
What can I do with this tool? Self-supervised learning of tool
affordances from their 3D geometry.

Tanis Mar1, Vadim Tikhanoff1, Lorenzo Natale1

Abstract—The ability to use tools can significantly increase
the range of activities that an agent is capable of. Humans start
using external objects since an early age to accomplish their
goals, learning from interaction and observation the relationship
between the objects used, their own actions, and the resulting
effects, i.e., the tool affordances. Robots capable of autonomously
learning affordances in a similar self-supervised way would be
far more versatile and simpler to design than purpose-specific
ones. This paper proposes and evaluates an approach to allow
robots to learn tool affordances from interaction, and generalize
them among similar tools based on their 3D geometry. A set of
actions is performed by the iCub robot with a large number of
tools grasped in different poses, and the effects observed. Tool
affordances are learned as a regression between tool-pose features
and action-effect vector projections on respective Self-Organizing
Maps, which enables the system to avoid categorization and
keep gradual representations of both elements. Moreover, we
propose a set of robot-centric 3D tool descriptors, and study
their suitability for interaction scenarios, comparing also their
performance against features derived from Deep Convolutional
Neural Networks. Results show that the presented methods allow
the robot to predict the effect of its tool use actions accurately,
even for previously unseen tool and poses, and thereby to select
the best action for a particular goal given a tool-pose.

Index Terms—tool use; affordances; interaction learning; hu-
manoid robot; iCub; 3D features.

I. INTRODUCTION

In a tool affordance scenario, learning corresponds to find-
ing the mapping between a set of features that describe tools
and the effects that these tools are capable of achieving through
actions on an object. In most previous studies, in order to ease
learning, this mapping is achieved by clustering one of the
elements (tools or effects) and classifying the features into the
discovered categories. By contrast, the architecture proposed in
this work maps the relationship between these two spaces in a
gradual manner, without the need to set categorical boundaries
in any of them. This is achieved by means of a 2-step process
whereby tool functional features and tool use effect mea-
surements are mapped first onto respective Self-Organizing
Maps (SOM) to achieve dimensionality reduction, and then a
regressor model is trained to learn the mapping between the
coordinates of the representations of both elements on their
corresponding SOMs. A diagram of the proposed learning
architecture can be observed in Figure 1, whose components
will be detailed in Section III-D.

1 T. Mar, V. Tikhanoff, G. Metta and L. Natale are with the iCub Facility, Is-
tituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy (email:
tanis.mar@iit.it,vadim.tikhanoff@iit.it, and
lorenzo.natale@iit.it).

This work was supported by the European FP7 ICT project No. 270273
(Xperience), and project No. 288382 (POETICON++)

On the functional feature side, the representation applied
to describe tools should enable the learning algorithm to
generalize the affordances learned for a tool to similar ones. At
the same time, it should take into account that the effect that
an action with a tool can achieve depends also on how the tool
is being grasped. For convenience, we use the term tool-pose
to specify a tool in a given pose, following the nomenclature
in [1]. For example, a rake oriented to the right would be a
different tool-pose than the same rake oriented to the left.

In the current study, we apply therefore the Oriented Multi-
Scale Extended Gaussian Image (OMS-EGI) feature set, pro-
posed in [2]. This is, to the best of our knowledge, the only
3D descriptor which implicitly encodes information about how
tools are being grasped, making it specially suited for tool
representation in interaction scenarios. Moreover, we compare
three different OMS-EGI parameter settings to assess which
one enables more effective affordance learning. These settings
represent tool-poses based only on their surface normal his-
tograms, their occupation of the space within their bounding
box, and on a balanced combination of both, respectively.
Additionally, we compare their performance against state-of-
the-art computer vision features, namely the feature vector
extracted from the last convolutional layer of AlexNet Deep
Convolutional Neural Network (DCNN) [3], obtained from
images of the tool-poses that the robot held to perform
exploration.

On the other side, the affordance of each tool-pose is
represented as the effect – measured as a displacement on a
target object– that the robot can achieve with that tool-pose for
a set of actions. In particular, the action repertoire considered
in this study consists in a drag action parametrized by the
angle of the drag. The combination of the effects of all the
actions in the repertoire into a single vector, which we will
refer to as affordance vector as in [4], represents, for the robot,
how well a tool-pose affords dragging an object in different
directions. Despite its simplicity, this scenario was chosen so
that with a relatively simple repertoire of actions, different
tool-poses achieved distinct effects, and moreover, because it
allows actions and effect computation to be done safely and
automatically by the iCub robot.

Affordance knowledge, thus, can be implemented as the
mapping between the space of tool-pose features, which rep-
resent tool and grasp, and the space of affordance vectors,
which represent action and effect. In the present study, both
sets of data are obtained automatically by the robot on an
exploration phase, and subsequently applied for learning in
a self-supervised manner, without the need for any human
labeling. Finally, the system’s performance is evaluated on-

mailto:tanis.mar@iit.it
mailto:vadim.tikhanoff@iit.it
mailto:lorenzo.natale@iit.it


Fig. 1: Diagram of the proposed approach to discover, learn and predict tool-pose affordances. On the training phase (black
arrows), a set of tool-pose features (1), and their corresponding affordance vectors (2) are available to the system from
previous recording. Keeping the correspondence, tool-pose features and affordance vectors are mapped into respective SOMs
for dimensionality reduction (3a and 3b). Finally, a GRNN regressor model is trained to learn the mapping between the
coordinates of the tool features in the tool-pose SOM, and those of the corresponding affordance vectors on the affordance
SOM (4). On the prediction phase (red arrows), the tool-pose SOM coordinates of the tool-pose being held are computed from
the tool’s features, and fed to the regressor to get an estimate of its coordinates on the affordance SOM (5). The prototype
vector of the closest neuron to the estimated coordinates is considered the predicted affordance vector for that given tool-pose
(6). For easier interpretation, each color corresponds to data generated by a particular tool type (hoe, rake, etc) in a particular
pose (right, front, left), assigned as in the affordance vector graphs on the right of the diagram. This information was, however,
not used for training.

line by applying the learned models to select the best action
for a given task.

The methods presented in this study constitute a novel
approach towards endowing humanoid robots with the skill
to autonomously learn tool affordances and generalize the
knowledge to similar tools. Its contribution is twofold: On the
one hand, we further investigate the suitability of robot-centric
3D features to describe tool-pose affordances, by comparing
the performance among different variants of the OMS-EGI
descriptor, each of them based on different information from
the tool-pose, as well as against features derived from DCNN.
On the other hand, we present a novel self-supervised learning
architecture which is able to predict the effect of a set of
actions with a given tool and grasp in function of its geometry,
by applying a fine grained representation of tools and effects
that avoids the need to categorize either, resulting in a higher
predictive performance.

II. RELATED WORK

The concept of affordances was introduced by the cognitive
psychologist James J. Gibson in the late 70’s as a central
element of his theory of direct perception [5]. According
to this theory, affordances are “latent action possibilities
available to the agent” that it can perceive directly from
the environment in order to interact with. The initial for-
malization of this idea, however, did not provide a complete
explanation on how affordances are perceived or learned
by agents. Affordance perception, indeed, has been matter

of a long-standing debate in cognitive psychology [6], [7],
[8], joined later by the neuroscience community with new
hypothesis and evidence from brain studies [9], [10], [11].
See [12] for a comprehensive review. Affordance learning, on
the other hand, was initially studied by Eleanor J. Gibson [13],
[14] as a developmental strategy, and further discussed and
extended by other cognitive and developmental psychologists
[15], [16]. This concept soon grabbed the attention of the
developmental robotics community too, as a framework to
develop mechanisms to enable robots to learn about objects
by means of interacting with them, thus grounded in their
own embodiment [17].

The first steps towards affordance learning robots were
taken by Fitzpatrick et al. in their pioneer work [18], which
showed that a robot can learn affordances by observing the
effect that certain actions produce on objects. In that study,
rolling or sliding affordances were learned as histograms that
represent the probability of displacing an object in a particular
direction given a certain action. Although basic in its premises,
this work was the first to implement a formalization of
objects’ affordances as the relationship between the elements
of the tuple {object, action, effect}, which would become a
commonplace in later works on robotic affordances. In [19],
affordances were learned by populating a look-up table with
the combination of action sequences and object labels that
lead to successful binding between the objects. Geib et al.
proposed a general way to learn affordances in robotics, based
on Object-Action Complexes (OACs) [20]. OACs were defined



as {E,T,M} triplets, where E identifies the robot action (called
Execution specification), T represents the state change due to
such action, that is, the effect, and M measures the success
rate of E in achieving T over a given window of time [21].
The main drawback of these studies was that objects were
identified by labels, so they did not allow generalization to
new objects.

In order to overcome this issue, Montesano et al. [22]
proposed a model in which simple object features (shape,
color, etc) were connected through a Bayesian Network to
the action and the observed outcomes of the interaction.
This method was subsequently refined to include more robust
features, better discretization [23], support multi-object inter-
action [24], and improved network structuring [25]. Another
popular model was proposed by Sahin et al. [26], in which the
object/entity was represented as a vector of raw features, and
generalization was defined in terms of equivalence between
entities or behaviors, if they produced the same effect. This
method has been further improved to support the discovery
of new effect categories [27], actualize behavior parameters
to reach goals [28], self-structuring of the learning process
[29], bootstrapping knowledge of simple affordances to more
complex ones using intrinsic motivation [30], [31], and use of
affordance knowledge for plan generation and execution [32].

Other methods for learning object affordances have also
been explored. In [33], [34], for example, object and ef-
fect features are mapped into separate Self-Organizing Maps
(SOMs), which are linked together through Hebbian connec-
tions that strengthen based on the their co-occurrence given
an action. In [35] Semi-Markov Decision Processes were
used to model the sequences of actions that lead to the
activation of a desired affordance, whereas in [36], affordance
learning is integrated within an Extended Classifier System
reinforcement learning method, allowing the robot to learn
about object’s affordances and policies for goal-directed tasks
simultaneously.

