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Improving the Parallel Execution of Behavior Trees

Michele Colledanchise and Lorenzo Natale

Abstract— Behavior Trees (BTs) have become a popular
framework for designing controllers of autonomous agents in
the computer game and in the robotics industry. One of the key
advantages of BTs lies in their modularity, where independent
modules can be composed to create more complex ones. In
the classical formulation of BTs, modules can be composed
using one of the three operators: Sequence, Fallback, and
Parallel. The Parallel operator is rarely used despite its strong
potential against other control architectures such as Finite State
Machines. This is due to the fact that concurrent actions may
lead to unexpected problems similar to the ones experienced
in concurrent programming. In this paper, we outline how to
tackle the aforementioned problem by introducing Concurrent
BTs (CBTs) as a generalization of BTs in which we include the
notions of progress and resource usage. We show how CBTs
allow safe concurrent executions of actions and we analyze the
approach from a mathematical standpoint. To illustrate the
use of CBTs, we provide a set of use cases in realistic robotics
scenarios.

I. INTRODUCTION

Behavior Trees (BTs) were introduced in the computer
game industry to model the behavior of Non-Player Charac-
ters (NPCs) [1]-[3]. BTs have now matured to the level that
they are included in several textbooks on the topic [4], [5]
and game engines. Following the development in computer
game industry, BTs now also finds large use in real-robot
applications, including manipulation [6], non-expert pro-
gramming [7], brain surgery [8]. Other works include UAV
missions [9], [10], the computer verification of plans [9], and
the estimation of resulting execution times in [11].

BTs are appreciated because they are modular, flexible,
and reusable, and have also been shown to generalize suc-
cessful control architectures such as the Subsumption archi-
tecture [12] and the Teleo-reactive Paradigm [13] in [14].

The Parallel operator in BTs has the great advantage that
it helps to tame the curse of dimensionality that affects many
other control architectures, in which the system’s complexity
is the product of its sub-systems’ complexities [15]. How-
ever, in the classical formulation of BTSs, the trees in a
Parallel operator are independent from each other. This limits
their applications to orthogonal tasks [14], [16], making the
Parallel operator rarely used compared to the other ones.

We propose Concurrent BTs (CBTs) as a generalization of
BTs where for each node we define its progress value and
the resources needed for its execution. We show how CBTs
allow actions to be safely executed concurrently by adopting
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Fig. 1. Example of two BTs executing tasks in parallel that require
synchronization.

(b) Example of two BTs executed

solutions from computer programming in terms of process
synchronization and exclusive use of critical resources, as in
the two following examples.

1) A robot that is asked to find and recognize the objects
on the floor. A possible way to describe this task is using
the BT in Figure [I(a)] Where the action Navigate generates
and makes the robot follow a path and the action Seek
looks for objects on the floor and recognizes them. However,
since classical formulation of BTs executes the two actions
independently, there could be the case where the robot
navigates in the room too fast for the seeking routine to
recognize objects, resulting in an unsuccessful execution of
the task.

2) A service robot, beside its main task, has also to monitor
the light condition of the room and whether a person gets
too close to the robot. A possible way to describe this
monitoring task is using the BT in Figure [[(b)] Each task
has a warning message that invokes the speaker. However,
the speaker allows one speech at a time. For this minor
action, the tasks cannot be considered orthogonal and cannot
be safely executed in parallel using the classical formulation
of BTs.

It is clear that the parallel execution of BTs needs syn-
chronization strategies for exploiting its full potential. We
believe that proper parallel task executions will bring benefits
in terms of efficiency and multitasking to robot programming
in a similar way as done in computer programming. However,
in allowing arbitrary BTs to be executed in parallel we
inherit fundamental problems of parallel computing: process
synchronization, where a process has to wait for another
process for the execution, and data synchronization, where
the access to critical resources has to be regulated.

It is important to stress that execution of some routines
may require different amount of time depending on the
context (e.g. object recognition may be triggered only when
visual inspection spots a potential object). Moreover there
could be a substantial difference between the execution of
an action in a simulation and in the real world. Therefore



synchronization must be ensured at run-time.

