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Abstract—In this paper we present an efficient active learn-
ing strategy applied to the problem of tactile exploration of
an object’s surface. The method uses Gaussian process (GPs)
classification to efficiently sample the surface of the object in
order to reconstruct its shape. The proposed method itera-
tively samples the surface of the object, while, simultaneously
constructing a probabilistic model of the object’s surface. The
probabilities in the model are used to guide the exploration. At
each iteration, the estimate of the object’s shape is used to slice
the object in equally spaced intervals along the height of the
object. The sampled locations are then labelled according to the
interval in which their height falls. In its simple form, the data
are labelled as belonging to the object and not belonging to
the object: object and no-object, respectively. A GP classifier is
trained to learn the object/no-object decision boundary. The
next location to be sampled is selected at the classification
boundary, in this way, the exploration is biased towards more
informative areas. Complex features of the object’s surface is
captured by increasing the number of intervals as the number
of sampled locations is increased. We validated our approach
on six objects of different shapes using the iCub humanoid
robot. Our experiments show that the method outperforms
random selection and previous work based on GP regression by
sampling more points on and near-the-boundary of the object.

I. INTRODUCTION

Knowledge of an object’s shape and its surface properties
such as edges and surface curvature are important. This
information, for example, can be used to identify the object,
which in turn, can help in manipulating the object using
methods such as form and force-closure [1]. Object shape can
be reconstructed using depth cameras [2], [3]. Often sensing
modalities such as vision — due to occlusion, illumination,
background, and pose of the object relative to the camera—
are limited or unreliable, hence, direct contact information
is important to successfully inspect an object [4]. Sensing
object properties through contact is a time consuming task,
for example, constructing a point cloud of an object using
contact requires sampling multiple locations in order to cover
the surface of the object. Active perception can reduce the
number of contacts required to perceive an object.
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Fig. 1. The experimental setup: the iCub robot exploring an object using
its index finger. The fingertip is equipped with a tactile system which has 12
taxels. The figure also shows a mesh of the surface generated from locations
sampled by the robot in a grid of points with a 5mm x 5mm cell size.

In this paper, we propose a method based on active
perception that reduces the number of samples required to
construct a three-dimensional point cloud of an object to
capture its shape, i.e., its edges and surface curvature. In the
proposed method, the robot, iteratively, makes contact with
an object. At each iteration, the data collected hitherto is used
to construct a probabilistic model of the object’s surface.
We use the probabilities in the model to guide the surface
exploration. To this end, we use a Gaussian process (GP)
classifier. Any probabilistic classifier can be used, however,
an advantage of GPs is that they are non-parametric, that
is, instead of fitting parameters to a model, they infer how
the training data are correlated. Consequently, we are able
to build reliable models of the surface with a small number
of training data. The main contribution of the paper is the
exploration strategy, in which, we use active probabilistic
classification to determine where to sample the object such
that with a smaller number of contacts it is possible to
capture its shape.

The method works by labelling the sampled points as
belonging to the object, and not belonging to the object:
object and no-object, respectively. A simple heuristic based
on the height of the contact locations is used to label the
sampled points. A Gaussian process classifier is learned us-
ing the points sampled thus far. The next location to sample is
selected at the classification boundary. This ensures that the
areas that do not belong to the object are not unnecessarily
sampled. The same principle is applied to distinguish finer



features of the object by increasing the number of classes.
That is, classifying between points of different height on
the object. When the number of classes is increased, all of
the points already collected still contribute to the analysis,
thereby, reducing the number of locations required to sample
when the complexity of the model is increased. We applied
the approach to six objects and we show that the proposed
method performs better than random selection and previous
approaches based on GP regression [5].

II. BACKGROUND

The problem of object exploration using contact is chal-
lenging as it requires physical interaction with the object.
Literature on object exploration can be divided into two
categories: object property exploration and object shape
reconstruction. The former focuses on using contact, namely,
tactile sensors, to differentiate objects based on texture [6],
[71, [8], encode surface roughness [9] and surface curva-
ture [10]. The latter focuses on building a three-dimensional
model of the surface of the object. Object shape, among other
methods, can be discovered by contour following [11], [12],
and constructing a 3D point cloud [5].

