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Abstract— This paper addresses tactile object recognition, i.e.
the identification of an object among a set of known objects,
given tactile measurements. The solution of this problem can
improve perception capabilities of autonomous robots and
complement vision. Such a system is fundamental for the
operation of autonomous robots that are often required to
recognize objects while interacting with the environment.

The proposed approach is innovative for three reasons. First,
tactile recognition is cast into a tactile localization problem
wherein multiple models are fit to the available measure-
ments and objects are recognized by selecting the model that
minimizes the localization error. Second, the measurements
consist only of 3D contact point coordinates, which provide
poor information for the recognition task. Lastly, we make use
of a novel and effective filtering algorithm, named Memory
Unscented Particle Filter (MUPF), which solves the 6 degree-
of-freedom localization (and recognition) problem recursively
by using only contact point measurements. The performance
of the proposed approach has been assessed both in simulation
and on a real robotic system equipped with tactile sensors (i.e.,
the iCub humanoid robot). The experiments show that our
approach provides good recognition performance and is able
to discriminate objects that are similar even in presence of noisy
measurements.

I. INTRODUCTION

Findings in human physiology testify to how the sense
of touch is irreplaceable for human beings [1], [2], espe-
cially during exploration in the dark or in the presence of
visual occlusions. Like humans, autonomous robots can take
advantage of haptic perception to make manipulation and
recognition tasks more efficient, complementing vision –
when unavailable or imprecise.

In the last few decades, rapid advances in tactile technol-
ogy have made it possible to build tactile systems that are
reliable enough to be deployed on real robots at a reasonable
cost [3]–[5]. Among possible applications, researchers have
investigated the problem of object recognition using tactile
feedback. Various tactile features have been proposed to per-
form material [6]–[8] and local curvature classification [9].
The problem of object recognition, however, requires that
features from various contact locations are integrated in
a coherent representation. Object recognition using tactile
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feedback is, therefore, a challenging problem that requires
filtering techniques for fusing noisy measurements.

Different methods have been proposed in the literature
in order to solve tactile object recognition. They can be
classified depending on the type of information they use and
the object features they recover, namely, material and shape
properties. Some researchers have focused on identifying
material properties [6]–[8]. Decherchi et al. use multiple
techniques to classify object materials with tactile data [7].
Liu et al. [8] apply a dynamic friction model to determine
physical properties of surfaces while a robotic finger slides
along the object with different speeds.

To recognize object shapes, a viable approach is to
recover local geometry from each contact point, i.e., surface
normal and curvature. By using a cylindrical tactile sensor,
Fearing et al. propose a nonlinear, model-based inversion
to recover contact surface curvatures [9]. Contact location
point-clouds have also been used to reconstruct object
shapes with computer graphic techniques [10]–[13]. Allen
et al. fit points from tactile sensors readings to super-quadric
surfaces to reconstruct unknown shapes [12]. A similar
approach, proposed by Charlebois [14], uses tensor B-spline
surfaces instead of super-quadratic surfaces. Through these
methods, arbitrary object shapes can be identified by
estimating surface curvatures.

Another solution to recognizing object shapes is to use
machine learning techniques on the output of tactile sensor
arrays. In this case, object features are extracted from the
tactile data. A classifier is then trained to predict the shapes
of novel objects [15], [16].

This paper proposes a different approach to the problem
of tactile object recognition. Under the assumption that
object models are known, the tactile recognition task is
solved using a nonlinear multimodal filtering approach
and is framed as a tactile localization problem. The robot
explores an object using its tactile sensors, registering the
3D coordinates of the finger-object contact locations. The
contact locations collected during the exploration are, then,
compared with the object models. The object is recognized
as the object whose model better fits the measurements, i.e.,
the object model with the lowest localization error.

This technique works with measurements consisting only
of a set of 3D contact point coordinates, which can be
collected by the robot using tactile feedback. Such data
provide very basic, and noisy information, making the
tactile recognition task more challenging.

The adopted algorithm, named Memory Unscented
Particle Filter (MUPF) [17], is designed to efficiently solve



the global 6 degree-of-freedom localization problem. The
MUPF relies on the Unscented Particle Filter (UPF) [18].
We demonstrate that our approach is effective in solving the
tactile recognition tasks in simulation as well as in a real
experiment using the iCub humanoid robot and its tactile
system [3].