The contributions of this paper are the definition of CBTs,
in the Parallel composition of CBTs for process and resource
synchronization, and a formal mathematical analysis. To the
best of our knowledge, this is the first attempt at synchro-
nizing the concurrent executions of BTs as it is done in
computer programming.

The remainder of this paper is structured as follows: In
Section [[Il we overview the related work. In Section we
present the classical formulation of BTs. Then, in Section [[V]
we formulate the problem and in Section [V] we show the
proposed solution. In Section some practical observations
and in Section |VI] we analyze the solution from a mathemat-
ical standpoint. Finally, in Section [VIII] we present some use
cases. We conclude the paper in Section

II. RELATED WORK

The Parallel operator is the least used operator in BT
applications as it entails concurrency problems (e.g. race
conditions, starvation, deadlocks, etc). Their applications
usually assume one of the following: 1) the actions executed
in parallel lie on orthogonal state spaces [16] or 2) the actions
that can be potentially executed in parallel have a predefined
priority assigned [17].

In [18] the authors use a Parallel operator to monitor user
requests and execute an activity accordingly. Since the user
can define one activity at a time, the activities are mutually
exclusive. Hence the BT for each activity (and its actions) is
defined in its own sub-space.

In [15] the authors show how to improve fault tolerance
and performance of a single robot BT by adding more
robots and extending the BT into a so-called multirobot BT.
The authors show that, under some assumptions, by turning
Sequence and Fallback operators of the original BT into
a Parallel we can improve task performance. The Parallel
operator involves multiple agents, each assigned to a specific
task by a task-assignment algorithm. The task-assignment
algorithm ensures the absence of conflicts.

A more recent work [19] uses BTs to represent medical
procedures. The Parallel operator is used to monitor concur-
rent procedures that are not in conflict by definition. Hence
each procedure operates in its own sub-space

A BT-based task planner that makes large use of the
Parallel operator is the A Behavior Language (ABL) [20].
ABL was originally designed for the dialogue game Facade,
and it is appreciated for its ability to handle planning and
acting on multiple scales as, in particular, Real-Time Strategy
games [17]. ABL executes sub-plans in parallel and resolves
conflicts between multiple concurrent actions by defining a
fixed priority order. This jeopardizes the modularity of BTs
and introduces the threat of starvation (i.e. the execution of
an action with low priority is perpetually denied).

To conclude, there is currently no work addressing the syn-
chronization problems of the Parallel operator. This makes
our paper fundamentally different than the ones presented
above and the BT literature.

III. BACKGROUND:BEHAVIOR TREES AND CONCURRENT
PROGRAMMING

In this section, we briefly describe the semantic of classical
BTs and the standard semantics for concurrent programming.
A more detailed description of BTs can be found in [14]
while a more detailed description of concurrent programming
can be found in [21].

A. Behavior Trees

A BT is a graphical modeling language used as a rep-
resentation for execution of observation-based actions in a
system. A BT is represented as a rooted tree where the
internal nodes represent operators and leaf nodes represent
actuation or sensing skills.

Graphically, the children of a node are placed below it and
they are executed in the order from left to right, as will be
explained later.

The execution of a BT begins from the root node. It sends
activation signals called Ticks with a given frequency to its
children. A node in the tree is executed if and only if it
receives Ticks from its parent. When the node no longer
receives Ticks, its execution is aborted. The child returns to
the parent a status Success, Running, or Failure according
to the node’s logic. Below we present the most common BT
nodes.