An earlier work on using tactile driven object exploration
is presented by Natale and Torres-Jara [13]. The authors im-
plemented a control strategy that relies on tactile feedback to
grasp objects and demonstrate that the information originated
by the interaction carries implicit information about their
shape and can be useful for learning. Recently, Martinez-
Hernandez et al. [11] proposed an approach in which tactile
sensors are used to follow the edges of an object. They used
a tapping motion to sample the surface. At each iteration,
the tactile sensor data are processed to discriminate edges
and flat regions on the object. The relative angle between
the finger and the object’s edge is used to follow the edges
of the object.

The surface of an object can also be sampled by tracing
its surface. Liu et al. [12] propose a method to follow
the surface of the object based on a controller proposed
by Nguyen and Perdereau [14]. They use surface normal,
contact normal force and the local torque to guide the
fingertip over the surface from a starting location to a desired
location. Montana [15] derived a set of equations describing
the kinematics of contact between two rigid bodies. The
author used these equations to determine the curvature of
a surface at the point of contact, which was subsequently
used to trace the surface. Methods based on surface contour
following reduce the number of contacts required to explore
a surface, however, they can benefit from active exploration
strategies to quickly discover object properties of interest.

Active exploration strategies have been used to efficiently
classify objects. Fishel and Leob [6] propose an active
exploration strategy that they call Bayesian exploration. The
algorithm selects the optimal exploratory behaviour that dis-
tinguishes a texture from a set of plausible candidates. They
show that, by actively selecting an exploratory behaviour,
they can increase the accuracy of the classifier with a small
number of samples. Martins et al. [7] propose an active

exploration approach using Bayesian models. Their approach
consists of two Bayesian models running concurrently, one
determines, based on the object’s surface texture, the prob-
ability of the object in contact with the fingertip. The other
model determines the next location to be sampled with the
aim of following the boundary between two textures
Dragiev et al. [16] use Gaussian processes (GPs) to
fuse tactile and depth-camera data to model an implicit
representation of the surface of an object. In the model, a
point on the surface is represented by zero; a point inside
the object and a point outside the object are represented
by negative and positive numbers, respectively. The surface
representation is aimed at guiding a robotic manipulator
towards the object surface. It is not used to actively construct
an explicit representation of the surface of the object.
Bjorkman et al. [17] use GPs to construct the model
of an object using vision. The model is then refined by
making contact with object at the surface points where the
GP uncertainty is high. Recently, Yi et al. [5] applied GP
regression to the problem of object exploration. They model
the object surface by fitting a GP model to the acquired point
cloud. The uncertainty given by the GP is used to determine
the next location to explore. They show that this approach
reconstructs more accurately a 1-D surface with fewer points
than a random approach. They also applied the method to
reconstruct the surface of two everyday objects. This work is
closely related to the work presented in this paper. We use the
same problem formulation, however, we differ in the way we
apply the GP to guide the object exploration. In particular, we
develop an active strategy that uses GP classification to bias
the exploration towards the object. Similar to GP regression,
the parameters of a GP classifier are inferred from the data.

III. METHODOLOGY

We propose a method, based on GPs, to efficiently sample
the surface of an object such that with a smaller number of
contact locations we can reconstruct the shape of the object,
capturing its edges and surface curvature. In this section, we
start with formalizing the problem, which is followed by a
brief description of GPs and how we apply it to the problem
at hand. We end the section with a detailed description of
the proposed method.

A. Problem Formulation

Given a finite number of observed contact locations and
the associated object heights, the problem is divided in two
parts: 1) fit the best object shape to the observed data, and
2) identify the next contact location to explore that captures
more information about the object’s shape, edges and surface.

We define a contact location by the Cartesian x, y and
z coordinates of the robot’s fingertip, at the finger-object
interface, in the robot’s frame of reference. The object is
assumed to be positioned on a horizontal table, resting on a
stable face. We also assume that the position of the object is
fixed during the exploration. As illustrated in Fig. 2(a), the x
and the y coordinates of the object are parallel to the table
with the z coordinate pointing out of the table. The robot
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Fig. 2. An object (2(a)) and the corresponding point cloud (2(b)) collected
at various locations in the z-y plane. The object is sampled in a grid of
points with a 5 mm X 5mm cell size.

samples the x-y plane to discover the object’s surface. In
other words, the robot selects a location, (x,y), and samples
the z coordinate of the location, which corresponds to the
surface of the object. Figure 2(b) shows a point cloud of the
object’s surface generated by sampling the object in a gird
of points with 5mm x 5mm cell size.