A few studies have also considered multi-object scenarios.
Moldovan et al. [24] coupled Statistical Relational Learning
methods with the Bayesian Network approach proposed in
[22] to perform inference about more than one object. Fitchl
et al. [37] studied how to represent the necessary spatial
preconditions that enable certain affordances. Ugur et al.
focused on the task of objects stacking and proposed a method
for learning mutual “stack-ability” among objects and inferring
such affordances from simpler ones previously learned [32].

In the studies described so far the robot used its own
manipulator to interact with objects, and observed the effect
of its actions upon them. In order to differentiate multi-object
affordances from tool affordances, we consider that tools
correspond to objects or elements that the action is performed
with, different of the robot’s own manipulator. Thus, tool
affordances should not be understood just as the effects that
an agent can achieve on a certain object with another object,
but as the functionalities that intermediate objects, through an
action on a third entity, enable the agent to achieve.

Pioneer work on tool affordances was carried out by

Stoytchev [38], [39], where for each tool, affordances were
learned as a list containing the actions performed and the prob-
ability of success in moving an external object. In Tikhanoff
et al. tool affordance models were learned by fitting curves
to the effects measured after a series of pull actions, and
coupled with a geometric reasoner in order to determine the
feasibility of exploiting the learned affordances on a given
scenario [40]. The main drawback of these studies is the lack
of a representation that allows generalization among tools, so
the learned knowledge can not be applied to tools outside the
initial training set.

Jain and Inamura tackled this issue by defining a set of
tool functional features based on geometric features (corners,
bars, etc) that were linked to the effect achieved by the tool
by means of a Bayesian Network [41], [42]. However, these
functional features had to be annotated by hand. Gonçalvez et
al. made functional features of tools and objects automatically
detectable by the robot by using simple 2D geometrical
features (length, area, size, etc) extracted from vision [43],
which were linked to actions’ effects also through Bayesian
Network. Dehban et al. applied the same paradigm but sub-
stituted the Bayesian Network by a Denoising Auto-encoder,
which, contrary to the Bayesian Network, allows for real value
input and online learning [44]. In [4], we applied a larger
set of candidate functional features from the 2D contour of
the tool in such a way that the grasp position of the tool
was also considered when learning tool’s affordances. This
approach was extended in [2] with the introduction of the
Oriented Multi-Scale Extended Gaussian Image (OMS-EGI)
feature vector, a holistic descriptor extracted from the tools’
3D models. Unlike previously proposed tool descriptors, the
feature sets proposed in the last two studies are robot-centric
insofar as they depend not only on the geometry of the tools,
but also on how the robot is grasping them.

On the opposite side of the spectrum in terms of robot-
centeredness, a popular approach to affordance learning in the
recent years has been to apply state-of-the-art computer vision
methods to predict human labeled affordances of objects.
While the predicted affordances are meaningless to robots
(for example, a robot without arms would not be able to use
any tools, independently of their human labeled affordance),
this approach can provide valuable insights into the kind of
features that could be applied later to learn robotic affordances
more effectively. For example, in [45], SOM-based sparse
coding features from RGB-D data were applied to discriminate
container from non-container objects. In [46], affordances
of office objects were predicted by means of 3D geometry
features computed from the pointcloud reconstruction of the
scene. Deep learning methods have been applied in [47], where
multi-scale CNNs were trained at different resolutions with
RGB-D data from an affordance database. Also, Myers et al.
proposed a part based affordance detection system based on
3D features extracted from a superpixel segmentation from
objects [48]. They used a combination of depth, normals and
curvature features. In order to train their classifiers, a database
of pixel-wise annotated affordances was also presented. Using



the same database, the approach proposed in [49] learned
the features from RGB-D images by training end-to-end a
Deep Convolutional Neural Network within an expectation
maximization framework, which enabled weakly supervised
learning, while in [50], they trained an encoder-decoder DCNN
with HHA features (horizontal disparity, height and angle
between pixel normals and inferred gravity). Full 3D models
were used in Schoeler et al., who proposed global part-based
descriptors obtained as graphs that contain the part-signatures
and their pose-relations in order to predict the function of a
set of tool-like 3D models [51], as well as in [52], where
Abelha et al. proposed to estimate the suitability of a set of
household objects for a set of given tasks by fitting the object’s
superquadric model to the one of the canonical tool for that
task.

Besides the cited papers, there are many other proposed
features that have not been attempted within an affordance
learning scenario, but that have descriptive characteristics
that could also potentially provide relevant information for
affordance learning. One group of this kind of features
would be 2D hierarchical features, given that affordances are
generally determined by characteristics of objects or tools
at many different scales. Further advantages of hierarchical
feature extraction algorithms are that most of the existing
implementations provide invariant hierarchies [53], [54] as
well as unsupervised or weakly supervised feature learning
[55], [56], both very desirable properties. Another group
is that formed by global 3D features, which by describing
the geometry of objects should correlate properly with their
physical affordances. Examples are the DESIRE feature [57]
or the more recent Global Structure Histogram [58]. Other
local 3D features, such as the ones proposed in [59], [60]
could enable end-to-end 3D feature learning for affordance
applications.

Readers interested in a more comprehensive review on affor-
dances in robotics, with focus also in studies from psychology
and neuroscience, should refer to the recent review by Jamone
et al. [61].

III. MATERIALS AND METHODS

A. Robotic Platform

All the experiments presented in this paper were carried
out using the iCub humanoid robot and its simulator. The
iCub is a full body humanoid robot with 53 Degrees of
Freedom (DoF) [62]. In the current experiment we only made
use of the upper body, which comprises 41 DoF, including
head, arms and torso. Binocular vision is provided by the
cameras mounted in the robot’s eyes, with which depth can be
estimated from disparity [63]. The iCub simulator provides a
compatible model of the robot that allows simulation of rigid
body dynamics and collision detection by making use of ODE
(Open Dynamic Engine) [64].

The iCub software is structured as modules that com-
municate with each other using YARP middleware, which
enables multi-machine and multi-platform integration [65].
Modules provide specific functionalities, and work together

to achieve desired behaviors on the iCub. All the tool 3D
models that were used for feature extraction in the experiments
were modeled using Trimble’s SketchUp software [66], and
transformed into pointclouds using the Point Cloud Library
[67], which was also used for 3D processing and visualiza-
tion. Experimental data analysis, including visualization and
learning, was implemented in MATLAB, employing the third
party SOM toolbox for dimensionality reduction and data
visualization [68], and the built-in Neural Network library for
learning regression models from the data. In order to use the
models learned in MATLAB to guide the robot actions, the
available YARP bindings for MATLAB were applied.

All the code used in the present study is available at
www.github.com/robotology/tool-affordances.

B. Experimental setup

The experiment performed consisted of three phases: data
gathering, training and testing. In the first phase, the iCub
recorded the drag affordances, represented by their affordance
vectors, of a set of tools in different orientations. In particular,
50 different tools were considered in simulation and 15 in the
real setup, divided in 5 categories for visualization and clarity:
rake, hoe, hook, shovel and stick (displayed in Figure 2). Each
of them was held by the robot in 3 possible orientations: right,
front, left, depending on the grasp parameter ϕ, described in
Figure 3a. Thus, affordance vectors were recorded for 150
distinct tool-poses in simulation and 45 on the real robot.
Moreover, for each tool-pose, in simulation and real setup,
4 recording trials were performed; each trial consisted in the
execution of the drag action in all the considered directions
(see Figure 3b), by means of which an affordance vector was
recorded per trial.

Each trial begun by placing a tool in the robot’s hand, for
which a different procedure was followed depending on the
setup. In the real setup, the iCub opened its hand in a receiving
position and a tool was handed by the experimenter. After
grasping the tool, the iCub automatically detected the tool-pose
it had been given in the following way: First, the tool label was
recognized using the deep learning implementation presented
in [69], pre-trained with our set of tools. This method uses
a linear classifier whose input are the features obtained from
the FP7 layer of AlexNet [3], which were recorded here in
order to compare their performance against the ones proposed
in this paper in the task of affordance prediction. Once the
tool was recognized, its corresponding pointcloud model was
automatically loaded in the canonical pose (see Figure 5).
Finally, its orientation was estimated by aligning the canonical
pointcloud model to a single partial 3D reconstruction of
the real tool in the robot’s hand, obtained with the robot’s
stereo-vision. In simulation, by contrast, the tool name and its
orientation were given to the simulator. Thus, the tool CAD
model was loaded and attached to the simulated iCub’s hand
based on the given grasp parameter ϕ.

In either case, the canonical pointcloud model of the grasped
tool was rotated according to the –estimated or given– grasp
parameter ϕ in order to obtain the oriented pointcloud model.



(a) Tools in simulation.

(b) Tools in real setup.

Fig. 2: Set of tools used in this study, on the (a) simulated
setup and (b) real setup. Individual names of each tool are
formed by just adding the tool index after its type, eg hook2,
hoe3, etc.

This term refers to the pointcloud model of the grasped tool
whose coordinates match the position of the actual tool with
respect to the robot’s hand reference frame. The oriented
pointcloud model of every tool-pose considered was subse-
quently used for two purposes. On the one hand, it was sent
to the processing modules for 3D feature extraction (detailed
in Section III-C). On the other, it was used to determine
the position of the tooltip with respect to the robot hand
reference frame, required to extend the kinematics of the robot
to incorporate the tip of the tool as the new end-effector for
further action execution.

Once the tool was grasped and the robot’s end-effector
successfully extended to the tip of the tool-pose, the robot
performed a series of exploratory actions in order to discover

(a) Grasp parameter ϕ controls
the rotation around the tool’s
handle axis. Therefore, right
orientation corresponds to ϕ =
−90◦ , front to ϕ = 0◦, and
left to ϕ = 90◦.

