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Abstract—The software development cycle in the robotic re-
search environment is hectic and heavily driven by project or
paper deadlines. Developers have only little time available for
packaging the C/C++ code they write, develop and maintain the
build system and continuous integration tools.

Research projects are joint efforts of different groups working
remotely and asynchronously. The typical solution is to rely
on binary distributions and/or large repositories that compile
all software and dependencies. This approach hinders code
sharing and reuse and often leads to repositories whose inter-
dependencies are difficult to manage.

Following many years of experience leading software integra-
tion is research projects we developed YCM, a tool that supports
our best practices addressing these issues. YCM is a set of CMake
scripts that provides (1) build system support: to develop and
package software libraries and components, and (2) superbuild
deployment: to prepare and distribute sets of packages in source
form as a single meta build. In this paper we describe YCM
and report on our experience adopting it as a tool for managing
software repositories in large research projects.

Index Terms—Build system; software development cycle; soft-
ware reuse; superbuild;

I. INTRODUCTION

In robotic research environments the software development
cycle is quite hectic and often heavily driven by project or
paper deadlines. The “publish or perish” model that drives the
research has a sensible impact on the re-usability of the code
developed for research purpose on two different levels: on a
micro scale, the research products are small tools that are not
sufficiently engineered to be reused in large projects; on a
larger scale, the products are large conglomerates of software
with strong coupling (i.e. lots of references between files in
different modules) and weak cohesion. In both cases reusing
the code is not easy.

This situation is worsened by the fact that most robotics
software is either developed in C/C++ or has extensive depen-
dencies written in this languages, for which no standard cross-
platform tools for packaging and distribution is available, as
opposed to higher level languages.

The goal of our research is to foster re-usability and the
overall quality and maintainability of software developed for
academic research purposes and its build system. It is moti-
vated by our experience in managing large C/C++ software
projects in collaborative robotic research environments (con-
sisting of several research groups based on different countries),

and in particular the iCub software project1 [1]. This article
is organized as follows:

• We analyze the academic software development cycle and
will point the issues that arise in this environment (Sec-
tion II), emphasizing the critical role of the build system
(Section III), and describing the concept of “superbuild”
explaining their importance (Section IV).

• We will list some of the tools commonly used in software
development to handle dependencies (Section V), and we
will state our objectives and explain the reasons why
we decided not to introduce a new tool in our workflow
(Section VI).

• We will introduce YCM the set of CMake modules that
we developed, and we will show how YCM superbuilds
are currently being used in four different European-
funded research projects by different teams, and success-
fully promote reuse of code and collaboration between
researchers from different groups (Section VII).

II. ACADEMIC SOFTWARE DEVELOPMENT CYCLE

It is an indisputable fact that lots of software created for
research is wasted. Academic research products are scientific
papers. Data produced using the software is more important
than software itself. Researchers may know how to write
code, but they are not software engineers [2] and they lack
experience in coding using established best practices. They
work individually most of the time and have to be at the
same time developers, designers, testers, release managers and
integration managers. Moreover they have academic duties
such as teaching, tutoring and taking classes [3].

The continuous renewal of Ph.D. and Grad Students without
experience in software development weighs heavily on the
software development process. A review process, besides
improving the overall quality of the code [4], could contribute
to improve the developers’ software skills. Unfortunately in
most of the cases, this kind of process does not exist for
academic software.

All these factors introduce several different effects in the
software products developed for research purposes.

1The iCub (http://www.icub.org/) is an open source humanoid robot adopted
in more than 30 research groups world-wide, whose software is the result
of the work of a large community (1.8M LOC, 170 contributors and 103
developers, source: OpenHub, https://www.openhub.net/p/robotology)

http://www.icub.org/
https://www.openhub.net/p/robotology


On a micro scale, the research driven software development
cycle heavily impacts the self contained tools, algorithms, and
libraries released. The goal of the development phase is often
to produce a working prototype as fast as possible, with the
intention to clean up the code later. Unfortunately experience
shows that the Agile software development principle known as
LeBlanc’s Law “Later equals never” [5], [6] is almost always
true for academic software, unless some commercial interests
intervene.

While the code related to the subject of the study itself might
be good quality, the code surrounding it is often low quality,
written in a hurry, and good practices are often neglected.

Researchers have only little time available for packaging the
code they write and the build system maintenance is something
that goes often beyond their skills and interests. As a result, the
product might perform “well enough” for writing an article,
but when this is published – due to the tight research schedule
driven by projects, Ph.D. programs or paper deadlines – the
author is likely to abandon the code and start working on
something new. The code is never properly re-engineered, and
it is hardly re-usable as a component of a larger system.