When a Fallback operator receives Ticks, it routes them
to its own children from the left, returning Success/Running
as soon as it finds a child that returns Success/Running. It
returns Failure when all the children return Failure. When a
child returns Running or Success, the Fallback operator does
not send Ticks the next child (if any). The Fallback operator
is graphically represented by a box with the label “?", as in
Figure [2] and its pseudocode is described in Algorithm [I]

When a Sequence operator receives Ticks, it routes them
to its own children from the left, returning Failure/Running
as soon as it finds a child that returns Failure/Running. It
returns Success when all the children return Success. When
a child returns Running or Failure, the Sequence node does
not send Ticks the next child (if any).The Sequence operator
is graphically represented by a box with the label “—", as
in Figure 2] and its pseudocode is described in Algorithm [2]

The Parallel operator ticks its children in parallel and re-
turns Success if all children return Success, it returns Failure
if at least one child returns Failure, and it returns Running
otherwise. The Parallel operator is graphically represented by
a box with the label “=2", as in Figure 2] and its pseudocode
is described in Algorithm [3]

Remark 1: The for loop in Algorithm [3| Line 2 executes
the loops in parallel.

As long as an Action receives Ticks, it performs some
operations. It returns Success to its parent if the operations
are completed and Failure if the operations cannot be com-
pleted. Otherwise, it returns Running. Whenever a running
Action does no longer receive Ticks, its execution is aborted.
An Action is graphically represented by a rectangle, as in
Figure [2] and its pseudocode is described in Algorithm [}



Algorithm 1: Pseudocode of a Fallback operator with NV
children

Algorithm 3: Pseudocode of a Parallel operator with [NV
children

1 Function Tick()
for ; < 1 to N do
childStatus < child(i).Tick ()
if childStatus = Running then
‘ return Running
else if childStatus = Success then
| return Success

N S R W N

8 return Failure

Algorithm 2: Pseudocode of a Sequence operator with
N children
1 Function Tick()
for i < 1 to N do
childStatus < child(i).Tick ()
if childStatus = Running then
| return Running
else if childStatus = Failure then
| return Failure

N S R W N

8 return Success

Whenever a Condition receives Ticks, it checks if a
proposition is satisfied or not, returning Success or Failure
accordingly. A Condition is graphically represented by an
ellipse, as in Figure 2] and its pseudocode is described in
Algorithm [3]

Remark 2: Algorithm [ does a step of computation at
each Tick. This implementation is preferred in BT libraries
for computer games as Unreal Engine and PyGame. BT
libraries for robotics applications prefer an implementation
that allows actions to continue as long as they succeed
or fails such as YARP-BT or ROS-BT. Note that in this
case whenever a running action no longer receives a tick,
its execution is aborted. This requires the implementation
specific routine for aborting the action safely.

The state space formulation of BTs [18] allows us to study
BTs from a mathematical standpoint. In that formulation, the
Tick is represented by a recursive function call that includes
both the return status, the system dynamics, and the system
state.

Definition 1 (Behavior Tree [18]): A BT is a three-tuple

Ti = {fi,ri, At}, (D

where 7 € N is the index of the tree, f; : R® — R™ is the
right hand side of a difference equation, At is a time step
and r; : R* — {R,S,F} is the return status that can be
equal to either Running (R), Success (S), or Failure (F).
Let the Running/Activation region (R;), Success region
(S;) and Failure region (F;) correspond to a partitioning of

1 Function Tick()

2 forall i < 1 to N do

3 | childStatus[i] < child(i).Tick ()
4 if Ei:cl’u'lakS’tutus[i]:Success1 = N then

5 ‘ return Success

6 | elseif X niasiasii)=Failurel > 0 then
7 L return Failure

8 else

9 L return Running

Algorithm 4: Pseudocode of a BT Action

Function Tick()

DoAStepOfComputation()

if action-succeeded then
| return Success

else if action-failed then
L return Failure

A U1 AW N -

else
8 | return Running

=

Algorithm 5: Pseudocode of a BT Condition

1 Function Tick()
if condition-true then
‘ return Success
else
| return Failure

2
3
4
5

the state space, defined as follows:

R, = {z:ri(z)=R} ()
Si = A{x:ri(z) =S8} 3)
F, = {z:ri(x)=F}. 4

Finally, let ) = x(t)) be the system state at time ¢, then
the execution of a BT 7; is a standard ordinary difference
equation

Tpr1 = filzw), 5)

tk1 = tr+ AL (6)
The return status r; will be used when combining BTs
recursively, as explained below.