The paper is organized as follows. Section II provides
a brief introduction to nonlinear filtering techniques,
followed by a mathematical (Bayesian) formulation of the
tactile localization problem and the MUPF description.
Section III presents the exploration strategy for acquiring
measurements. Section IV demonstrates the effectiveness
of the proposed solution by means of simulation and
experimental tests on the iCub humanoid robot. In Section
V we give our concluding remarks and future directions.

II. METHODOLOGY

We introduce hereinafter the problem of tactile object
recognition. Let k denote the number of objects of interest,
each object being represented by a mesh model consisting
of triangular faces {fi}. A set of measurements {yt}Lt=1 is
collected using the tactile sensors by detecting contacts on
the surface of object k∗ (one of the k objects). It is assumed
that object is attached to a surface and, thus, does not move
during the exploration. Each measurement provides the 3D
coordinates of the contact point, i.e. {yt = (xt, yt, zt)}Lt=1.
The goal is to infer on which object the measurements
have been collected. In the described scenario, the solution
is given by the object model that best fits the available
measurements.

A. Recognition as Multi-object Localization

We address the tactile object recognition problem as a
localization problem applied to multiple objects, where the
solution is provided by the object whose localization error
is the lowest among all the considered objects.

Then, once a localization algorithm is provided, object
recognition is achieved by simply running such an algorithm
for each of the given object models. For each possible object
l ∈ {1, . . . , k}, the algorithm finds the pose x̂l that makes
the object model representing the lth object best fit the set
of measurements. Once the pose x̂l is calculated for each
object models l ∈ {1, . . . , k}, a suitable performance index,
Il, is used in order to measure the fitness of each object
model in the estimated pose l. To this end, the following
performance index is introduced:

Il =
1

L

L∑
i

di,l, (1)

where L is the number of measurements and di,l is the
distance between the ith measurement and the object l in
the estimated pose x̂l. In other words, given the set of
measurements and the estimated pose, the proposed perfor-
mance index is the average of the distances between each
measurement and the object model in the estimated pose.

TABLE I
TACTILE RECOGNITION ALGORITHM

1: Data: k object models, a set of tactile measurements {yt}Lt=1 on object
k∗

2: for l = 1, . . . , k do
3: Localization algorithm:

data: object model l, set of measurements on object k∗
output: x̂l

4: end for
5: Choose k̂ as:

k̂ = argmin
l

Il.

where Il = 1
L

∑L
i di,l and di,l is the distance between the ith

measurement and the object l in the estimated pose x̂l

6: Recognition is successful if k̂ = k∗

Finally, after the k executions of the localization algorithm,
the quantities Il, for l = 1, . . . , k, are available and the
solution k̂ for the tactile recognition problem is given by:

k̂ = arg min
l
Il. (2)

Clearly, the recognition is successful when k̂ = k∗. The
steps of our algorithm for the tactile recognition stated as a
localization problem are outlined in Table I.

B. The Filtering Approach

In the present work, tactile localization is cast into the
Bayesian framework and addressed as a nonlinear multi-
modal filtering problem. In Bayesian filtering we seek to
estimate the system state xt ∈ Rn at time t, assuming that
its time evolution can be described by a Markov transition
density ϕt+1|t(xt+1|xt). Suppose also that the measurements
{yt}Lt=1 ∈ Rp depend on the state xt through a measurement
likelihood function `(yt|xt), which denotes the probability
that the measurement will take value yt given the state
xt. From a Bayesian viewpoint, the goal of the filtering
problem is to recursively compute the conditional PDFs
pt|t(x) = p(xt = x|yt) and pt+1|t(x) = p(xt+1 = x|yt),
by taking advantage of the observations {yt}Lt=1.

The solution of the filtering problem is given by the
Bayesian recursion and consists of the following Bayes and
Chapman-Kolmogorov equations, respectively:

pt|t(x) =
`t(yt|x)pt|t−1(x)∫
`t(yt|ξ)pt|t−1(ξ)dξ

(3)

pt+1|t(x) =

∫
ϕt+1|t(x|ξ)pt|t(ξ)dξ . (4)

An analytical solution to (3) and (4) is available only in
a few cases, among which the linear-Gaussian is the most
notable, leading to the well-known Kalman filter recursion.
In many practical applications such as our problem, the
transition and likelihood models are usually affected by
nonlinearities and/or non-Gaussian noise distributions, thus
precluding analytical solutions and making approximation
techniques the only viable approach.