On a macro scale, the research driven software development
cycle affects the whole software ecosystem around funded
research projects where different researchers, teams, and insti-
tutions work remotely and asynchronously on different parts
of a big project.

Trying to achieve integration and interoperability between
software developed by different groups is definitely a push
towards better practices, but that’s not enough.

When a funded project starts, one of the first decision to
take is where to store the source code, which tools will be
used for development, and which operating systems, IDEs,
and compilers will be supported.

Users have very different sets of skills, they work in
different fields and have different roles in the organizations:
students, researchers, developers, team leaders. Each of them
will use the software with different goals: to produce some
data for a thesis or for an article, to implement some new
algorithm, to show some demo to the projects reviewers.

Research groups are usually interested in enforcing their
group identity, while coordinators need to show an integrated
view of the results of a project. This has an important role
when choosing where people will commit their source code,
data, and artifacts.

One possible approach to solve this conflict is to use a
central repository, usually not “owned” by any of the research
group but by the consortium behind the project. This has
the important effect to give visibility to the funded project.
On the other side, this imposes to take early decisions over
matters such as build tools and software configuration manage-
ment (SCM) to be used for the whole development process.
This approach usually leads to strong coupling and circular
dependencies between the components of the system, and
potentially reusable code cannot easily be made available for
reuse. Moreover adding or removing functionality becomes
hard, and the build system is thus easily broken [7].

The pitfall in this approach is that when the funded project is
over, the parts of the code produced that should be reusable are
supposed to be re-engineered and moved out of the repository.
Unfortunately this rarely happens, due to lack of resources
and to the need to move on to new projects. If some code
is required for a later project, even if just a small part, “re-
usability” is achieved by depending on the whole software
collection, or by duplicating the code in the new repository.

The opposite approach is to let each team use their favorite
tools and to store their code using their favorite SCM and host.
This approach apparently has the advantage that every group
can continue its work as they did before without spending
time to learn how the other groups work. Unfortunately when
it is time to integrate the efforts of different groups, the effect
is exactly the opposite. Setup of all the software required
becomes complicated and time consuming, due to the variety
of tools required, to the lack of testing and documentation [8],
and to the fact that build instructions are not always complete
or up to date. Similarly, updates of the whole stack are painful,
sometimes dependencies are added, and the other developers
are not notified, so they have to figure it out by themselves.
The learning curve for newcomers is steep and it could take
days before they can be operational.

Another defect of this kind of approach is that it makes
harder to give visibility to the software developed for a funded
project, since code and documentation are scattered around
different repositories and hosts.

In this paper we suggest a hybrid approach that uses a meta-
repository whose only job is to fetch external repositories,
where the actual source code is stored, and build it eventually
with the assistance of an external tool to handle dependencies
(we called this approach “superbuild”).

III. BUILD SYSTEMS IN ACADEMIC SOFTWARE

The build system of a software project converts the source
code into libraries and executables. It has an important role in
any software project [9] and it needs to evolve together with
the source code. A build system that grows uncontrolled or
that becomes too hard to understand and to maintain can slow
down the development process [10] or even stop the developers
from making any progress [6].

In industry, maintaining the build system can be a time
consuming task and can take a large part of the development
effort [11]. In several software projects, the task of creating
and maintaining the build system is held by build and release
managers, that are software engineers specialized in this
role [12].

In academic software, the importance of the build system
is often disregarded and the resources required to develop
and maintain it are not allocated. Build systems are often
blindly “copy-and-pasted” from other software, from templates
or even from previous projects, that in turn might be copied
from somewhere else, or generated by some tools.

This causes code duplication, and due to the lack of main-
tenance power, the code will often go out of sync with the
origin as soon as some change is made. Also for this reason



researchers ignore what their build system is doing, and do
not know where to intervene when a problem arises. Finally,
bad practices and lack of specific skills lead to build systems
that are not optimized, and therefore slower than what they
should be, wasting lots of researchers’ time.

Build systems for large academic software are often com-
plex and delicate, therefore researchers try to modify it as little
as possible. When some issue arises, changes that could have
been one liners, have consequences in several different places,
and are likely to cause some other issues.

IV. SUPERBUILDS IN ACADEMIC SOFTWARE

A superbuild is a collection of packages (sub-projects)
that reside in remote repositories and are managed and built
independently. The superbuild downloads and compiles all
individual sub-projects using the appropriate SCM tool (git,
subversion, etc) therefore the user gets working repositories
in which it can develop (getting updates, making and com-
mitting changes). Superbuilds also have the role of handling
dependencies and ensure that the software stack is compiled
in the right order.