(b) Diagram of the parametrized
drag action. The tooltip is initially
placed slightly behind the object,
and then the tool is displaced
15 cm along the radial direction
given by θ. In the real setup, only
the actions displayed with full ar-
rows are performed.

Fig. 3: Parameters controlling tool-pose and interaction: (a)
Grasp and (b) Action.

the tool-pose’s drag affordance. Specifically, a 15 cm radial
drag action was executed upon a small target object along
directions at intervals of 90 degrees on the real robot and 45
in simulation (resulting in 4 actions per trial in the real robot
and 8 in simulation, as illustrated in Figure 3b).

The target object was a small cube of 6 cm in side placed
before each action execution at a spot on a table randomly
chosen at 40 ± 4 cm in front of the iCub and 10 ± 4 cm
to its right (x ≈ −0.4, y ≈ 0.1, z ≈ −0.13 in the iCub’s
reference frame). The object was tracked by a segmentation
algorithm based on Ojala’s Local Binary Pattern technique
(implemented from [70]), so the specific starting position could
be modified, as long as the working space in each direction
allowed the robot to perform the dragging action without
colliding with itself (when pulling) or going out of reach limits
(when dragging away).

On each action execution, the robot first positioned the
tooltip above the target object and then lowered it to the table
plane, in order to avoid pushing the object when reaching for
it. Then, the drag was executed in the given direction, and
subsequently, its effect computed as the Euclidean distance
that the object had been displaced on the table’s plane. An
image of the iCub reaching for the target cube in simulation
and the real setup can be observed in Figure 4. As mentioned
above, this experimental scenario was devised so that actions
were safe and the effect could be computed automatically, as
well as so that with a relatively simple repertoire of actions,
different tool-poses could achieve distinct effects.

The total duration of the data gathering phase was of about
15 hours in simulation and in the real setup, estimating roughly
an average of 10 seconds per action execution in simulation
and 20 in the real setup (due to the longer time required to
estimate the target object’s final position and to reposition it
after each action), plus some extra time to load/grasp and



Fig. 4: Experimental setups in the real robot (left) and simulation (right). The frames on the upper right of the robot image
show its perspective on the action, with the superimposed end-effector extension to the tool’s tip. On the lower right side,
the corresponding oriented pointcloud model is shown, whereby the displayed coordinate origin represents the hand reference
frame.

Fig. 5: Representation of the tool and hand reference frames.
The hand reference frame (< H >, center) is defined by the
robot kinematics. The tool’s reference frame (< T >, left)
is set so that the origin is at the lowest point on the tool’s
model, the X axis points in the direction of the tool effector,
and the tool’s handle goes in the direction of -Y. This way,
if the tool is grasped with its effector looking to the front
and its handle upwards (along the direction of the extended
thumb), < H > and < T > coincide. This is therefore
considered to be the tool’s canonical pose, < T >can, and
the pointcloud model is thus the canonical one. The oriented
pointcloud model corresponds to the pointcloud representation
of the tool which matches the position of the actual tool in
the hand, expressed with respect to the reference frame of the
hand, i.e. < H > (right).

find the pose of each tool. On the second phase, all the
data recorded by the robot –tool-poses’ functional features
and corresponding affordance vectors– were used to train
the system to predict, given a tool-pose, the effect of all
the actions in the repertoire, as detailed below in Section
III-D. On the test phase, the generalization capabilities of the
trained system were evaluated with two different procedures.
On the first one, employed to assess the general prediction
capabilities of the system, the system’s performance was
assessed by comparing the predictions returned by the model
to the previously recorded affordance vectors. On the second
one, the iCub predicted the affordances of tool-poses not seen
during training, and used these predictions to select the best
actions for a given task, as described in Section III-E.

C. 3D features for tool-pose representation in interactive
scenarios.

In the context of tool affordance learning, the way in which
tools are represented determines the generalization capabilities
of the proposed method. For example, a method which repre-
sents objects solely by given labels (as in the early work [18]
and [19]), will not be able to generalize the learned affordances
to any object outside the initial training set. On the other hand,
care must be taken when defining the representation, because
it can quickly lead to feature spaces too large to be explored,
especially on a real robotic setup.

Moreover, most robotic tool affordance studies represent
tools as external elements, independent of the robot which
handles them. However, we believe that complete understand-
ing of tool affordances can only be achieved if we consider
the way in which tools are being grasped. Therefore, on the
present study we applied the Oriented Multi-Scale Extended
Gaussian Images (OMS-EGI) descriptor, a holistic descriptor
specifically devised to represent grasped radial tools in in-
teraction scenarios, proposed in [2]. OMS-EGI encapsulates



Fig. 6: OMS-EGI Computation Steps: First, the 3D pointcloud model of the tool grasped by the robot is loaded from memory
and rotated to obtain the oriented pointcloud model (a). Then, the oriented pointcloud model’s Axis-Aligned Bounding Box
(AABB) is computed w.r.t. the hand reference frame axes (b). At the same time, the orientation of the surface normals is
computed for the whole pointcloud (c). On the next step, the volume enclosed by the AABB is iteratively divided into octants
D times, generating voxels of different resolution levels l (d). Then, a histogram of the normal orientations of the surface
enclosed in each voxel is computed (e). Finally, all histograms are concatenated in order to build the OMS-EGI feature vector.
For visualization purposes, only one resolution scale is displayed. Normal values and normal histograms are represented with
colors by mapping XYZ angular values to RGB color values, and XYZ histograms to RGB histograms and averaging over
color space.

in a compact way the geometrical properties of a tool on
a particular grasp configuration as a whole, simultaneously
encoding information about its spatial occupation with respect
to the hand, and its surface geometry. In brief, the OMS-
EGI representation of any tool-pose is obtained by computing
voxel-wise normal histograms from iterative octree divisions
of its Axis Aligned Bounding Box (AABB). The pseudo code
of the process is reported in Algorithm 1, while a visual
representation and description of the steps taken is displayed
in Figure 6.

The reason why this descriptor is able to incorporate in-
formation about how the tool is being grasped is that it is
computed from the tool-pose’s oriented pointcloud model,
which represents how the robot is actually holding the tool.
Moreover, the voxels from which the surface histograms are
obtained are computed as iterative subdivisions of the Axis-
Aligned Bounding Box, so their concatenation order and
orientation depends on the robot’s hand reference frame, not
on how the tool is oriented. Therefore, the same tool in
different orientations will produce different OMS-EGI vectors.

Furthermore, the information about the tool’s pose and ge-
ometry is conveyed in terms of surface information and spatial
occupation, the former encoded in the normal histograms and
the latter represented by which voxels contain histogram data
and which are empty. These two sources of information are
weighted in function of the values of following parameters:

• N : The number of bins into which the possible values
of the angular directions of the surface normal in each
dimension X,Y, Z are divided to form the voxel-wise
histograms. It reflects the accuracy with which each
voxel-based EGI will represent the normals contained in
its corresponding voxel.

• D: Depth represents how many times the AABB is
divided into octants to form voxels. At each resolution
level l = 0, . . . , D, the number of voxels resulting from

the division is 8l (thus the name ”octant”). N represents
thus the resolution at which the voxel-based EGIs will be
computed, by controlling the number and size of these
voxels.

Therefore, by setting different pairs of parameters, the
OMS-EGI descriptor allows us to study whether affordances
are better learned based on the tool-pose’s spatial information
(high D and low N ), surface information (low D and high
N ), or a balanced combination of both (similar values to D
and N ). We conducted such an evaluation by comparing the
predictive performance of the following 3 settings:

• Balanced information (BALAN): Setting N = 2 and
D = 2, the feature vector corresponds to a balanced
OMS-EGI, as applied in [2], where both surface and spa-
tial information are represented. The length of the OMS-
EGI vector with BALAN settings is of LBALAN

eff = 296.
• Spatial information (OCCUP): If N = 1, all normals

in each voxel are assigned to the same bin irrespective of
their orientation, and therefore the full histogram can be
subsumed to a single value. On voxels where any point of
the oriented pointcloud model is present, this value is 1,
while on empty voxels the value is 0. Therefore, setting
N = 1 transforms the OMS-EGI into an axis aligned
binary occupancy grid. In the present study, D is set to
3 so that the total length of the feature vector is similar
to the BALAN setting; : LOCCUP

eff = 293.
• Surface information (EGI): When D = 0, the only

voxel considered corresponds to the AABB of the ori-
ented pointcloud model, without further subdivisions.
Therefore, the OMS-EGI is equivalent to the original EGI
of the object [71], provided a certain histogram resolution
function of N . In this case, N is set to 6 so that the
length of the feature vector is in a similar range of the
other settings; LEGI

eff = 216.



Algorithm 1 OMS-EGI Feature Extraction
1: omsegi = compute omsegi(model or, Depth, NumBins), where
2: model or = oriented pointcloud model,
3: initialization:
4: AABB← findAABB(model or)
5: normals← compute normals(model or)
6: oms-egi← []
7: loop:
8: for level = 0→ Depth do
9: voxel list← compute voxel grid(AABB, level)

10: for all v ∈ voxel list do
11: if is empty(v) then
12: oms-egi← concatenate(oms-egi, (0 0 ... 0))
13: else
14: norm hist← comp norm hist(normals, v, NumBins)
15: oms-egi← concatenate(oms-egi, norm hist)
16: end if
17: end for . End voxel loop
18: end for . End depth level loop

D. Parallel mapping from tool-pose features to affordances

When considering tools whose affordances depend solely
on their geometry, it can be assumed that in general, tools
with similar geometry will offer similar affordances. That is
why most affordance studies only consider a limited number
of possible outcomes of robot actions, either by performing
automatic clustering of the perceived effect ([39], [27], [33],
[4]), or by predefining effect categories to which the observed
effects are assigned [72], [25]. Similarly, it is a common
practice in studies where objects or tools are represented by
features to cluster them before further processing [23], [2].
However, it is frequently the case that these discretization steps
are imposed on a data space (of measured effects, or object
features) which is relatively homogeneously distributed, often
leading to thresholds or boundaries separating similar data
points. Moreover, the within-cluster differences that may be
present in these measurements or features are subsumed into
the cluster label and ignored when learning the objects or tools
affordances.