We formulate the problem as a standard learning problem
where we learn the object shape, f(z,y) = z, which is used
to find the next sampling location, (2, y), such that the shape
estimation error decreases faster.

B. Gaussian Processes

Here we briefly review the main ideas related to Gaussian
processes (GPs). We refer the reader to [18] for a thorough
introduction. Gaussian processes are a supervised learning
approach whose goal is to learn a functional relation f :
X — Y between an input set X and an output set ),
given only a finite set of observations'. In this work we
consider X = R2, the first two components of the Cartesian
coordinates of a contact location. The output — as described
next — depends on whether we are using regression or
classification.

1) Regression: A GP models a set of, n, observa-
tions {z;,y;}", as a multivariate normal distribution
N (f(x),v(z)) in which the mean and variance of f(x) can
be computed in closed form as:

Ja) =Xk (K+ )"ty )
v(z) = k(z,z) — k] (K+ )" 'k, (2)

where k : X x X — R is a so-called “covariance” function
and k, € R" the vector with i‘" entry k(z, ;) and y € R"
the collection of training outputs y;. A wide range of possible
choices of covariance functions k have been proposed in the
literature (see [18] for a partial list). For the experimental
analysis we performed in this work, we chose the radial basis
function (RBF):

(z —a')?

k(z,2") = o?exp (— 52

> + Adaﬁ:x’ (3)

which allows modeling complex functions and is a well-
established covariance function for GPs. In Eq. (3), §;—u

Note, following the standard notation for machine learning, in this
section we identify input vector with = and output data with y. It is not to
be confused with = and y used earlier to denote the first two components
of the Cartesian coordinates of a contact location.

is the function constantly zero except when x and z’ are
identical.

Interestingly, by modeling the desired function as a Gaus-
sian process, we have access to both the mean value E(f(x))
and its variance Var(f(z)). The first term reports the value
minimizing the mean squared error E((y — f(z))?) and
therefore provides us with an estimate of the expected values
of f(z). The second term informs us about how “certain” our
model is about such prediction. Indeed, for small values of
v(z), the normal distribution N'(f(z),v(x)) will be strongly
concentrated around the expected value f(z), while for
large values the prediction f(x) will be much less reliable.
This observation suggests a possible direction for active
learning, where the learning system requires novel points
to be sampled from regions where v(z) is larger in order to
reduce the uncertainties in those regions at the next learning
step. In the method proposed in this paper, the output ) is a
real number corresponding to the height of the object at the
sampled location.

2) Classification: In classification settings the output set
Y is a collection of two or more labels (e.g. Y = {1,...,C}
C € N) and the goal is to assign the correct label to every
example x € X. Several modeling approaches have been
proposed for classification with GPs [18]. Here we consider
the simple strategy where each class ¢ = 1,...,C is mapped
to vector v. € RY with all entries equal to —1 but the
cth entry, which is set equal to 1. The learning problem is
then cast as a multi-variate regression problem, namely the
goal is to learn a function f : X — R® from observations
{(zi,ve;) 171 as in (1). Then, given a new point z, its class
is chosen as

é(z) = argmax f(z).. )
c=1,...,C
Indeed it can be proved that under suitable assumptions [19],
f(z). converges to the probability p(y = c|z) as the number
of training samples tends to infinity n — +oc0. Therefore the
classification rule at (4) converges to the ideal Bayes’ rule
c*(z) = argmax p(y = c|z).

3) Model Selection: The parameters o,l and A in (3)
are typically chosen by model selection [18]. For the ex-
perimental analysis in this work we adopted an hold out
cross-validation strategy by separating the training set in two
subsets, respectively used for training and validation. The
parameters leading to the best validation error on average
across multiple trials were then selected and a final model
was trained on the joint train-validation dataset. This proce-
dure was automatically performed by the GURLS machine
learning library [20] in MATLAB.