Figure 1. Superbuild concept.

The concept of superbuild is summarized in Figure 1. Here
FooProject owns a repository which contains a set of
packages (e.g. ml-libraries, gasping-lib and slam),
and the BarProject developers host their own set of pack-
ages (e.g. fancy-vision, fancy-speech) on their own
repository. Some other projects are developed by third parties
and hosted somewhere else, or are already installed on the
system. The foo-project and bar-project superbuilds
download and compile the source code from all the required
repositories. Since the superbuilds keep them under revision
control, developers of both projects can easily contribute
code to all the packages they use, without concerns on the
repositories in which these are maintained.

We divide superbuilds in three categories.
• “Tool based superbuilds” make extensive use of external

tools or scripts. An extra tool is added to the workflow
and users have to learn how to use it in order to build
the system.

• “SCM based superbuilds” manage the external reposito-
ries with the version control system (for example git sub-

modules, svn externals, and mercurial sub-repositories),
eventually with the aid of scripts or of the build system.
These kind of superbuild have two important limitations:
all the repositories must be using the same SCM, and they
do not try to locate the packages on the system before
downloading and building them.

• “Build system based superbuilds” manage everything
using the build command, or the IDE. These superbuild
use the targets of the build tool (e.g. make) to handle the
sub-projects.

As explained in section II, several issues in the academic
software development process can be solved by using super-
builds. In particular superbuilds:

• promote modularization and reuse of code;
• enforce identity of small research groups;
• give the due visibility to the collection of software for

large projects;
• favor sharing of packages in code form, using SCM tools

(as opposed to tar files or binaries);
• support development of unit tests for individual projects

as well as the integrated solution.
All these in turn facilitate collaboration between different

research groups, favoring good practices like code reviews and
issue tracking.

Unfortunately setting up a superbuild is not an easy task and
requires an experienced build manager and in the academic
environment, the role of the build manager is often held by
the researchers, that do not have the skills and the experience
required for the task.

V. RELATED TOOLS

Dependency managers are widely adopted in industrial and
open source software development. These can be divided in
tools that download and build the source code and tools that
download pre-built binary packages.

An examples of large open source projects that use an
external tool to handle the build is KDE with kdesrc-build [13].
However their tools is KDE-specific, not suitable for general
use.

Package managers that create packages directly from source
code such as Portage [14] used by Gentoo Linux, Home-
brew [15] on macOS, and recently vcpkg [16] on Windows
have a similar role to these tools. Other package managers
like the apt-get, yum, and pacman, on Linux distributions, and
NuGet [17] and Chocolatey [18] on Windows handle binary
packages. All this tools are typically platform dependent.

There are several package managers that focus on one
specific programming language, and whose main purpose is
to help programmers to locate libraries and programs, for
example pip [19] for python, RubyGems [20] for Ruby,
npm [21] for Javascript, PEAR [22] for PHP, CPAN [23] for
Perl, Gradle [24] for Java, and Biicode [25] and Conan [26]
for C/C++. All this tools are typically language specific.

In robotics, the issue of creating modular software and
handling dependencies is particularly widespread, and conse-
quently several tools were created by different teams, each



one with strong and weak points. Examples are qibuild [27],
rosmake [28], catkin [29], ament [30] and robotpkg [31].

There are also a few attempts to create package managers
using CMake [32] only, with no additional tools, for example
cpm [33], cmakepp [34], and Hunter [35]. However as of late
2017, there have been limited adoption of these CMake-based
package managers.

Superbuilds are used in several software projects. We ex-
amined a few superbuilds created for open source projects.

The Qt5 [36] main repository is an example of “SCM based
superbuild” and uses git submodules and some script to build
all the components of the library.

Most of the “build system based superbuild” that we exam-
ined are written using CMake, and are usually based on the
ExternalProject CMake module. OpenChemistry [37],
Paraview [38] and Drake [39] are examples of projects that use
this approach. However, most of the superbuild infrastructures
used by these projects are complex build systems, specifically
tailored to this projects.

VI. OBJECTIVES AND APPROACH

As stated before, the goal of our research is to foster re-
usability and the overall quality of software developed for
academic research purposes and in particular in the field of hu-
manoid robotics, by improving the quality of the build system.
Compared to software development in industrial environment,
the academic environment imposes some additional constraints
that cannot be ignored.

We assume that the role of build manager will be held by the
researchers that write the source code, and therefore they will
have just a basic knowledge of the build tools and will not have
time to perfect their knowledge. As a consequence, we aim at
simplifying as much as possible the creation of a maintainable
build system, but without hiding things or performing too
much fundamental operations (“magic”) behind the scenes as
we believe researchers should understand how the build system
works in order to be able to modify it and eventually to fix
bugs.