In the present study, tool affordances are represented by
the mapping between tool-pose features X ∈ RLeff , which
describe the tool and grasp pose applied, and affordance
vectors Y ∈ RK , which determine effect in function of the
action for any given tool-pose (see Section III-B). Leff is
the length of the tool-pose feature vector and K the number
of actions considered, which determines the length of the
affordance vector. The proposed architecture enables learning
the mapping between these two spaces, f : RLeff → RK ,
without the need to set categorical boundaries in any of them.

To that end, both spaces were mapped first onto respective
2-dimensional Self-Organized Maps, referred henceforth as
tool-pose SOM and affordance SOM. Then a regressor model
was trained to learn the mapping from the coordinates of the
tool-pose features on the tool-pose SOM to the coordinates of
the corresponding affordance vectors on the affordance SOM.
Applying dimensionality reduction in the original spaces limits
the complexity of the subsequent supervised regression prob-

lem by reducing the original problem of finding f : RLeff →
RK to f : R2 → R2, being K > 2 and Leff >> 2. Thereby,
it helps preventing the numerical errors due to overfitting that
commonly occur in classifiers when the dimensionality of the
input space is larger or of the same order as the number of
available samples.

Moreover, as dimensionality reduction is an unsupervised
procedure, data augmentation techniques can be applied to
obtain an enough number of unlabeled samples with which
to perform it. In the present scenario, data augmentation was
achieved by extracting extra tool-pose features from slight
rotations of the oriented pointcloud models recorded in the
experiment. These were “unlabeled” in the sense that they
did not have a corresponding affordance vector to which
they could be mapped. This allowed the tool-pose SOM to
be trained with a number of samples much larger than the
dimensionality of the input space.

SOMs were chosen over other dimensionality reduction
methods because they allow to map new data points incre-
mentally (unlike, for example, t-SNE [73]), and they maintain
to a great extent the topology of the data in the original high-
dimensional space [74]. Moreover, each neuron in a SOM has
an associated prototype vector which, after training, approxi-
mates the values of the input vectors mapped to that neuron
and can thus be used for inverse mapping. This characteristic
provides a mechanism to retrieve predictions in the original
affordance vector space from the lower dimensionality regres-
sion results. In that sense, prototype vectors are analogous
to cluster centroids (used in [4]), but unlike them, which are
by definition distinct from each other, prototype vectors can
gradually vary from neuron to neuron, given an enough amount
of neurons to represent the original space. Therefore, they
provide a fine grained representation of the original space, and
avoid the need to predefine any number of clusters into which
to divide it. Similar techniques involving 2 parallel SOMs have
been used in [75] for multimodal object learning, and [33],
[34] for object affordance learning, but applying very different
data modalities, and learning and prediction methods.

After dimensionality reduction, the second step of the pro-
posed tool affordance learning method consisted in learning a
regression model between the low dimensional representation
of the tool-pose features and of their corresponding affordance
vectors. The regressor was implemented using Generalized
Regression Neural Networks (GRNN), a modification of radial
basis networks which is able to approximate arbitrary func-
tions and avoid local minima in 1-pass training [76]. These
networks depend on the regularization parameter σ, which
controls the spread of the radial basis functions. The best
value of σ for each model was found by performing recursive
line search1. In order to train the GRNN model, first we
computed the best matching units (BMUs) of all the train tool-

1Recursive linesearch was conducted by evaluating the accuracy of the
regressor at equally spaced values of σ with 5-fold cross validation, and
iteratively exploring values at smaller distances centered around the value with
the best accuracy on the previous iteration, until the accuracy improvement
among consecutive iterations was under a certain threshold.



pose features and affordance vectors on their corresponding
SOMs, and obtained their coordinates. We refer to the set
of coordinates of the BMUs corresponding to the tool-pose
features as XSOM ,∈ R2, and to the set of those corresponding
to the affordance vectors as YSOM ,∈ R2. Finally, the GRNN
model was trained by feeding XSOM as input and YSOM as
target, so the desired mapping function f(XSOM ) → YSOM

was learned.
As mentioned above, one advantage of the proposed method

is that the SOM prototype vectors can be applied to yield
predictions in the original space of affordance vectors, that
is, the expected effect of executing any of the actions in the
repertoire with the given tool-pose. In order to achieve this,
the first step was to extract the tool-pose feature vector x ∈ X
that represents the tool-pose being held from which we want
to predict the affordance vector. The obtained feature vector
x was then mapped to the trained tool-pose SOM, and the
coordinates of its BMU, xSOM , computed. These coordinates
were subsequently fed to the trained GRNN model, which
in turn predicted the coordinates ŷSOM on the affordance
SOM. Finally, the predicted affordance vector ŷ was given
by the prototype vector of the closest neuron to the predicted
coordinates ŷSOM .

E. Prediction based action selection

The methods described above enable the robot to predict the
affordance vector of any tool-pose, i.e., the expected effect
for any of the actions in the repertoire. Therefore, if the
predictions are accurate, this knowledge would allow the robot
to select the action with the best expected effect for any
desired task achievable through its action repertoire. In order
to evaluate the extent to which the proposed methods can lead
to successful action selection for a certain task with any of the
considered tool-poses, we devised a secondary test experiment,
which we refer to as Action Selection experiment.

In particular, the task chosen was to achieve the maximum
possible displacement on the target object, given a certain tool-
pose. Therefore, in this experiment the robot received a tool
in a certain pose –loaded in simulation and handed by the
experimenter to the real robot–, predicted its affordance vector
based on its OMS-EGI features, as described in Section III-D,
and executed the drag with the angle parameter predicted to
generate a larger displacement. After the action execution,
the actual achieved effect was measured in order to evaluate
the success of the given task. In order to provide a good
assessment of the generalization capabilities of the proposed
learning architecture, we applied leave-one-out data separation
scheme, which meant that every time a tool was tested, it had
not been used at any step of the training process, in any of its
poses.

IV. RESULTS

A. Experimental data collection and separation

Experiments in the present study were carried out in simula-
tion as well as on the real iCub Humanoid robot. In simulation,
the tool set consisted of 50 tools, while in the real setup, 15

tools were used instead (see Figure 2). Each tool was used
by the robot in 3 different orientations, right, front and left,
making up to 45 considered tool-poses on the real robot and
150 in simulation.

Interaction data was gathered by performing 4 experimental
trials with each tool-pose, where each trial consisted of a
cycle of 4 drag actions in the real robot and 8 in simulation,
performed as described in Figure 3b. As a result, 180 trials
corresponding to 720 actions were performed on the real setup,
and 600 trials corresponding to 4800 actions in simulation.
On each of these trials, the recorded data consisted of the
affordance vector representing the recorded effects of the
actions performed in each action cycle, and the OMS-EGI
feature vectors used to describe the tool-pose being used
to perform those actions; EGI, BALAN, OCCUP, and in
the real setup, the deep learned features. In order to have
more data to improve the unsupervised training of the tool-
pose SOM, the number of samples per tool-pose of each of
these OMS-EGI variants was increased by 30 by applying the
“data augmentation” method described in Section III-D. This
number was selected in order to have a number of OMS-EGI
samples considerably larger than its dimension to perform the
unsupervised training of the tool-pose SOM. Meanwhile, the
deep learned features were extracted from around 25 different
observations of each tool-pose.

On every evaluation scenario (simulation or real robot setup,
with EGI, BALAN or OCCUP feature set), the data gathered
was divided into training and testing sets to evaluate the
presented methods. In order to provide a more complete
assessment of their performance, we applied two different
data separation schemes. The first separation scheme served
to evaluate the general predictive performance of the proposed
method, and was achieved by randomly selecting the data
corresponding to 1/4 of the trials for testing, and keeping
the rest for training. We refer to this separation scheme as
RAND. The second separation scheme assessed the capability
of the proposed methods to generalize the learned affordances
to previously unseen tools. For that end, we performed tool-
wise 1-out separation where on each run, the data from all
the trials corresponding to a given tool (in all its poses) were
used for testing, and the data from the rest of the tools used
for training. This scheme is referred to as 1OUT.

B. SOM-based unsupervised dimensionality reduction

As described in Section III-D, the first step in the proposed
method for affordance learning is to map the spaces of
tool-pose features and affordance vectors onto corresponding
SOMs. In the current study, both SOMs were chosen to have
a hexagonal lattice of 15 × 20 units, which provided a good
compromise between representation resolution and training
time required.

The tool-pose SOM was trained using all the OMS-EGI
vectors not used for testing the affordance prediction, that
is, all the OMS-EGI vectors corresponding to the affordance
vectors on the train set, plus all the ones obtained through data
augmentation. The results of this mapping process can be ob-



(a) Trained tool-pose SOM, from simulation data.

(b) Trained tool-pose SOM, from real setup data.

Fig. 7: Trained tool-pose SOMs with BALAN parameter
settings in simulation (a) and real setup (b). On the underlying
hexagonal grid, each dot represents a neuron on the SOMs.
The red figures on top of some neurons represent the model of
the tool-pose whose OMS-EGI feature activated that neuron.
The color of the dot codes the tool type and pose, as in
Figure 1. Grey neurons correspond to neurons which were not
activated by any tool-pose’s OMS-EGI vector in the training
set. To avoid cluttering, only a fraction of all the tool-poses
generated with the data augmentation process are shown.

served in Figure 7. As can be observed, both tool-pose SOMs
show similar tool-poses clustered together. Interestingly, tools
from the same category tend to be clustered closely if they
have the same orientation, while similar tools with different
orientations are in most cases further apart. This results attest
that the OMS-EGI descriptor preserves relevant information of
the tool’s geometry and orientation, and that the dimensionality
reduction step is able to retain it, rendering the tool-pose SOM
coordinates a reliable representation of the considered tool-
poses.