Having defined a BT using a state space formulation,
Sequence, Fallback, and Parallel compositions are defined
as follows:

Definition 2 (Sequence compositions of BTs [18]): Two
or more BTs can be composed into a more complex BT
using a Sequence operator,

To = Sequence(Ty, T2).



Then rg, fo are defined as follows

If 2, € 54 (N
ro(ry) = 7T2(vk) ®)
folzk) = folwk) ©)

else
ro(zr) = ri(zk) (10)
folzx) = fi(zp). (11)

Definition 3 (Fallback compositions of BTs [18]): Two
or more BTs can be composed into a more complex BT
using a Fallback operator,

To = Fallback(T1, T2).

Then rg, fo are defined as follows

If x, € Iy (12)
ro(zr) = r2(wk) (13)
Jo(zk) fa(xr) (14)

else
ro(zg) = ri(xg) (15)
folzk) = fi(zr). (16)

Definition 4 (Parallel compositions of BTs [18]): Two or
more BTs can be composed into a more complex BT using
a Parallel operator,

To = Parallel(71, 7T2).

Let 2, = (Z1,Z2k) be a partitioning of the state space such
that Z1x L Tog, then rg, fo are defined as follows

S Ile((flk):S/\Tz(ffzk):S

To(Ik) = F O If Tl(jlk) :}'Vrg(:ﬁlk) =F{7)
R else
Jolzr) = ([i(@1k), f2(Zar)) (18)

B. Concurrent Programming

Concurrent programming refers to the execution of mul-
tiple processes during overlapping periods of time concur-
rently instead of sequentially.

The need for synchronization arises in any kind of con-
current process, even in single-processor systems. The main
needs for synchronization are: producer-consumer relation-
ship, where a consumer process has to wait until a producer
produces the necessary data, and exclusive use of resources,
where multiple processes want to access a critical resource.
A synchronization strategy must ensure that only one process
at a time can access the resource [21].

Barriers and Semaphores are popular ways to implement
synchronization. A Barrier is a method that allows concurrent
processes to wait for each other at a specific point of
execution. A Semaphore is a method that regulates the access
to critical resources.

Deadlocks and Starvation are among the most common
threats in concurrent programming [21]. A Deadlock occurs
when processes in a group are all waiting for resources that
are being held by the others. In this case, the processes just

keep waiting and execute no further; There are several tech-
niques to avoid deadlocks [21]. A Starvation occurs when a
process is waiting to use shared resource, but other processes
monopolize it (e.g. because they have higher priority), and
the first process is forced to wait indefinitely. A solution
to starvation is to implement aging, where all process are
preemptable and a process waiting a long time to use a
resource gradually increases its chances to use it.

IV. PROBLEM FORMULATION

In this section, we first make a set of assumptions and
definitions, then state the main problems.

To be able to synchronize the execution of concurrent BTs,
they need to indicate their progress and the resources used.
Hence we make the following assumptions.

Assumption 1: For each BT node there exists a function
that indicates the progress of the node’s execution at each
state.

Assumption 2: For each BT node there exists a function
that indicates the resources used in its execution.

To guarantee that only the ticked actions are executed,
whenever a running action no longer receives ticks it stops
its execution within a negligible time with respect to the
time step At of Definiton [} Hence we make the following
assumption.

Assumption 3: Each action is able to stop its execution
within 7 << At when it no longer receives ticks. During
7 the node does not change its progress value or resources
needed.

We allow disturbance to affect the progress value. How-
ever, we assume that the disturbance acts only on nodes while
they are running. Hence we make the following assumption.

Assumption 4: A BT can change its progress only while
it is running.

For convergence, we need to state the following assump-
tions.

Assumption 5: An action node will terminate its execution
in finite time.

Definition 5 (Progress independent CBTs): Two CBTs,
71 and 7Ta, are said progress independent if the progress of
a BT does not depend on the progress of the other.

We are now ready to formulate the main problems:

Problem 1: Let T; and T3 be two progress independent
BTs. Execute the two BTs concurrently such that 7; and 75
are both running only when they have the same progress,
otherwise the BT with the highest progress waits.