C. Next Action Selection

We will use a simple two-dimensional example to illustrate
how the algorithm selects the next location to be sampled.
Let’s imagine we have a square shaped object on a table.
As illustrated in Fig. 3, the solid blue line represents the
object. Initially the robot samples two random locations.
These points are used as the input of a GP classifier to form
the initial hypothesis. The dashed green line represents the
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Fig. 3. This figures illustrates the proposed strategy using a simple example.
The solid blue line represents the object, the dashed green line represents the
hypothesis of the classifier. The right vertical axis plots the probability of the
hypothesis, where the red dashed line is the probability of a point belonging
to the object and the cyan line for no-object. The points sampled thus far
are marked by red circles, the black cross represents the next location to be
sampled: a) two randomly selected points to help form the initial hypothesis,
the black cross shows the next point the algorithm wants to sample to
improve the hypothesis; b) shows the improved hypothesis after the new
location is sampled; c) shows the hypothesis after fourteen samples. We
notice most of the sampling points are near or on the object.

hypothesis of the classifier. The points sampled thus far are
marked by red circles, the black cross shows the next point
the robot wants to sample to improve its hypothesis.

At each iteration the algorithm updates its hypothesis
on the object-table boundary by sampling a point near the
boundary. Figure 3(a) shows the initial hypothesis formed
using the two randomly selected locations. The black cross
marks the next point the robot wants to sample. Figure 3(b)
shows the improved hypothesis after the new location is
sampled. By sampling locations near the hypothesis bound-
ary, the robot quickly converges its hypothesis to the ground
truth. Figure 3(c) shows the hypothesis after fourteen loca-
tions are sampled.

In this manner the robot is biased towards sampling points
on or near the object boundary, reducing the number points
needed to uncover the shape of the object. Once the object-
table boundary is defined, the same principle is applied to
distinguish finer features of the object by increasing the
number of classes. That is, classifying between points of
different height on the object. When the number of classes is
increased, all of the points already collected still contribute to
the analysis, thereby, reducing the number of points required
to sample as the complexity of the model is increased.

Algorithm 1 summarises the proposed algorithm. Given
the workspace, W, a set, S, of locations already sampled,
it computes the next location, (441, %:+1), to sample. As
shown in line 5, the algorithm can be divided into two
main parts: exploitation — the Gaussian process classification,
and exploration — the Gaussian process regression. The
exploitation component, which is the main contribution of

Algorithm 1: Next Action Selection

0 S ={(z1,y1, 21) (20, Yt 20) }
W(xmina Tmax, Ymin, ymam)
output: (T¢11,Yr+1)

0 a<+ 0.3

1 n < number of classes (Section III-C.1)

2 L < class labels (Section III-C.2)

3 PPV < GPuassification (Section III-C.3)

4 P?Y < GPegression (Section III-C.4)

5 (Tt41, Y1) < argmin ((1 —a) X PPV 4+ ax Pf’y)

input

this paper, encourages the robot to sample the object. The
exploration component ensures that the robot is not trapped
in local minima. The exploitation versus exploration can be
controlled by adjusting the parameter «.. At each time step,
t, we perform the following steps (which correspond to the
line numbers in Algorithm 1):

1) Class Band: The first step in the algorithm is to deter-
mine the number of class bands. We use a simple strategy
to increase the number of classes during classification. For
the first twenty samples the number of classes is restricted to
two. After which, it is increased by two every ten samples.

2) Labelling: Learning a GP classifier requires labelled
data. We use a heuristic based on the value of the z-
coordinate of the locations already sampled. The heuristic
divides the interval between the maximum and the minimum
z values into n equally spaced intervals. The number of in-
tervals or class-bands is determined by the method described
earlier. The label of a contact location is determined by the
band in which the value of its z coordinate falls.

3) Exploitation: Once the data are labelled we learn
a model of the surface using the GP classifier described
in section III-B.2. Then, we query the learned classifier.
The query set is comprised of m locations, (z,y), evenly
distributed in the workspace. This produces a probability
distribution for each class over the entire workspace. At each
location, we sum the probability of all classes. This gives a
single probability distribution for the workspace.