Most of the existing approximation techniques can be
divided in two families: Kalman-filtering-like approaches,



and sequential Monte Carlo methods. The algorithms be-
longing to the former family are characterized by a lower
computational cost, but are not appropriate for multimodal
distributions like the one arising in the tactile localization. On
the other hand, sequential Monte Carlo methods, also known
as particle filters [19], can deal with arbitrary nonlinearities
and distributions and supply a complete representation of
the posterior state distributions. The main drawback of the
latter techniques is that, in order to make the approximation
sufficiently accurate, the number N of particles must increase
exponentially with the dimension n of the vector to be
estimated (since it is required to sample in a subset of Rn).
Many variants of particle filtering have been proposed in
order to mitigate such a downside and approximate the pos-
terior reasonably well with a moderate number of particles.
Among the most effective variants, there is the Unscented
Particle Filter (UPF) that exploits the Unscented Kalman
Filter (UKF) to improve performance [18].

Given the dimensionality of the problem (Section II-C
shows that the quantity to be estimated belongs to R6),
the strong nonlinearity and the non-Gaussian nature of the
distributions, the UPF is the most suitable candidate for the
solution of the tactile localization. In short, the UPF is a
variant of the particle filter, which exploits a UKF for each
particle. The UPF propagates a set of extended particles,
with the ith particle comprising a weight wi

t, a mean x̄i
t and

a covariance P i
t|t. Then, the UKF is applied to each particle

mean and covariance so as to move the particle towards the
measurements, thus achieving a more dense sampling in the
most relevant areas of the search space. After this step, the
current observation is used in weight computation and the
algorithm proceeds like a standard particle filter.

C. Localization Problem Formulation

Hereafter, we adapt the filtering notation provided in
the previous section to our case study. Our goal can be
formulated as a peculiar filtering problem. The object k∗ to
be localized and, then, recognized among the other objects,
is rigidly attached to a surface, hence it does not undergo
any movement during the exploration. Thus, the entity to be
estimated consists of the object pose, which does not depend
on time. For this reason, in our problem, the system state x
is in R6 (i.e. n = 6) and is defined by:

x =
[
x, y, z, φ, θ, ψ

]T
, (5)

where x, y, z are the coordinates of the center of the reference
system attached to the object model and φ, θ, ψ are the three
Euler angles representing orientation.

The observations {yt}Lt=1 exploited to localize the object
consist of the tactile measurements

{yt = (xt, yt, zt)}Lt=1, (6)

which represent the Cartesian positions of the contact points
in R3 (i.e. p = 3).

In order to correctly formulate the tactile localization
problem in the filtering framework, we need to define other
mathematical quantities, as follows:

• In cases the state to be estimated is stationary, as in our
problem, the state transition equation can by expressed
as:

xt+1 = xt + ωt, (7)

where ωt is a small artificial noise [20]. This term is
introduced in order to allow the filtering technique to
change the estimate of x and then converge to the final
solution. We model ωt as a Gaussian noise with zero
mean and covariance Q.

• The likelihood function `t(yt|xt) is based on the so-
called proximity model [21], in which the measurements
are considered independent of each other and corrupted
by Gaussian noise. For each observation, the likelihood
function depends on the distance between the measure-
ment and the object model, hence the name “proximity”.
The likelihood is defined as:

`t(yt|x) ∝ max
i
`t,i(yt|x), (8)

where `t,i(yt|x) is the likelihood of the measurement
yt produced by the ith face of the object model, when
the object is in the pose x. The quantity `t,i(yt|x)
is assumed to be Gaussian, with variance σ2

p and is
described by:

`t,i(yt|x) =
1√

2πσp
exp

(
−1

2

di(yt,x)2

σ2
p

)
, (9)

where di(yt,x) is the shortest Euclidean distance of
yt from the face fi when the object is in the pose x.
For instance, supposing that fi is the representation of
the ith face in the object reference system, the distance
di(yt,x) is given by:

di(yt,x) = min
p∈fi
‖yx

t − p‖,

where ‖ · ‖ is the Euclidean norm and yx
t denotes the

transformation of the measurement yt using the roto-
translation matrix corresponding to the state x.