Remark 3: 71 and 7> needs to be progress independent
to avoid conflicts with the progress dependence that will be
introduced.

Problem 2: Let 71 and 75 be two BTs. Execute the
two BTs concurrently in a deadlock-free and starvation-free
fashion such that they do not use the same resources when
they are running.

Remark 4: Problem [2] relaxes the assumption that two
CBTs operate on orthogonal state spaces, as stated in Defi-
nition [



V. PROPOSED SOLUTION

In this section, we present the proposed solution to Prob-
lems [] and [2] We first define the progress and the resource
function, needed to formally define CBTs. We then propose
two new parallel operators to solve Problems [I] and 2] We
define the operators by theirs pseudocode and their space
state formulation, following the formulation of [18].

Definition 6 (Progress Function): The function p : R —
[0, 1] is the progress function. It indicates the progress of the
BT’s execution at each state.

Definition 7 (Resources): L is a collection of symbols that
represents the resources available in the system.

Definition 8 (Resource Function): The function
q : R" — 2% is the resource function. It indicates the set of
resources needed for a BT’s execution at each state.

We can now define a CBT as BT with information
regarding its progress and the resources needed as follows:

Definition 9 (Concurrent BTs): A CBT is a tuple

7; = {fiariv Atapia qz}v

where i, f;, At, r; are defined as in Definition [I} p; is a
progress function, and g is the resource function.

A CBT has the functions p; and ¢; in addition to the others
of Definition [Tl These functions are user-defined for Actions
and Condition. For the classical operators, the functions are
defined below.

Definition 10 (Sequence compositions of CBTs): Two
CBTs can be composed into a more complex CBT using a
Sequence operator,

To = Sequence(T1, T2).-

19)

The functions r(, fo match those introduced in Definition
while the functions pg, qp are defined as follows

If 2 € S (20)
po(zr) = 0.5+ % 2D
qo(zr) = qa(zx) (22)

else
polz) = pP1 (2361«) (23)
qolrr) = qi(zg). (24)

Definition 11 (Fallback compositions of CBTs): Two
CBTs can be composed into a more complex CBT using a
Fallback operator,

To = Fallback(771, 7T2).

The functions 7q, fy are defined as in Definition [3| while the
functions pg, qo are defined as follows

If ¢, € F} (25)
po(zk) = pa(zy) (26)
qo(zr) = q2(wk) 27)

else
po(zk) = pilzk) (28)
qo(rr) = q(xk). (29)

Definition 12 (Parallel compositions of CBTs): Two
CBTs can be composed into a more complex CBT using a
Parallel operator,

To = Parallel(77, 72).

The functions r, fo are defined as in Definition 4} while the
functions pg and ¢y are defined as follows

po(zr) = min(pi(zk),p2(zr)) (30)
q(zr) = q(zr)Uga(rr) (3D
(32)

Remark 5: Conditions nodes do not perform any action.
Hence their progress function can be defined as p(zy) = 1.

A. Process Synchronization of CBTs

In this section, we show how by using CBTs we can
synchronize the progress of two or more actions executed
in parallel, solving Problem [T}

In the classical formulation, the Parallel operator (see
Definition [) requires that the BTs are not dependent on each
other, hence it is not possible to synchronize their execution.
Having extended the BTs formulation with the progress
function, we can define a Synchronized Parallel operator that
takes into account the BTs progress when deciding where to
route the Ticks.

Definition 13 (Synchronized Parallel): Two CBTs can be
composed into a more complex BT using a Synchronized
Parallel operator,

To = ParallelSync(77, 72).

Let x = (Z1x, T2x) be the partitioning as in Definition E]
then fj is defined as follows:

fO(xk) = (fl(jlk)ny(i.zk)) (33)
filzy) = {{i(ji) if O‘i(f”.k)Zl 34)
T otherwise
cr(z) = {(1) i pr(F) > palor) o
otherwise
as(xy) = 0 if pa(Z2x) > p1(Z1x) 36)

1 otherwise

Algorithm [6] presents the pseudocode of a Synchronized
Parallel operator. The main difference with the classical
Parallel operator (Algorithm 3)) lies in the addition of Lines 2-
4 and Line 6, which implement the fact that a child receives
Ticks only if its progress does not exceed the minimum
progress. We graphically represent this operator with box

with the label “=".