The affordance SOM, on the other hand, was trained with

(a) Trained Affordance SOM, from simulation data.

(b) Trained Affordance SOM, from real setup data.

Fig. 8: Trained affordance SOMs from data gathered in simula-
tion (a) and on the real setup (b). On the underlying hexagonal
grid, each dot represents a neuron on the SOMs. The color
vectors on top of some neurons represent the affordance vector
that activated those neurons, where the colors encode the
tool type and pose that activated that neuron, as in Figure
1. Neurons represented by a gray dot correspond to neurons
which were not activated by any affordance vector in the
training set.

affordance vectors from the training set, all of which had cor-
responding tool-pose vectors. Results are displayed in Figure
8. In these maps we can observe how most tools of the same
type in the same orientation (indicated by color) generated
similar affordance vectors, which supports our hypothesis that
similar tool-poses have similar affordances, although some
exceptions can be observed (some yellow-orange and reddish
affordance vectors, corresponding to sticks and shovels, are
quite spread). Moreover, these maps explicitly display the fine-
grained representation of affordances mentioned above, which
can be observed in the gradual variation of the affordance
vectors throughout the SOM.



C. Prediction of tool-pose affordances

The performance of the proposed method for affordance pre-
diction was evaluated by comparing the predicted affordance
vectors Ŷ for the test set of tool-poses with the affordance
vectors Y previously recorded for those tool-poses, for all the
evaluation scenarios (different setups, data separation schemes,
and OMS-EGI parameter settings). In each case, a baseline
performance was also computed in order to compare the
prediction results achieved by the trained system against the
results obtained in the absence of learning. The baseline
was defined as the prediction performance achieved when
the prediction models were trained with data in which the
correspondence between tool-poses and affordance vectors
was broken, which was achieved by shuffling the indices of
XSOM and YSOM before being fed to the GRNN for training.

Prediction performance was measured in terms of the Mean
Absolute Error (MAE ), which represents the average absolute
distance between the predicted affordance vectors Ŷ and the
recorded ones Y . Accordingly, the learning performance was
assessed by means of the percentage of improvement (PI),
which indicates how much better the trained system performed
when compared to the baseline one, so that if nothing was
learned –prediction error had not improved– PI would be 0%
while if error was reduced to 0, PI = 100%. Formally:

MAE =
1

N

N∑
abs(Y − Ŷ ) (1)

where N is the number of test trials, and

PI = 100
(MAEBL −MAE

MAEBL

)
(2)

Table I displays the prediction error in each of the evaluation
scenarios with the proposed 3D features, expressed in terms
of the MAE computed as the average from 50 runs in
RAND data separation mode and as many runs as tools were
considered in the 1OUT data separation mode (15 in the
real setup and 50 in simulation). For comparison, Table II
displays the results obtained when, instead of the proposed
3D features, the affordance models were trained and tested
with the deep learned features extracted from layer FP7 of
the off-the-shelf AlexNet CNN used to recognize the tools
(only applicable in the real setup). In Figure 9 the comparison
between the recorded affordance vectors and those predicted
by the model trained with 1OUT data separation scheme using
BALAN features (which was chosen for the Action Selection
experiment) can be observed graphically.

D. Action Selection

The last evaluation step consisted in applying the learned
models to select, given a tool-pose not observed during
training, the best action for the task of achieving maximum
displacement of the target object, as explained in Section
III-E. Therefore, the actions executed by the robot depend on
which of the learned models we apply. In order to ensure
fair evaluation, this test was carried out using models trained
with the 1OUT data separation scheme, so that the data

corresponding to the tested tool had never been used to
train the models used to predict its affordances. Concerning
the OMS-EGI feature parameter setting used to trained the
models, it can be observed in Table I that in simulation
the models learned using OCCUP parameter settings perform
slightly better than the rest for the 1OUT data separation
scheme, in terms of the achieved PI . However, in the real
setup the performance of the models trained with OCCUP
decreases considerably, when compared with the performance
of the models trained with the other OMS-EGI parameter
settings. Therefore, we chose to perform the action selection
test applying the models trained with BALAN parameter
settings, which provide more consistent performance among
both scenarios. For each test tool-pose, thus, the robot obtained
a prediction of its affordance vector from the model trained
using 1OUT data separation and BALAN OMS-EGI settings,
and executed the action with maximum expected displacement,
as described in Section III-E. This procedure was run twice
for each tool-pose, yielding the results that can be observed
in Figure 10.

Based on these results, the degree of accomplishment of the
given task was assessed by comparing the achieved effects
against an action selection baseline, which was defined for
each tool-pose as the median effect among all effects recorded
for that tool-pose during the data gathering part of the experi-
ment. In principle, if actions had been selected at random, the
achieved effect would be over this baseline 50% of the times.
Figure 10 shows the displacement that the robot achieved using
the best action for each of the tested tool-poses, alongside the
corresponding baseline and the maximum effect of any actions
observed during the data gathering phase. The overall degree
of task success was measured in two ways similar to [25], in
order to allow for comparison. On the one hand, we measure
the Success Rate S as the percentage of times that the effect
achieved by the selected action was higher than the baseline.
On the other, we measured the Gambling Score G, which
is computed by subtracting the number of unsuccessful trials
(UT ) times the number of possible unsuccessful options (UO)
(in this case one, effect below the baseline) to the number of
successful trials (ST ), divided by the total number of trials
(T ), so that a random action selector would lead to G = 0%,
and a perfect one to G = 100%, that is:

G = (ST − (UT · UO))/T (3)

The results for simulation and real setup, separated by tool
type, can be observed in Table III.

V. DISCUSSION AND FUTURE WORK

In the current study we presented a set of methods that
allows a robot to learn tool affordances through interaction
with its environment, considering also the pose in which the
tools are grasped. These methods were tested on the iCub
robot by means of comparing recorded effects of tool use
with predicted ones, as well as using the prediction to select
actions with previously unseen tools. The results show that
the proposed methods enable the iCub to learn and accurately



(a) Simulation (b) Real

Fig. 9: Predicted effect (red) against recorded effect (blue) with variance (vertical lines), for (a) Simulation and (b) Real setup,
using the 1-OUT data separation scheme and BALAN parameter settings. Each row of subplots corresponds to the aggregated
data of all tools in a tool category (hoe, rake, etc), separated by pose (on columns). In all graphs, X axis corresponds to the
angle of the drag action, from θ = 0◦ to 315◦, and the Y axis to the displacement (predicted or measured) in meters.

SIM BALAN EGI OCCUP
MAE MAEBL PI(%) MAE MAEBL PI(%) MAE MAEBL PI(%)

RAND 2.7±0.19 5.02±0.18 43.4 2.77±0.24 5.01±0.2 44.6 2.60±0.19 4.99±0.23 47.7
1OUT 3.32±1.7 5.12±0.97 35.7 3.31±1.84 5.07±0.9 34.6 3.12±1.87 4.97±0.98 37.2

REAL BALAN EGI OCCUP
MAE MAEBL PI(%) MAE MAEBL PI(%) MAE MAEBL PI(%)

RAND 2.46±0.23 5.75±0.35 57.3 2.4±0.26 5.67±0.38 57.7 2.25±0.19 5.74±0.33 60.8
1OUT 3.58±0.81 5.81±1.54 38.3 3.99±1.3 5.71±1.3 30.1 4.15±1.87 5.51±1.17 24.6

TABLE I: Mean Absolute Error (MAE , in cm), Baseline (MAEBL, in cm), and Percentage of Improvement (PI , in %) average
and variance for each evaluation scenario.

REAL AlexNet FP7 feats
MAE MAEBL PI(%)

RAND 3.18 5.71 45.6
1OUT 5.53 5.76 4.01

TABLE II: Prediction results obtained with the DL features.

SIM hoes hooks rakes sticks shovels Total

S(%) 100 90 96.7 50 66.7 80.67
G 100 63.3 86.7 0 40 56.7

REAL hoes hooks rakes sticks shovels Total

S(%) 100 88.9 88.9 77.8 88.9 88.9
G 100 77.8 77.8 44.4 77.8 75.6

TABLE III: Action selection performance results, in simula-
tion and the real setup.

predict tool affordances based on their geometry, and to
successfully use this knowledge to select valid actions to
achieve a displacement task on the target object.

The prediction results evince that even in the presence of
unknown tools, the proposed methods are able to successfully
generalize the knowledge learned for similar tools, and apply
it to correctly predict the effect the tool will generate for any
considered action. This can be observed in the substantial
reduction of the prediction error, reflected in the PI values
displayed in Table I, as well as in the close match between
the predicted and the recorded affordance vectors illustrated
in Figure 9.

Observing the individual results for each of the OMS-EGI
parameter settings in the different scenarios, it is noteworthy
the degradation of the 1OUT results obtained with the OCCUP
descriptor on the real setup when compared with simulation,
which does not happen for the other OMS-EGI settings. This
can be explained by the fact that the small variations performed
in the tool-poses in order to obtain the data augmentation
samples do not modify in essence the occupancy of these



(a) Action selection experiment results, in simulation.

(b) Action selection experiment results, in the real setup.

Fig. 10: Results of the Action Selection experiment by tool-pose (a) simulation and (b) real setup. The average of the 2 effects
measured from execution of best expected action for each test tool-pose (orange) is displayed against the baseline for that
tool-pose (red), and its maximum effect achieved during the data gathering phase (dark-blue). All tool-poses are considered,
but only tool names are added on the X axis in order to prevent clutter.

oriented pointclouds within their bounding box. Therefore,
all samples from each tool-pose get mapped to the one or
at most a few BMUs. On the real setup, where the number
of tool-poses is small, this concentration of training samples
onto a few prototypes implies that the SOM is not able to
provide a gradual representation of the tool-pose features, and
therefore might not represent well new tools that had not
been used to train this map, leading to poor predicting perfor-
mance. On simulation, although data augmentation samples
from OCCUP settings still tend to coalesce in one or few
BMUs per tool-pose, the much larger number of tool-poses
considered makes this concentration effect less relevant, as a
gradual variation of tool-pose representation along the SOM
is provided nevertheless. With BALAN parameters (as well as
EGI), on the other hand, small rotations do vary the surface
normals considerably, and thus the resulting feature vector.
Thus, activations from different samples of the same tool-pose
tend to be more spread on the SOM, which in turn results
in a more gradual representation of tool-pose features, more
capable to accommodate features from new tool-poses.