Since people with very diverse backgrounds work in
robotics, we tend see a lot of diversity also in the development
environments with which people are comfortable. Researchers
should be allowed to keep using their preferred workflow, and
to choose the operating system and the build tools that they
want to use.

Similarly, we do not want to propose practices or recom-
mendations, firstly since enough has been already written on
the matter (for example [40]), and secondly, even if we agree
with most of the suggested good practices, because we believe
that these approaches do not take into account that they have
to deal with researchers and students who spend only a part
of their time developing code, and that, with respect to full
time software engineers, will receive just a basic training in
software development.

The workflow should stay as simple as possible, since the
introduction of a new tool or a new dependency can be a big
perturbation in the way researchers develop code, and may

have a bad impact on the time required to newcomers for
setting up their computers and for learning how to use all the
tools. Therefore we chose to keep the number of dependencies
as small as possible.

For the projects related to the iCub robot, our research
team has been using CMake for almost ten years [41]. CMake
allows one to configure, build, and deploy complex software
across many different platforms [32], and supports several
build system and IDEs. Moreover, the ExternalProject
CMake module is powerful and is able to download, update,
patch, configure, build, install and test source code taken from
external repositories or archives, even if the build system is
not written in CMake. Therefore basing our work on CMake
was a natural choice. After examining the existing tools and
taking into account pros and cons of adopting a new tool, or
adding it to the workflow, we decided that there is no need
for additional tools.

During the development phase, we also decided to avoid as
much as possible local changes or workarounds, and instead to
work upstream with CMake developers as much as possible
proposing patches that fix the bugs that we found and that
add the features that we required. Even though contributing
upstream is a time demanding task, it reduces the effort to
maintain the code and minimizes the duplication of efforts.
At the same time we wanted to be able to rely on our patches
immediately, without having to wait for the next CMake
release.

To better support our users we decided to create a repository
that works as incubator and testing ground for CMake modules
and patches that can be later ported upstream. This repository
allows us to write patches, and make them available to our
users as soon as they are ready, while we work to get them
accepted in upstream CMake. This repository is described in
depth in the next section.

Moreover, it imports some of the modules that are new
or updated in recent CMake revisions, (thus decreasing the
difficulty of writing a build system that works with older
CMake versions and in consequence increasing support for
older Linux distributions), and a few 3rd party CMake mod-
ules.

VII. RESULTS

Using CMake as our only dependency and scripting lan-
guage, we created YCM2 [42] (formerly “YARP CMake
Modules”), a collection of CMake modules that simplify the
creation of a build system and allow us to:

• keep using the tools we are used to, barely changing the
workflow;

• write modular code in order to promote reuse;
• write build systems that minimize code duplication.
Most of the modules in YCM are dedicated to solving the

issue of writing a build system for a library or for a module as
fast as possible (Generic, Packaging Helper, and Find Package
Modules in Table I). These modules add install targets for

2https://robotology.github.io/ycm/

https://robotology.github.io/ycm/


Table I
LIST OF CMAKE MODULES CURRENTLY INCLUDED IN YCM.

Generic Modules

ExtractVersion
GetAllCMakeProperties
GitInfo
IncludeUrl
ReplaceImportedTargets
StandardFindModule

Packaging Helper Modules
InstallBasicPackageFiles
AddUninstallTarget
AddInstallRPATHSupport

Find Package Modules 40 Modules

Superbuild Helper Modules FindOrBuildPackage
YCMEPHelper

Bootstrap Modules YCMBootstrap
Build Package Modules 11 Modules
Style Modules 8 Modules

binaries and header files and produce CMake code for sharing
the libraries that include version information (i.e. CMake’s
config files required to locate the library). They spare the
user the task of writing, debugging and maintaining equivalent
functions from native CMake functionalities (which requires
considerable knowledge of CMake, is tedious and error-prone).

The remaining modules (Superbuild Helper, Bootstrap,
Build Package, and Style Modules in Table I) allow us to
create build system based superbuilds quickly, integrating
external libraries and code written by other research teams
and stored on different hosts (eventually also private), using
different SCM and build systems.

The FindOrBuildPackage module is one of the main
components of any YCM superbuild and it supplies the
find_or_build_package command, that has a syntax
similar to the find_package command from CMake.
Both commands perform a check trying to locate the pack-
age on the system, but the former, instead of report-
ing the failure when a package is not found, includes a
Build<Package>.cmake file containing the “instruc-
tions” (or recipe) to build the package. This file can be
written in CMake language using ExternalProject, or
even specifying manually the commands to execute for more
complex tasks. To simplify writing these recipe files we supply
and recommend to use the YCMEPHelper module, a wrapper
around ExternalProject that adds several useful features
and build targets.