Remark 6: The Synchronized Parallel operator intrinsi-
cally implements a barrier (as described in Section [III-B)
at the minimum progress value, where all children wait for
the one that has the “slowest" value to proceed.

We are now ready the see the execution of the BT in
Figure [[(a)] formalized in the example below.

Example 1: An object-seeking robot has to recognize
objects on the floor. The robot’s behavior is described by



Algorithm 6: Pseudocode of a ParallelSync node with
N children

Algorithm 7: Pseudocode of a ParalleIMutex node with
N children

Function Tick()
minProgress < 1
for i < 1 to N do
L minProgress <— min(minProgress, p;)

forall i + 1 to N do
6 if p; < minProgrees then
| childStatusli] « child(i).Tick ()

B W N -

wn

8 if Zi:childStatus[i]:Success1 = N then

9 | return Success

1 | else if X piasians(i=Faiturel > 0 then
1 | return Failure

12 return Running

the BT in Figure [I(a)l The progress of both actions is 0
at the beginning of the hallway and 1 when the hallway
is completely navigated or sought, it is a value in (0,1)
according to the percentage of the hallway navigated or
swept. If the robot finds an object in the middle of the
hallway where progress for both actions is 0.5. Since it
takes time to compute the perception routine that allows
the robot to recognize the object, the progress of Seek
is equal to 0.5 until the robot recognizes the object. The
navigation action could continue its progress. However, as
soon as its progress surpasses the value 0.5 the navigation
no longer receives Ticks (Algorithm [6] Lines 6-7) and the
execution is aborted, making the navigation stop. Once the
robot recognizes the object, the progress of Seek increases.
As soon as the progress of Navigate is equal to the progress
of Seek the navigation resumes.

B. Resource Synchronization of CBTs

In this section we show how using CBTs we can execute
multiple actions in parallel without resource conflicts.

Definition 14 (Mutually Exclusive Parallel): Two  BTs
can be composed into a more complex BT using a Mutually
Exclusive Parallel operator,

To = ParallelMutex (77, 73).

fo and qq are defined as follows:

Jfo(zr) = fi(zr)oa(zk) + fo(zp)a(zr)  (37)
qolzr) = U @) (38)
g (zr)=1
1 if qi(zr) Nga(ar) =0V
ai(zy) = vy (zg) > o (zg) (39
0 otherwise
1 if gi(zx) Nga(zg) =0V
as(zg) = Vo (xg) > m (zk) (40)
0 otherwise
(41)

R+« 0
maxPrority < 0
for : < 1 to N do
L maxPrority < max(maxPrority, ;)

forall - < 1 to N do
if ; £ R or m; = maxPrority then
L childStatus[i] < Children(i).Tick ()

9 | R« 0

10 if Zi:childStalus[i]:S’uz:cess1 > N then

1 | return Success

12 else if Ei:childSmtus[i]=Fot'ilu're1 > 0 then
13 | return Failure

W N -

® N & W

14 return Running

where m;(x)) a user-defined priority assigned by any
policy that implements aging (see Section [[II-B).

Algorithm [7] presents the pseudocode of a Mutually Exlu-
sive Parallel operator. The main difference with the classical
Parallel operator (Algorithm [3)) lies in Lines 1-7 and Line 9,
which implement the fact that a child nodes receives ticks
only if it uses a resource that is not required by any currently
running node. We graphically represent the operator with a

M

box with the label “=".

Remark 7: As mentioned in Section |[II-B} using a policy
that implements aging avoids starvation.

We now ready the describe the execution of the BT in
Figure [[(b)l formalized in the example below.