Taking into account this effect, the BALAN OMS-EGI
parameter setting provides the most reliable information to
predict tool-pose affordances. We believe this is due to the
fact that it can better benefit from the data augmentation
technique to improve the unsupervised mapping, while at the
same time integrating relevant information about the model’s
surface directions and its occupation of space (relative to the

robot’s hand).
The results obtained with the off-the-shelf deep learned

features show that in the RAND scenario, the performance
of the off-the-shelf deep learned features is as good as that
obtained with the proposed 3D features. In this scenario, the
prediction problem is akin to a discrimination task, where
similar instances of previously seen classes (tool-poses) have
to be associated with their corresponding outputs (affordance
vectors). However, when the task consists in predicting the
output for instances of classes that had not previously been
seen by the system, such as in the 1OUT scenario, the per-
formance of deep learned features dropped to almost chance
levels. These results suggest that tool representations based
on their pose and 3D geometry correlate much better with
the affordances that those tools can offer than those based on
invariant 2D properties. In general, this indicates that despite
the unquestionable performance of deep learned features in
traditional computer vision scenarios such as detection and
classification, other kind of features such as the proposed ones
can be more suited in interactive scenarios like the present one
where the physical properties and position of the object matter.

On the results from the action selection phase of the
experiment, displayed in Figure 10 and Table III, we can
observe that the predictions yielded by the proposed method
enabled the iCub to select the desired action for a given
task with a high degree of success, as shown by the large
percentage of effects generated over the baseline. Yet, in some



cases the selected action does not produce a large displacement
of the object as expected. By careful examination of the
recorded affordance vectors for each tool-pose, we observed
that the trials where the selected action failed to achieve
maximum effect usually corresponded with situations in which
a given tool-pose, or tool-poses with similar geometries, did
not offer consistent affordances, that is, achieved different
effects for the same action. This effect was more pronounced
on simulation, where sometimes small contacts generated
unpredictable effects, which prevented proper learning of these
tool’s affordances. In particular, we observed that due to errors
in collision calculations, when a tool pushed the target object
down against the table, there were some chances that the
object would “jump” a few centimeters away in any direction.
This situation happened with tool-poses where the tooltip was
situated in the same vertical axis as the handle – sticks, hooks
oriented to the front, and some shovels oriented to either side
– and explains the poor results obtained with these tool-poses.

On the other hand, for those tool-poses which offered
consistent affordances, such as hoes, rakes, hooks oriented
to the side and most shovels in simulation, and all tools on
the real setup, the selected actions led to successful effects
with a high degree of accuracy (up to 100% in the case of
rakes). These results indicate that the proposed methods were
able to accurately predict the tool-pose affordances from their
geometry, and apply this knowledge to select suitable actions
to achieve the given task, even with previously unseen tools.

In order to assess the achieved results in the context of
the state-of-the-art, we compared our results with the ones by
Gonçalvez et al. [25], as it is the only study, to the best of our
knowledge, performed in a similar setup and with comparable
actions and effects. In our study, the Gambling score G in
simulation gets seriously penalized by the inaccuracies on the
prediction of the sticks affordances, which indeed perform as if
predicted at random, and therefore is on average lower than on
their study. On the other hand, in our study the overall accuracy
is nevertheless around 6.5% higher. On the real setup, however,
it can be observed that our method provides a substantially
higher score, with over a 10% increase in both measurements.
An important factor to take into account, moreover, is that in
our study we consider 8 possible directions and 150 different
tool-poses in simulation and 45 tool-poses in the real robot,
while in [25], only 4 tools and 4 push directions are considered
in simulation, and 1 tool and 1 action on the real robot.

However, our focus on the representation and generalization
among tools came at the expense of necessary simplification
in the representation of the rest of the elements present in the
affordance and in the implementation of the methods used
by the robot to explore its environment, which reduce the
autonomy of the presented method.

Concerning the representation of the affordance elements,
we acknowledge that the action repertoire and possible grasps,
as well as the way in which the effect is measured, are
quite limited. While the presented learning methods could in
principle cope with higher dimensionality in inputs and outputs
thanks to the dimensionality reduction step, increasing the

complexity of these elements, specially the action repertoire,
could easily lead to search spaces impossible to explore
sufficiently on a real robotic setup unless other constraints
are in place. In a similar way, we have only considered the
location of the target object, disregarding any properties such
as geometry or material. We acknowledge that these properties
do influence the effect of actions on the object, but as in the
previous literature [40], we assume that it can or has been
learned in previous stages of the robot development.

Regarding the method’s autonomy, we claim that the pre-
sented method is self-supervised in the sense that all the
elements required to learn the affordance are obtained automat-
ically by the iCub, and their relationship learned without any
need of human labeling, which renders the learned knowledge
meaningful for the iCub itself. This approach constrains the
type of affordances that the robot can learn to those that it can
safely generate, and automatically identify, which would be a
much harder challenge for other actions such as hammering,
cutting or scooping. This is in contrast to computer vision
affordance learning methods, whose goal is to predict a set
of human labeled affordances, and therefore can in principle
learn any affordance a human can generate, but would be
meaningless for any robot, unless otherwise transferred or
verified (as in [50]).

Nevertheless, there are some aspects that substantially limit
the autonomy of the presented method, understood as the need
for human intervention in order to learn affordances. First,
the exploration strategy consisted on the repetition of a set
of predefined actions, and occurred off-line (before learning).
More efficient methods exist in the literature, based on active
exploration and even intrinsic motivation [77], [78], but we
decided to apply exhaustive exploration in order to obtain full
affordance vectors, on which the presented learning system
is based. Also, we assume that full 3D models of all the
considered tools are available, which would not be the case if
encountering a new tool. 3D reconstruction techniques have
been proposed in the literature from depth or image data
[79], [80], [81], both available in the iCub. However, the low
resolution of the cameras and their variable baseline make
the implementation of these methods on the iCub a non trivial
enterprise, out of the scope of this study. Work in this direction
is already ongoing, which should in the future allow the iCub
to reconstruct 3D models of the available tools online.

Another limitation of our approach is the current lack of
support for tool selection, given that every trial starts with the
tool already being held by the robot. However, if combined
with some method for tool recognition, such as the one
presented in [69], the present architecture could be applied
as a forward model, which would predict the affordances of
a number of “common” grasps of the available tools, and use
the best prediction to select tool and pose. Of course, most
effects can be achieved by many different tool-poses, so extra
constraints and evaluations would have to be put in place to
limit the selection process. Moreover, at present time the iCub
is unable to autonomously grasp a tool from a table with a
radial tool grasp and a desired orientation, so even if it was



able to choose a tool, it should be handed correctly by the
experimented. Nevertheless, a lot of work is being put into
improving the grasping capabilities of the iCub, and not only,
so we hope that in a near future this problem will be overcome.

VI. CONCLUSIONS

In this paper, we presented a method to learn and generalize
tool affordances based on their geometry and the way in which
they are grasped, implemented and validated in the iCub robot
and its simulation on a large dataset of tools. The proposed
learning architecture performs dimensionality reduction of the
tool and affordance representations by mapping them on 2D
Self-Organizing Maps, whose coordinates are in turn mapped
by means of a GRNN regressor. Affordances are represented
in terms of affordance vectors, which merge together action
and effect. Tools, instead, are represented with three different
3D descriptors based on the tools’ 3D information, which
encapsulate the geometrical properties of a tool relative to the
way in which it is grasped. We also compare the predictive
performance of the proposed 3D descriptors against features
derived from deep convolutional neural networks, showing that
our description provides better generalization performance for
interaction scenarios. Finally, the best tool-pose descriptor in
terms of prediction is chosen to learn a model which the iCub
uses to select the best action for a given task of displacing
the target object. Results show that the proposed method
outperforms recent studies with similar scenarios, and indeed
allows the robot to select the best action for the given task
with a high success rate.

REFERENCES

[1] S. Brown and C. Sammut, “Tool Use Learning in Robots,” in Advances
in Cognitive Systems, 2011, pp. 58–65.

[2] T. Mar, V. Tikhanoff, G. Metta, and L. Natale, “Multi-model approach
based on 3D functional features for tool affordance learning in robotics.”
in Humanoids 2015, Seoul, 2015.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classifica-
tion with Deep Convolutional Neural Networks,” Advances In Neural
Information Processing Systems, pp. 1–9, 2012.

[4] T. Mar, V. Tikhanoff, G. Metta, and L. Natale, “Self-supervised learning
of grasp dependent tool affordances on the iCub Humanoid robot,” in
International Conference on Robotics and Automation, 2015, pp. 3200
– 3206.

[5] J. J. Gibson, The ecological approach to visual perception. Psychology
Press, 1979.

[6] R. E. Shaw, M. T. Turvey, and W. M. Mace, “Ecological psychology.
The consequence of a commitment to realism.” Cognition and Symbolic
processes, vol. 2, pp. 159–226, 1982.

[7] M. T. Turvey, “Affordances and Prospective Control: An Outline of the
Ontology,” Ecological Psychology, vol. 4, pp. 173–187, 1992.

[8] A. Chemero, “An Outline of a Theory of Affordances,” Ecological
Psychology, vol. 15, no. 2, pp. 181–195, 2003.

