tech. Rep.
004370, 2010.

[21] V. Tikhanoff, A. Cangelosi, P. Fitzpatrick, G. Metta, L. Natale, and
F. Nori, “An Open-Source Simulator for Cognitive Robotics Research:
The Prototype of the iCub Humanoid Robot Simulator,” in Workshop
on Performance Metrics for Intelligent Systems, 2008.

[22] G. Metta, P. Fitzpatrick, and L. Natale, “YARP: Yet Another Robot
Platform,” International Journal of Advanced Robotic Systems, vol. 3,
pp. 43–48, 2006.

[23] C.-c. Chang and C.-j. Lin, “LIBSVM : A Library for Support Vector
Machines,” Tech. Rep., 2013.

[24] C. Ciliberto, U. Pattacini, L. Natale, F. Nori, and G. Metta, “Reexamin-
ing Lucas-Kanade method for real-time independent motion detection:
Application to the iCub humanoid robot,” IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 4154–4160, Sep.
2011.

[25] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient Graph-Based Im-
age Segmentation,” International Journal of Computer Vision, vol. 59,
no. 2, pp. 167–181, Sep. 2004.

[26] T. Zhang and C. Suen, “A Fast Parallel Algorithm for Thinning Digital
Patterns,” Image Processing and Computer Vision, vol. 27, no. 3, pp.
236–239, 1984.

[27] D. Zhang and G. Lu, “A Comparative Study on Shape Retrieval
Using Fourier Descriptors with Different Shape Signatures,” Tech.
Rep., 2001.

[28] ——, “Review of shape representation and description techniques,”
Pattern Recognition, vol. 37, no. 1, pp. 1–19, Jan. 2004.

[29] R. Hess and A. Fern, “Discriminatively trained particle filters for
complex multi-object tracking,” in 2009 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition Workshops,
CVPR Workshops 2009, 2009, pp. 240–247.

[30] U. Pattacini, “Modular Cartesian Controllers for Humanoid Robots:
Design and Implementation on the iCub,” Ph.D. dissertation, 2011.

[31] U. Pattacini, F. Nori, L. Natale, G. Metta, and G. Sandini, “An
experimental evaluation of a novel minimum-jerk cartesian controller
for humanoid robots,” 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 1668–1674, Oct. 2010.

[32] D. L. Davies and D. W. Bouldin, “A Cluster Separation Measure,”
IEEE transactions on pattern analysis and machine intelligenceP,
vol. 1, no. 2, pp. 224–227, 1979.


	INTRODUCTION
	MATERIALS AND METHODS
	Experimental Setup
	Tool-pose based functional features
	Discovering and Learning Pull Affordances
	Affordance Prediction and Action Execution

	RESULTS
	Discovering Affordances
	Affordance Prediction and Generalization
	Affordance based action execution

	CONCLUSION
	References