Example 2: A delivery robot is asked to distribute mail
to an office’s employee. During its execution, the robot
monitors the possible position of people around to avoid
harming them. The robot’s behavior is described by the BT in
FigurdI(b)] If a person is obstructing any obstacle-free path,
it asks the person to move away. Moreover, if the room is
too dark it asks to improve the light condition, for better
robot’s perception. Without loss of generality, let’s assume
that a person gets in front of the robot before this realizes that
the room is too dark. ParallelIMutex has R = () (Algorithm
Line 1) and it ticks the action Monitor People first. Hence its
set g(xy) (set of resource used) contains the symbol speaker
making R also contain the symbol speaker (Algorithm
Line 5). When the robot realizes that the room is too dark,
the action Monitor Light is not ticked as its set g(x)) contains
the symbol speaker and the condition in Algorithm [/| Line 4
is not satisfied (i.e. the speaker is not available at that time).

VI. THEORETICAL ANALYSIS

In this section, we prove that the proposed approach solves
Problems [I] and

Proposition 1: Let 71 and Ty be two progress indepen-
dent BTs, 7o = ParallelSync(77,72) solves Problem



Proof: The execution of 7 is defined by Algorithm [6] For
each state z;, € R", one of the following occurs:

e p1(xk) = pa(x): in this case both BTs are executed as
they both receive Ticks.

e p1(xr) < po(xk): Since in this case minProgress
(Algorithm 6 Line 4) is p; (zx) and 73 no longer receive
Ticks (Line 6) making the execution of 75 stop, hence
p2(Trt1) = p2(zk).

o p2(xr) < pi(zr): p1(wrs1) = pi(xy) holds similarly
as above.

|
Moreover, by Assumptions [3]and i a BT stops increasing or
decreasing its progress whenever it no longer receives ticks.
Hence, 7; and 75 are both running only if they have the
same progress, otherwise the BT with the higher progress
waits for the other.

Lemma 1: Let 73 and T be two progress independent
BTs, the execution of 7y = ParallelMutex(77,72) is
deadlock-free.

Proof: By Assumption [5]all the actions either terminate
or set the value of the resource function to the empty set.
Hence the resources are released in finite time. [ ]

Lemma 2: Let T; and T be two progress independent
BTs, the execution of 7p = ParallelMutex(7;,73) is
starvation-free.

Proof: In Algorithm [7] assign resources using a policy
that implements aging. [ ]

Proposition 2: Let 71 and T3 be two progress indepen-
dent BTs, 7y = ParallelMutex(77,72) solves Problem
Proof: The execution of 7y is defined by Algorithm [7] For
each state x; € R", one of the following occur:

o q1(z) U ga(xg) = 0 : in this case the condition in
Algorithm 7 Line 2, trivially holds for both children,
which are ticked.

o q1(zr)Uqga(zx) # 0: Only the child with highest priority
is executed.

hence 77 and 7> do not use the same resources when they
are running. By Lemma 1 and Lemma 2 the execution of 7g
is deadlock-free and starvation-free. [ ]

VII. IMPLEMENTATION DETAILS

To allow CBTs to be implemented, we must make some
key observations.

A. Wait and Halt Routines

In the formulation above, a running action no longer
receives Ticks in one of these two cases: when the parent
is routing the Ticks elsewhere (i.e. it no longer requires
the execution of that action) and when the action has to
wait for another one to reach the progress barrier (in case
of Synchronized Parallel) or some resources (in case of
Mutually Exclusive Parallel). As mentioned in Section
an action node may require to execute a specific routine
whenever the nodes no longer receive ticks. It is fundamental
to define two different routines, one when the action is no
longer required (halt) and one when the action has to wait

Algorithm 8: Pseudocode of a ParallelSync node with

N children with explicit handling of the Halt and Pause

routine.