[9] A. Murata, L. Fadiga, L. Fogassi, V. Gallese, V. Raos, and G. Rizzolatti,
“Object representation in the ventral premotor cortex (area F5) of the
monkey.” Journal of neurophysiology, vol. 78, no. 4, pp. 2226–2230,
1997.

[10] M. Matelli and G. Luppino, “Parietofrontal circuits for action and space
perception in the macaque monkey.” NeuroImage, vol. 14, no. 1 Pt 2,
pp. S27–32, 2001.

[11] E. Bartoli, L. Maffongelli, M. Jacono, and A. D’Ausilio, “Representing
tools as hand movements: Early and somatotopic visuomotor transfor-
mations,” Neuropsychologia, vol. 61, pp. 335–344, 2014.

[12] S. Thill, D. Caligiore, A. M. Borghi, T. Ziemke, and G. Baldassarre,
“Theories and computational models of affordance and mirror sys-
tems: An integrative review,” Neuroscience and Biobehavioral Reviews,
vol. 37, no. 3, pp. 491–521, 2013.

[13] E. J. Gibson, Principles of perceptual learning and development.
Prentice-Hall, 1969.

[14] E. J. Gibson and A. D. Pick, An ecological approach to perceptual
learning and development. Oxford University Press, 2000.

[15] R. L. Goldstone, “Perceptual learning.” Annual review of psychology,
vol. 49, pp. 585–612, 1998.

[16] M. Viezzer and C. Nieywenhuis, “Learning affordance concepts: some
seminal ideas,” International Joint Conference on Artificial Intelligence,
2005.

[17] F. Guerin, N. Krüger, and D. Kraft, “A Survey of the Ontogeny of Tool
Use: From Sensorimotor Experience to Planning,” IEEE Transactions
on Autonomous Mental Development, vol. 5, no. 1, pp. 18–45, 2013.

[18] P. Fitzpatrick, G. Metta, L. Natale, S. Rao, and G. Sandini, “Learn-
ing About Objects Through Action - Initial Steps Towards Artificial
Cognition,” in Procceedings of the IEEE Intrernational Conference on
Robotics and Automation, 2003, pp. 3140–3145.

[19] A. Stoytchev, “Toward Learning the Binding Affordances of Objects : A
Behavior-Grounded Approach,” in AAAI Symposium on Developmental
Robotics, 2005, pp. 21–23.

[20] C. Geib, K. Mour, R. Petrick, N. Pugeault, M. Steedman, N. Krueger,
and W. Florentin, “Object Action Complexes as an Interface for Plan-
ning and Robot Control,” in IEEE-RAS International Conference on
Humanoid Robots (Humanoids 2006)., 2006.

[21] N. Krüger, C. Geib, and J. Piater, “Object-Action Complexes: Grounded
Abstractions of Sensorimotor Processes,” Robotics and Autonomous
Systems, vol. 59, no. 10, pp. 740–757, 2011.

[22] L. Montesano, M. Lopes, A. Bernardino, and J. Santos-Victor, “Model-
ing affordances using Bayesian networks,” in 2007 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems. IEEE, 2007, pp.
4102–4107.

[23] P. Osório, A. Bernardino, and R. Martinez-cantin, “Gaussian Mixture
Models for Affordance Learning using Bayesian Networks,” in Interna-
tional Conference on Intelligent Robots and Systems, 2010, pp. 1–6.

[24] B. Moldovan, P. Moreno, M. van Otterlo, J. Santos-Victor, and L. De
Raedt, “Learning relational affordance models for robots in multi-object
manipulation tasks,” 2012 IEEE International Conference on Robotics
and Automation, pp. 4373–4378, 2012.

[25] A. Gonçalves, J. Abrantes, G. Saponaro, L. Jamone, and A. Bernardino,
“Learning Intermediate Object Affordances : Towards the Development
of a Tool Concept,” in IEEE International Conference on Development
and Learning and on Epigenetic Robotics (ICDL-EpiRob 2014), no.
October, 2014, pp. 1–8.

[26] E. Sahin, M. Cakmak, M. R. Dogar, E. Ugur, and G. Ucoluk, “To
Afford or Not to Afford: A New Formalization of Affordances Toward
Affordance-Based Robot Control,” Adaptive Behavior, vol. 15, no. 4,
pp. 447–472, 2007.

[27] E. Ugur, E. Oztop, and E. Sahin, “Goal emulation and planning in
perceptual space using learned affordances,” Robotics and Autonomous
Systems, vol. 59, no. 7-8, pp. 580–595, 2011.

[28] ——, “Going beyond the perception of affordances: Learning how to
actualize them through behavioral parameters,” in 2011 IEEE Interna-
tional Conference on Robotics and Automation, 2011, pp. 4768–4773.

[29] E. Ugur and J. Piater, “Emergent Structuring of Interdependent Affor-
dance Learning Tasks,” in IEEE International Conference on Develop-
ment and Learning and Epigenetic Robotics, 2014, pp. 481–486.

[30] E. Ugur, S. Szedmak, and J. Piater, “Bootstrapping paired-object af-
fordance learning with learned single-affordance features,” in IEEE
International Conference on Development and Learning and Epigenetic
Robotics, 2014, pp. 468–473.

[31] E. Ugur and J. Piater, “Emergent structuring of interdependent affor-
dance learning tasks using intrinsic motivation and empirical feature
selection,” IEEE Transactions on Cognitive and Developmental Systems,
no. 99, pp. 1–13, 2016.

[32] ——, “Bottom-Up Learning of Object Categories , Action Effects and
Logical Rules : From Continuous Manipulative Exploration to Symbolic
Planning,” in International Conference on Robotics and Automation,
2015.

[33] B. Ridge, D. Skocaj, and A. Leonardis, “Self-Supervised Cross-
Modal Online Learning of Basic Object Affordances for Developmental



Robotic Systems,” in IEEE International Conference on Robotics and
Automation, 2010, pp. 5047–5054.

[34] B. Ridge, A. Leonardis, A. Ude, M. Denisa, and D. Skocaj, “Self-
Supervised Online Learning of Basic Object Push Affordances,” Inter-
national Journal of Advanced Robotic Systems, vol. 12, no. 3, pp. 1–18,
2015.

[35] A. Glover, “Developing grounded representations for robots through the
principles of sensorimotor coordination,” Ph.D. dissertation, Queensland
University of Technology, 2014.

[36] C. Wang, K. V. Hindriks, and R. Babuska, “Robot learning and use of
affordances in goal-directed tasks,” IEEE International Conference on
Intelligent Robots and Systems, pp. 2288–2294, 2013.

[37] S. Fichtl, A. McManus, W. Mustafa, D. Kraft, N. Krüger, and F. Guerin,
“Learning Spatial Relationships From 3D Vision Using Histograms,”
Icra, 2014.

[38] A. Stoytchev, “Behavior-grounded representation of tool affordances,”
Proceedings - IEEE International Conference on Robotics and Automa-
tion, vol. 2005, no. April, pp. 3060–3065, 2005.

[39] J. Sinapov and A. Stoytchev, “Detecting the functional similarities
between tools using a hierarchical representation of outcomes,” in 2008
7th IEEE International Conference on Development and Learning, 2008,
pp. 91–96.

[40] V. Tikhanoff, U. Pattacini, I. S. Member, L. Natale, and G. Metta,
“Exploring affordances and tool use on the iCub,” in Humanoids 2013,
2013.

[41] R. Jain and T. Inamura, “Learning of Tool Affordances for autonomous
tool manipulation,” 2011 IEEE-SICE International Symposium on Sys-
tem Integration SII, pp. 814–819, 2011.

[42] ——, “Bayesian learning of tool affordances based on generalization of
functional feature to estimate effects of unseen tools,” Artificial Life and
Robotics, vol. 18, no. 1-2, pp. 95–103, 2013.

[43] A. Gonçalves, G. Saponaro, L. Jamone, and A. Bernardino, “Learning
visual affordances of objects and tools through autonomous robot
exploration,” 2014 IEEE International Conference on Autonomous Robot
Systems and Competitions, ICARSC 2014, no. May, pp. 128–133, 2014.

[44] A. Dehban, L. Jamone, A. R. Kampff, and J. Santos-Victor, “Denoising
Auto-encoders for Learning of Objects and Tools Affordances in Contin-
uous Space,” in International Conference on Robotics and Automation,
2016, pp. 1–6.

[45] S. Griffith, J. Sinapov, V. Sukhoy, and A. Stoytchev, “A Behavior-
Grounded Approach to Forming Object Categories: Separating Contain-
ers from Non-Containers,” IEEE Transactions on Autonomous Mental
Development, vol. 4, no. 1, pp. 54–69, 2012.

[46] D. I. Kim, “Semantic Labeling of 3D Point Clouds with Object Affor-
dance for Robot Manipulation,” in International Conference on Robotics
and Automation, 2014, pp. 5578–5584.

[47] A. Roy and S. Todorovic, “A Multi-Scale CNN for Affordance Segmen-
tation in RGB Images,” in European Conference on Computer Vision
(ECCV2016), 2016, pp. 186–201.

[48] A. Myers, A. Kanazawa, C. Fermuller, and Y. Aloimonos, “Affordance
of Object Parts from Geometric Features,” in International Conference
on Robotics and Automation2, 2015, pp. 5–6.

[49] A. Srikantha and J. Gall, “Weakly Supervised Learning of Affordances,”
arXiv preprint, vol. abs/1605.0, pp. 1–16, 2016.

[50] A. Nguyen, D. Kanoulas, D. G. Caldwell, and N. G. Tsagarakis,
“Detecting Object Affordances with Convolutional Neural Networks,”
in Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International
Conference on., 2016, pp. 2765–2770.

[51] M. Schoeler and F. Worgotter, “Bootstrapping the Semantics of Tools:
Affordance analysis of real world objects on a per-part basis,” IEEE
Transactions on Autonomous Mental Development, vol. pp, no. 99, pp.
1–1, 2015.