• Further, in order to exploit UPF algorithm, we need
to define a measurement function, namely, a mapping
expressing the observation yt as a function of the state
x and a measurement noise νt:

yt = ht(x) + νt . (10)

The tactile sensors provide the 3D position of a point
on the object surface which is touched during the
exploration and, consequently, is the nearest to the
sensors itself. For this reason, the measurement equation
we propose for tactile sensors is:

ht(x) = arg min
p∈∂O

‖pxt − p‖, (11)

where ∂O =
⋃

i fi and pxt is the position of the tactile
sensor.

The Bayesian framework provides a recursive method for
solving the tactile localization problem. In fact, the mea-
surements are recursively used and, at each time step, the
pose x of the stationary object is refined, converging to the
final estimate by incorporating more recent measurements.



D. The Memory Unscented Particle Filter

The employed algorithm for solving the tactile localization
problem is a modification of the standard Unscented Particle
Filter. The tactile measurements are relatively uninformative
if used individually, since they are three-dimensional vectors
in a 6D space. This fact implies that the standard UPF
algorithm is not well suited to this problem, since it exploits
only the current measurement yt at each time step. Such a
behavior is somewhat critical, because the algorithm might
end up limiting the search within wrong sub-regions, thus
ruling out potential representative solutions.

In order to overcome this drawback, we make use of a
variant of the UPF, referred to as Memory UPF (MUPF)
[17]. In the MUPF algorithm, a limited number of past
measurements are used during each iteration. The main two
changes applied to the standard UPF can be summarized as
follows.

First, the importance weights {wi
t}Ni=1 are updated by

resorting also to past observations. In case the number
of tactile acquisitions remains limited (as often occurs in
practice), a growing memory strategy can be adopted by
computing the importance weights with all the measurements
collected up to time t. On the other hand, in case a larger
number of measurements is required, for example, due to the
complexity of the object model, the computational burden
can be reduced by following a moving window strategy,
where only a given number m of the most recent acquisitions
are used at each time instant.

Second, since in the first iterations only a few
measurements are available, that is, we do not have
sufficient information yet, all particles are retained so as
to account for likely solutions, in accordance with the
multimodal nature of the problem. This amounts to skipping
the standard resampling step for a certain number of initial
time instants (in the experimental results reported in the
following sections, for the first two time instants). The
degeneration of the weights in the first iterations is avoided
by setting the weights of all particles equal to 1/N , N
being the number of particles.

After all the L measurements have been processed, i.e.
when t = L, the algorithm outputs, as final estimate of the
object configuration, the corrected particle x̄i

L corresponding
to the highest value of the estimated posterior distribution
p̂L|L(· ). The adoption of a maximum a posteriori probability
(MAP) criterion is motivated by the strongly multimodal
nature of the density, due to the fact that, in the presence
of symmetries in the object, there might exist multiple
values of x compatible with the measurements. In fact, in
a multimodal case, taking the expected value as estimate is
not meaningful. Recalling that each corrected particle can
be considered corresponding to a Gaussian distribution with
mean x̄i

t and covariance P i
t|t, the estimated posterior p̂L|L(· )

can be obtained as:

p̂L|L(x) =

N∑
i=1

wi
LN (x; x̄i

L, P
i
L|L). (12)

Fig. 1. Experimental setup for data collection: the iCub robot is touching
the object with its index fingertip.

Hence, the particle with the MAP probability [22] can be
readily obtained as:

x̂ = arg max
j∈{1,...,k}

p̂L|L(x̄j
L). (13)

III. DATA ACQUISITION

As shown in Fig. 1, the experimental setup consists of
the iCub robot [23] and six objects of interest (i.e. k = 6)
for acquiring tactile data in our experiments. The objects, as
shown in Fig. 2, are made of wooden geometric shapes. The
objects are deliberately selected to have overlapping shapes
with strong similarities in order to test our method in a
challenging setting. For example, objects (a) and (b) have
similar geometric configurations: one has a smooth arched
surface and the other a saw-tooth surface, respectively. With
the same principle we also selected objects (c) and (d), that
have same general shape, the only difference being in the
smoothness of the surfaces. Objects (e) and (f) can only be
discriminated by the bottom edge: one has a straight edge,
while the other has a curved edge.

The robot touches the object at various locations with the
tip of its index finger. The fingertip is 14.5 [mm] long, 13
[mm] wide. Each finger is equipped with tactile sensors [4].
A contact location is registered when the tactile sensors are
activated. In our experiments the object is anchored to the
surface of a table in front of the robot, hence, it does not
move during the exploration. The choice of the exploratory
area depends on the the size of the object. We sample an
area of 40 × 50 [mm2] (Fig. 3), using a grid search with a
cell size of 2.5× 2.5 [mm2].