Function Tick()
minProgrees < 1
for i < 1 to N do
if p; < minProgrees then

childStatus[i] < children[i].Tick ()
minProgrees <— min(minProgrees, p;)

A U B W N -

else
8 L children[i].Pause ()

9 if Ei:childSralm[i]:Success1 > M then

2

10 | return Success

n else if Ei:child.S'tams[i]:Fm'lure1 > N — M then
12 for : < 1 to N do

13 L children[i].Halt ()

14 return Failure

15 return Running

16 Function Hal1()
17 for i < 1 to N do
18 L children[i].Halt ()

19 Function Pause()
20 for i + 1 to N do
21 L children[i].Pause ()

for another one (pause) (e.g. a walking action moves the
robot on a stable position with both feet on the ground
when it has to stop, whereas it slows down speed of the
motors when waiting for another action). Algorithm [§] shows
the pseudocode of a Synchronized Parallel operator that
explicitly defines these two routines. The Mutually Exclusive
Parallel operator can be extended similarly.

B. Resolution of Progress Function

It sometimes impossible to define the progress value of
a BT Action with a closed-form expression. This could
result in the manual definition of the progress with a coarse
resolution, with fixed value on a large portion of the state
space. This can jeopardize the synchronized execution of
two CBTs (e.g. the extreme case is where an action sets
its progress to 1 only when it is completed and O otherwise).

C. Resource Assignment Policy

In Definition [T4] and Algorithm [7] the user has to define
a policy to access a critical resource. The policy has to
implement aging to avoid starvation while it must give the
resources to the current running action for enough time (e.g.
a speech action must have a high chance to use the speaker
while the robot is speaking). In a modular framework as BTs
the choice of the priority value can require effort, since in
some cases we must ensure that the priority of a node is the
highest one. However, task scheduling algorithms provide
effective solutions.



VIII. USE CASES EXAMPLES

In this section, we show two use cases in realistic scenarios
where the problems formulated apply. One case involves
the Syncronized Parallel operator and the other involves the
Mutually Exclusive Parallel operator.

In both cases we use the BT in Figure [2] The action
Navigate makes the robot follow a collision-free path, If such
path exists. The action Ask People to Move uses the speaker
to ask to make way. The action Seek makes the robot move
its head looking for objects. Whenever an object is found,
the robot stops moving the head until the object is correctly
recognized.

‘ Navigate ‘ Seek ‘

No People Ask People
in Front To Move

Fig. 2. BT of Cases and

Light Level
Good

Case 1 (Action Synchronization): This case is an imple-
mentation of Example [I] When the BT starts its execution,
both actions are executed and their progress advances as
expected. When the robot finds an object on the floor, it takes
time to recognized the object. This blocks the progress of the
action Sweep. As a consequence, the robot stops navigating
because the action Navigate no longer receive Ticks. When
the object is recognized, the progress of Seek restarts, making
the robot resume its navigation. Similarly, when the robot has
to avoid obstacles, the Navigate action progresses slowly, as
a consequence, the progress of the action Seek slows down.

Case 2 (Exclusive Use of Resources): This case is an im-
plementation of Example 2] To reach an employee’s desk,
the robot enters a dark office. In this situation the condition
Light Level Good returns false, making the ticks reach the
action Ask For Better Light, which asks to turn on lights four
times. An employee hears the robot’s request and moves to
the switch to turn on the lights. While doing so the employee
moves in front of the robot obstructing its path. The robot is
now unable to find another path and the condition No People
in Front returns Failure. In this case, the action Ask People
to Move cannot be executed as it requires the speaker to be
available but it is used by the action Ask For Better Light.
After a while the situation remains unchanged, the room is
still dark and the employee is still in front of the robot.
The priority of the action Ask People to Move becomes the
highest one. The BT stops sending ticks to Ask For Better
Light and starts sending ticks to Ask People to Move.

In both use cases the environment can be dynamic and
unpredictable, a case where BTs shows advantages over other
classical control architecture [14].

IX. CONCLUSIONS

In this paper, we proposed CBTs a generalization of BTs
that allows the definition of two new control flow nodes for
data and progress synchronization. We defined CBTs and the
two new operators according to the state space formulation
of BTs, in line with [14], analyzed the approach from a
theoretical standpoint and provided use cases. This is the
first step towards the synchronization of concurrent BTs.
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