[52] P. Abelha, F. Guerin, and M. Schoeler, “A Model-Based Approach to
Finding Substitute Tools in 3D Vision Data,” in International Conference
on Robotics and Automation. IEEE, may 2016, pp. 2471–2478.

[53] M. Ranzato, F. J. Huang, Y.-L. Boureau, and Y. LeCun, “Unsupervised
Learning of Invariant Feature Hierarchies with Applications to Object
Recognition,” 2007 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1–8, 2007.

[54] Y. Lecun, “Learning Invariant Feature Hierarchies,” in Computer Vi-
sionECCV 2012. Workshops and Demonstrations, 2012, pp. 496–505.

[55] V. Nair and G. E. Hinton, “3D Object Recognition with Deep Belief
Nets,” in Advances in Neural Information Processing Systems, 2009,
pp. 1339–1347.

[56] H. Lee, “Unsupervised Feature Learning Via Sparse Hierarchical Rep-
resentations,” Ph.D. dissertation, 2010.

[57] D. V. Vranić and D. Saupe, “3D model retrieval,” in Proc. Spring
Conference on Computer Graphics and its Applications (SCCG2005),
2005, pp. 89–93.

[58] M. Madry, C. H. Ek, R. Detry, K. Hang, and D. Kragic, “Improv-
ing generalization for 3D object categorization with Global Structure
Histograms,” in 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2012, pp. 1379–1386.

[59] Z. Wu and S. Song, “3D ShapeNets : A Deep Representation for
Volumetric Shapes,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR2015), 2015, pp. 1–9.

[60] C. R. Qi, H. Su, M. Niessner, A. Dai, M. Yan, and L. J. Guibas,
“Volumetric and Multi-View CNNs for Object Classification on 3D
Data,” in IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 5648–5656.

[61] L. Jamone, E. Ugur, A. Cangelosi, L. Fadiga, A. Bernardino, J. Piater,
and J. Santos-Victor, “Affordances in psychology, neuroscience and
robotics: a survey,” IEEE Transactions on Cognitive and Developmental
Systems, no. August, pp. 1–1, 2016.

[62] G. Metta, L. Natale, F. Nori, G. Sandini, D. Vernon, L. Fadiga, C. von
Hofsten, K. Rosander, M. Lopes, J. Santos-Victor, A. Bernardino, and
L. Montesano, “The iCub humanoid robot: an open-systems platform
for research in cognitive development.” Neural networks : the official
journal of the International Neural Network Society, vol. 23, no. 8-9,
pp. 1125–34, 2010.

[63] S. R. Fanello, U. Pattacini, I. Gori, and V. Tikhanoff, “3D Stereo
Estimation and Fully Automated Learning of Eye-Hand Coordination
in Humanoid Robots,” in Humanoids 2014, 2014, pp. 1028–1035.

[64] V. Tikhanoff, A. Cangelosi, P. Fitzpatrick, G. Metta, L. Natale, and
F. Nori, “An Open-Source Simulator for Cognitive Robotics Research:
The Prototype of the iCub Humanoid Robot Simulator,” in Workshop
on Performance Metrics for Intelligent Systems, 2008.

[65] G. Metta, “Software implementation of the phylogenetic abilities specif-
ically for the iCub & integration in the iCub Cognitive Architecture,”
Tech. Rep. 004370, 2006.

[66] Trimble, “3D modeling for everyone — SketchUp,” 2016. [Online].
Available: www.sketchup.com

[67] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),”
in Proceedings - IEEE International Conference on Robotics and
Automation, 2011.

[68] J. Vesanto, J. Himberg, E. Alhoniemi, and J. Parhankangas, “Self-
Organizing Map in Matlab: the SOM Toolbox,” in Matlab DSP Confer-
ence, 2000, pp. 35–40.

[69] G. Pasquale, C. Ciliberto, F. Odone, L. Rosasco, and L. Natale,
“Teaching iCub to recognize objects using deep Convolutional Neural
Networks,” Proceedings of The 4th Workshop on Machine Learning for
Interactive Systems, pp. 21–25, 2015.

[70] T. Ojala, M. Pietikäinen, and D. Harwood, “A comparative study of
texture measures with classification based on feature distributions,”
Pattern Recognition, vol. 29, no. 1, pp. 51–59, 1996.

[71] B. K. P. Horn, “EXTENDED GAUSSIAN IMAGES.” Proceedings of
the IEEE, vol. 72, no. 12, pp. 1671–1686, 1984.

[72] L. Montesano, M. Lopes, A. Bernardino, and J. Santos-Victor, “Learning
Object Affordances: From Sensory–Motor Coordination to Imitation,”
IEEE Transactions on Robotics, vol. 24, no. 1, pp. 15–26, 2008.

[73] L. van der Maaten, G. E. Hinton, L. van der Maaten, and G. E. Hinton,
“Visualizing high-dimensional data using t-SNE,” Journal of Machine
Learning Research, vol. 9, pp. 2579–2605, 2008.

[74] T. Kohonen, “The self-organizing map,” Proceedings of the IEEE,
vol. 78, no. 9, pp. 1464–1480, 1990.

[75] J. Sinapov, T. Bergquist, C. Schenck, U. Ohiri, S. Griffith, and
A. Stoytchev, “Proprioceptive and Auditory Feedback,” The Interna-
tional Journal of Robotics Research, vol. 30, no. 10, pp. 1250–1262,
2011.

[76] D. F. Specht, “A general regression neural network,” Neural Networks,
IEEE Transactions on, vol. 2, no. 6, pp. 568–576, 1991.

[77] P.-y. Oudeyer, V. V. Hafner, and F. Kaplan, “Intrinsic Motivation
Systems for Autonomous Mental Development,” IEEE Transactions on
Evolutionary Computation, vol. 11, no. 2, pp. 265–286, 2007.

[78] A. Baranes and P. Y. Oudeyer, “Active learning of inverse models
with intrinsically motivated goal exploration in robots,” Robotics and
Autonomous Systems, vol. 61, no. 1, pp. 49–73, 2013.

www.sketchup.com


[79] D. Xu, J. Cai, T. J. Cham, P. Fu, and J. Zhang, “Kinect-Based Easy
3D Object Reconstruction,” in Pacific-Rim Conference on Multimedia,
2012, pp. 476–483.

[80] C. Y. Ren, V. Prisacariu, D. Murray, and I. Reid, “STAR3D: Simulta-
neous tracking and reconstruction of 3D objects using RGB-D data,”
Proceedings of the IEEE International Conference on Computer Vision,
pp. 1561–1568, 2013.

[81] Y. Zhang, G. M. Gibson, R. Hay, R. W. Bowman, M. J. Padgett, and
M. P. Edgar, “A fast 3D reconstruction system with a low-cost camera
accessory,” Scientific Reports, vol. 5, pp. 1–7, 2015.

Tanis Mar is currently a senior research fellow at
the iCub Facility at the Italian Institute of Technol-
ogy. He received the M.Sc. degree in Telecommuni-
cation Engineering from the University of Zaragoza
in 2009, the M.Sc. degree in Computational Neu-
roscience from the Bernstein Center - Berlin in
2013, and the PhD degree in Machine Learning
for Robotics from the iCub Facility at the Italian
Institute of Technology in 2017, on the topic of
tool use and manipulation. He has also worked
as a researcher at Fraunhofer IMPS in Dresden,

Humboldt University in Berlin, ATR Laboratories in Kyoto and UKE in
Hamburg, and participated in several European projects such as eSCMs,
Xperience and POETICON++. His research interests focus on the mecha-
nisms and applications of learning processes in natural and artificial agents,
and include machine learning, artificial curiosity, sensorimotor integration,
computer vision and developmental robotics.

Vadim Tikhanoff currently holds a Technologist
position at the Italian Institute of Technology (IIT)
working in the iCub Facility. He attained his Ph.D.
in 2009 at the University of Plymouth UK, with a
thesis on the Development of Cognitive Capabilities
in Humanoid Robots and pursued his research as a
Post-Doc at the Italian Institute of Technology (IIT).
Vadim Tikhanoff has a background in Artificial In-
telligence and Robotic Systems and is now focusing
on the development of innovative techniques and
approaches for the design of skills in a robot to

interact with the surrounding physical world and manipulate objects in an
efficient manner. He has authored numerous scientific articles including
journals and book chapters in areas ranging across neural networks, language
acquisition, cognitive systems and image processing. Dr. Tikhanoff served as
the Program Chair of ICDL-Epirob 2014 and program committee of HAI
2017. Amongst other, he is also guest Associate Editor of the Humanoid
Robotics code topic of the Frontiers in Robotics and AI.

Lorenzo Natale is presently a Researcher at the
IIT, where he leads the Humanoid Sensing and
Perception research group. He received his Ph.D.
in Robotics in 2004 from the University of Genoa
and he was later postdoctoral researcher at the MIT-
CSAIL. Lorenzo Natale has contributed to the de-
velopment of various humanoid robots, and he was
one of the main developers of the iCub humanoid
robot. His research interests range from sensorimotor
learning and artificial perception to software archi-
tectures for robotics. He has authored more than 100

publications in peer-reviewed journals and conferences. Dr. Natale served as
the Program Chair of ICDL-Epirob 2014 and HAI 2017. He is an Associate
Editor of IEEE ROBOTICS AND AUTOMATION LETTERS, International
Journal of Humanoid Robotics, and the Humanoid Robotics specialty of
Frontiers in Robotics and AI.


	Introduction
	Related Work
	Materials and Methods
	Robotic Platform
	Experimental setup
	3D features for tool-pose representation in interactive scenarios.
	Parallel mapping from tool-pose features to affordances
	Prediction based action selection

	Results
	Experimental data collection and separation
	SOM-based unsupervised dimensionality reduction
	Prediction of tool-pose affordances
	Action Selection

	Discussion and Future Work
	Conclusions
	References
	Biographies
	Tanis Mar
	Vadim Tikhanoff
	Lorenzo Natale