At the beginning of the exploration, the robot’s index fin-
ger is placed at an arbitrary position close to the object. Then,
the robot is commanded to sample a location of interest. We
will refer to the location of interest as a waypoint. Since we
do not have a priori knowledge of the shape of the object,
the height of the waypoint is set to an arbitrary value larger
than the height of the object. As reported in the flow chart



(a) (b)

(c) (d)

(e) (f)

Fig. 2. Objects used for experimental evaluation of the method.

of Fig. 4, the robot moves the finger toward the waypoint.
After that, the robot extends its finger downward to detect
a contact. If no contact is detected when the finger is fully
extended, the robot sets the waypoint to the current location
of the finger and retracts it. This process is repeated until
the finger makes a contact with a surface – either the object
or the table. When a contact is detected, the location of the
contact is registered and the next waypoint is set to the next
point in the grid. This process is repeated until the area is
entirely covered. The tactile data collected for each object
with this exploration strategy are shown in Fig. 3.

IV. RESULTS

The algorithm evaluation is performed first with synthetic
measurements (Section IV-A) and then with real measure-
ments (Section IV-B), collected through the exploration
strategy described in Section III. In both scenarios, the aim
is to recognize the true object labeled as k∗, among the set
of six objects shown in Fig. 2.

The C++ implementation of the MUPF algorithm used to
carry out our experiments is publicly available on GitHub1.

A. Simulation Results

The synthetic measurements consist of six sets of 3D
points (around 170 triplets for each set), each sampled on
the surface of one specific model. We refer to the 3D points
sampled on object (a) as set of measurements (a). The same
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Fig. 3. For each object, the tactile data collected by using the exploration
strategy of Section III are shown. The letters identifying the different plots
((a) - (f)) correspond to the objects according to the notation of Fig. 2.

notation is used for the other objects. The synthetically-
generated data are noiseless.

In Table II, the MUPF parameter set used for running the
simulated tests is shown. Matrix Q and σp are respectively
the covariances of the process noise ωt and measurement
noise νt; P0 is the covariance matrix representing the initial
uncertainty and N is the number of particles. The covariance
Q is chosen such that it takes into account the stationarity of
the object, similarly, the value of the covariance σp models
the measurement noise. An arbitrarily large value is instead
chosen for P0 matrix. The selected number of particles N is
a trade-off between algorithm execution time and reliability.
In order to determine a good value for m, which is the
number of most recent measurements used at each time
instant, we run the MUPF algorithm for each object. Fig.
5 displays how the localization errors vary with different
values of m in the range from 1 to L. The figure is for
the data collected in the real experiments. The results of
the simulated data, which were similar, have been omitted
for clarity. Since the localization errors do not decrease
significantly for m > L/2, m = L/2 has been chosen.

Fig. 6 shows the performance achieved with the simulated
measurements. The results are grouped in 6 experiments,
according to the exploited set of measurements, from (a)
to (f) (see x axis of the plot). For each experiment, we show
the average localization errors on 10 trials for all 6 object



Fig. 4. A flow chart showing the object-surface sampling.

Fig. 5. The localization errors obtained with real measurements with
different values of m, from 1 to L. For the sake of clarity, the results
from the simulated data have not been plotted as it exhibits a similar trend.

TABLE II
PARAMETERS SET FOR THE MUPF IN SIMULATION

Q diag([10−4, 10−4, 10−4, 10−2 10−2, 10−2]) [m], [rad]
σp 10−4 [m]
P0 diag([0.04, 0.04, 0.04, π2, (π/2)2, π2]) [m], [rad]
N 700
m L/2

models. If we consider the first experiment on the left, where
the set of measurements (a) is used, the object k̂ selected as
solution by virtue of (2) is the one featured by the lowest
localization error. Fig. 6 shows how the object is correctly
recognized (i.e. k̂ = k∗), since the bar corresponding to
object (a) (dark blue) provides the smallest localization error
for that experiment. With the same procedure, we can infer
that all objects are successfully recognized.

Fig. 6. MUPF performance with simulated measurements. The results are
grouped according to the exploited set of measurements: from the left to
the right, the results obtained for the measurements sampled on object (a)
to object (f) are shown. For each experiment, the average localization errors
on 10 trials obtained for all the object models are shown.