4) Exploration: We also learn a model of the surface
of the object using GP regression. The uncertainty in the
GP regression indicates areas in the surface model that are
unexplored or that are affected by larger noise. This term
is used to add an exploration component to avoid the robot
from being trapped in local minima. After learning the GP
regression model, we use the same query vector from the
GP classification to evaluate a probability distribution for
the workspace.

5) Next Location: A unique value of the probability
distribution P(z,y) over the workspace is computed as the
weighted sum of the individual probability values from the
two GP models. The next sampling location (z;+1,y;+1) is
then computed as the value of (x,y) that minimizes P(z,y).
In other words, we select a location where the model has
the lowest confidence in its prediction. The minimization
is performed numerically by sampling the workspace in a
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Fig. 4. Objects used for object-surface exploration and reconstruction.
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uniform grid of 80 x 80 points.

IV. EXPERIMENTAL SETUP

The setup to test the proposed method consists of the iCub
robot [21] and six objects (Fig. 1). An object is placed on a
table in the robot’s workspace. The robot explores the object
using its index finger by making a contact with the object.
A contact event is detected by the tactile sensors in the
robot’s finger. In this section we will describe the objects
and describe how the robot samples the surface of an object.

A. The Objects

The objects, as shown in Fig. 4, are wooden geometric
shapes. The objects are deliberately selected to have similar
shapes, this helps in better evaluating different exploration
strategies. For example, the difference between the object in
Fig. 4(a) and the object in Fig. 4(b) is that one has a smooth
arched surface and the other has a saw-tooth shaped surface,
respectively. Similarly, objects in Fig. 4(c) and Fig. 4(d)
present more complex surfaces one with a smooth peak and
trough and the other having a similar general shape but
defined by a sharp peak and a ridge. Objects in Fig. 4(e)
and Fig. 4(f) have same shape except for the bottom edges:
one has a straight edge while the other has a curved one.
Moreover, these two objects have large flat surfaces. This
selection allows us to test the exploration strategy developed
for capturing the general shape as well as detailed features
of the object being explored.

B. Workspace Exploration

In order to explore the surface of an object without a priori
information the robot needs to make contact with the object
surface at arbitrary locations. To make the problem tractable,
we define a volume of space that the robot will search for the
object, which we will refer to as the workspace henceforth. In
our experiments we used a 13 cmx10cmx6cm workspace.
The volume of the workspace is arbitrary as long as it is
larger than the volume of the object. We make the assumption
that the object does not move during the exploration.

The robot uses a tapping strategy to detect a contact event.
The tapping strategy ensures that the robot finger is not
damaged during exploration. In this section we give the

(a) Finger (b) Taxel map

Fig. 5. The iCub fingertip is equipped with a tactile system made of
12 sensing units. The schematic representation on the right shows the
approximate distribution of the taxels.
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Fig. 6. A flow chart showing the object-surface sampling strategy.

details of how we detect a contact event, which is followed
by a description of the tapping strategy.

1) Contact Event Detection: We use the index finger of
the robot to make contact with the object. As shown in
Fig. 5(a), the finger is 14.5 mm long, and 13 mm wide. Each
finger is equipped with 12 taxel tactile sensors. The tactile
sensors use the capacitive principle of transduction [22]. An
applied force changes the capacitance of the taxel which is
used as a proxy for the applied force. Each taxel outputs
a value between 0 and 250, with zero corresponding to
no contact. To detect a contact we learned a correlation
between the 12 tactile sensor outputs and an applied force.
A contact is defined when the force value exceeds a given
threshold.

2) Surface Location Detection: At the start of the explo-
ration an object is placed in the workspace defined earlier.
Then the robot is commanded to sample a location of interest
in the z-y plane. We will refer to the location of interest as
a waypoint. Since we do not have apriori knowledge of the
height of the object, the height of the waypoint is set to
the maximum height of the workspace volume. As shown
in Fig. 6, the robot moves the finger to the waypoint. Then
the robot extends its finger downward to detect a contact.
If no contact is detected when the finger is fully extended,
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Fig. 7. Average performance of different sampling policies. The horizontal
axis is the number of locations sampled. The vertical axis plots the root mean
squared error between the benchmark mesh and the mesh generated as new
contact locations are sampled. The shaded area is the standard deviation. It
shows that the proposed method based on GP classification performs better.

the robot sets the waypoint to the current location of the
finger and retracts its finger. This process is repeated until
the finger makes a contact with a surface — either the object
or the table. When a contact is detected, the location of
the contact is registered. At this point the robot updates
the surface model and queries it for the next location to be
sampled. This processes is repeated until a target criterion is
reached. The accompanying video shows the robot sampling
a surface using this strategy. We compare three surface
sampling policies: 1) random selection, 2) uncertainty in the
object model constructed using GP regression, and 3) the GP
classification approach proposed in this paper.