B. Experimental Results

Before showing the performance achieved using the real
measurements, we provide a synthetic experiment to point
out, from a quantitative viewpoint, that the task at hand is
indeed challenging. The results of the experiment are shown
in Fig. 7. The test consists of calculating the localization
error of three different object models: (a), (b) and (c), using
the set of real measurements (b). More precisely, the three
profiles depicted in Fig. 7 represent how the localization
error varies as the object models slide along the y axis of
the frame attached to the object basis. Therefore, Fig. 7
reports the localization error versus the y displacement: a
displacement equal to 0 represents the correct pose for the
object (b), with respect to the set of measurements (b).
By observing the trend of the localization errors, we can
see how the localization error for object (b) is minimum
for a displacement equal to 0, that is in fact the correct
pose. However, object (a) and (c) provide an even lower
localization error in correspondence of small displacements
along y. This fact highlights how the similarity of objects and
the noisy nature of the measurements could lead to wrong
recognitions.

We discuss hereinafter the performance achieved with
real data. The MUPF parameters used for the experimental
tests are provided in Table III. The parameters have been
chosen by taking into account considerations similar to those
explained in Section IV-A. In particular, covariances Q and
σp are tuned differently in order to take into account the
measurement noise of the real data. The value of m is
determined as described in the previous section, see Fig. 5.

Fig. 8 shows the results of the real experiments, which
can be interpreted similarly to the data of Fig. 6. Two
main differences can be noticed by comparing Fig. 6 and
Fig. 8. First, the measurement noise causes higher aver-
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Fig. 7. Synthetic test showing the challenging nature of tactile recognition
problem. We compute the localization errors with respect to the set of real
measurements (b) and three object models: (a), (b), and (c). Each model
is sliding along the y axis of the ground frame. Object (b) results in the
lowest error at zero displacement, whereas, notably, object (a) and (c) give
lower values for small nonzero displacements.

TABLE III
PARAMETERS SET FOR THE MUPF IN REAL EXPERIMENTS

Q diag([ 8 10−6, 8 10−6, 8 10−6, 8 10−4 8 10−4, 8 10−4]) [m,rad]
σp 4 10−4 [m]
P0 diag([0.04, 0.04, 0.04, π2, (π/2)2, π2]) [m], [rad]
N 1200
m L/2

age localization errors. Therefore we manage to correctly
recognize only 4 objects out of 6 in the real scenario,
compared with the 100% overall classification score achieved
in simulation. In particular, when the MUPF is executed
using set of measurements (b), the solution k̂ is given by
object (a) and, analogously, when measurements belong to
object (d), k̂ comes out to be object (c). However, we could
reasonably consider these two misclassifications acceptable,
considering the high level of similarity between the pairs
of objects and the noise in the measurements. In addition,
the limited resolution of the tactile sensor and the size
of the fingertip (approximately 6 × 6 [mm2]) allow only
a coarse discrimination of the shape of the object and
hide finer details. It is expected that the performance of
the recognition would increase using a smaller fingertip
or sensors with higher resolution. Given these limitations,
however, the carried out experiments demonstrate that the
proposed algorithm achieves good performance.

V. CONCLUSIONS

In this paper, we propose a novel approach to the problem
of tactile object recognition. We addressed the problem as a
tactile localization on multiple objects and used a nonlinear
filtering algorithm, named Memory Unscented Particle Filter,
capable of recognizing objects by exploiting only contact

Fig. 8. MUPF performance with real measurements. The results are
grouped according to the exploited set of measurements: from the left
to the right, the results obtained with the measurements collected by
touching object (a) to object (f) are shown. For each experiment, the average
localization errors on 10 trials obtained for all the object models are shown.

point measurements. The effectiveness of our approach is
demonstrated both in simulation and with a real robot.

The promising results presented in this paper encourage
us to keep working on tactile object recognition. A possible
future application is to test our approach on a larger set of
objects, also considering different properties. For example,
the model could be extended by including local features,
such as surface classification (e.g. local curvature, edge,
corners) or material properties (e.g. stiffness, texture). A
further extension of the work we presented consists of taking
advantage of a more complex exploration strategy for data
collection, by using multiple fingers at the same time. In
fact, the exploitation of the knowledge of which finger has
caused each tactile measurement could be very powerful and
considerably improve the performance of our approach.
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