V. RESULTS
A. Average Performance

We sampled the surface of each object in a grid of points
with a 2.5mm x 2.5 mm cell size. This data serves as the
benchmark for evaluating our algorithms. In order to be able
to evaluate the results across different exploration strategies,
we used the dataset to reconstruct the surface of the objects.
We reconstruct the surface by fitting a mesh to the data
using the MATLAB implementation of the natural neighbor
algorithm?. Since the surface generated using the benchmark
data is the best the robot can do, we use it as the ground truth.

2The natural neighbor algorithm[23] is based on Voronoi tessellation of
a discrete set of points. The value of the function is computed by adding a
new Voronoi cell in the query point. The value of the function in the query
point is computed by assigning weights to the neighbor points proportional
to the area that is taken by the new cell.

Figure 2 shows an object and its corresponding surface mesh.
Note that we use the natural neighbor algorithm instead of
Gaussian regression to produce the surface mesh because it
is deterministic.

When the robot samples a new location in the workspace,
it constructs a mesh of the surface using the contact points
sampled thus far. The surface mesh is compared with the
surface mesh generated with the benchmark data. For each
object, we sampled the object surface using three strategies,
namely, GP classification, GP regression, and random selec-
tion of points. Each strategy was run ten times. Figure 7
shows the root mean squared error (RMSE) between the
mesh generated from the benchmark data and the mesh
generated from the points collected at each iteration. The
RMSE is plotted on the vertical axis, which is averaged over
the ten runs. On the horizontal axis we plot the number of
locations sampled. The plots show that the GP classification
method outperforms both the GP regression and the random
selection methods.

B. Contact Location Distribution

The RMSE gives a numerical evaluation of the perfor-
mance of the proposed method. It is also possible to evaluate
our method by inspecting the distribution of the contact
locations sampled with the different techniques. Figure 8
shows the distribution of 150 locations sampled on each
object. We can see that the algorithm proposed in this paper
produces points that are more densely concentrated on and
around the object. Notice that, in contrast, the strategy based
on GP regression gives equal importance to all points thus
converging to a uniform sampling of the workspace. Since
sampling a location on the surface of an object is time
consuming, by focussing on the object, the proposed method
will take less time to capture the shape of the object. The
attached video visualizes the surface reconstruction as the
robot samples an object.

VI. CONCLUSIONS AND FUTURE WORK

We presented an active exploration strategy to reconstruct
the shape of an object using tactile feedback. The tactile
sensors are used to detect contact with the object, thereby,
generating a point cloud of contact locations, which is used
to construct the shape of the object. The main contribution of
the paper is the way we use a probabilistic classification — GP
classification — to guide the exploration so that more points
are sampled on the object and around its perimeter. In the
proposed method, the robot, iteratively, makes contact with
an object. At each iteration the data collected is used to con-
struct a probabilistic model of the object’s surface. The robot
uses these probabilities to guide the surface exploration. We
demonstrated with experiments conducted on a real robot
equipped with tactile sensors that our approach performs
better than random selection and previous work based on
GP regression. We demonstrated that with our approach the
sampled locations are densely concentrated on and around
the object, while in the GP regression approach it performs
a uniform sampling of the workspace.



In this work the tactile sensors on the robot have only been
used to detect contact. However, the tactile data can provide
useful information on object features such as edges and local
surface curvature that could be used to guide the exploration.
In this work, we deliberately avoided vision. However, the
stereo system on the robot can provide cues on the object
location that can be used to bias the exploration and further
reduce the time required to localize and sample the object.
In the future we will also relax the object immobilization
assumption.
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Fig. 8. Distribution of the sampled points. The left column shows the
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