Since the superbuild tries to locate the sub-projects early
on and builds only the ones that cannot be found, the build
time is reduced if the user installs one or more of the sub-
projects from binary packages. Moreover, if multiple cores
are available on the build machine, further speedup can be
achieved by using parallel builds, that are fully supported
as long as the dependencies between the modules of the
superbuild are declared correctly. Finally the user does not
need to build the whole superbuild, but can choose to build
only the modules he is interested in. This contributes to
decrease the time required to compile the whole superbuild
from sources (thus mitigating a potential problem of our
approach).

In order to avoid hard dependencies on YCM itself, super-

builds can bootstrap YCM and manage it exactly like any
other sub-project. This means that a user can download just
the superbuild repository, and build it like any other CMake
project. If YCM is not installed on the system, it will be
downloaded and built in the configure phase, so that its
modules will be available later in the CMake project.

The ExternalProject CMake module allows us to save
“snapshots” of all the repositories in a certain state, in order to
freeze the state of the development at different points during
the evolution of the project (for example whenever a new
demonstration is available) by selecting the tag or the commit
for each sub-project.

Normally users will not develop code for all the repositories,
but only for a limited set of them. Therefore for each sub-
project we provide a user mode and a developer mode. The
latter adds, where applicable, a few extra targets to check the
status of the repository, to build dependencies and dependees
of the project, and to edit CMake cache. Moreover in developer
mode, updates on the repository are disabled, in order to ensure
that the status of the repository is always preserved as it was
left by the developer (Table II).

We provide also a maintainer mode that enables all the
targets for all the sub-projects.

The integration with CDash allows us to run continuous
integration on superbuilds and receive detailed reports with
successes and failures for each sub-project, thus checking
the compilation of the whole system and not only individ-
ual components independently. Documentation for the whole
superbuild can be generated documenting the code in the
sub-projects using doxygen3. Dependency graphs showing the
relationship among the sub-projects and the components of the

3http://www.doxygen.nl/

Table II
LIST OF BUILD TARGETS IN A YCM SUPERBUILD.

Global Targets

all

test

update-all

fetch-all

status-all

clean-all

print-directories-all

Component Targets <COMPONENT>
<COMPONENT>-update

Project Targets

Common
<PROJECT>
<PROJECT>-test

Basic Mode Only <PROJECT>-update

Development Mode Only

<PROJECT>-configure

<PROJECT>-fetch

<PROJECT>-status

<PROJECT>-clean

<PROJECT>-edit-cache

<PROJECT>-open

<PROJECT>-print-directories

<PROJECT>-dependees

<PROJECT>-dependees-update

<PROJECT>-dependers

<PROJECT>-dependers-update

Special components
documentation

examples

templates

http://www.doxygen.nl/


superbuild are generated using dot (Figure 2.) and can be used
to monitor the status and evolution of the entire project.

Compared to a catkin/ament based superbuild (widely
adopted in robotics due to the large user base of ROS), using
a YCM superbuild has several advantages in our use cases:

• The YCM superbuild can automatically choose to build a
necessary dependency only if it is not found (or not found
with the necessary version and compilation options) in the
system.

• The YCM superbuild integrates natively with all build
systems supported by CMake, while the ament one de-
pends on two different tools (vcstool and ament) and only
support these tools for interacting with the superbuild.
This means, for example, that on Windows with the YCM
superbuild you can use just Visual Studio to update and
compile the superbuild, while you need to switch to the
terminal for the ament-based superbuild.

• catkin and ament require some specific metadata (the
package.xml file) in the repository, or to use custom
(typically non-portable) workarounds in order to inject
the metadata in the source repository. In YCM super-
builds, all the information necessary to build the system
are contained in the BuildPackage.cmake file, that
is stored with YCM or with the superbuilds and does not
need to inject anything in the source repository.

• catkin and ament add a dependency on python. This is
not a big problem, but it can complicate the deployment
on Windows systems.

In conclusion YCM superbuilds allow us to work on
any platform, using different IDEs, and setting up machines
quickly. They have a gentle learning curve for new members
of the team and can be used at different levels, not just by
developers that will modify the source code of some sub-
project, but also by team leaders, that for example wants to
build the whole software quickly in order to show a demo.
Our approach favors distribution of the source code to foster
collaboration and contributions between developers.

We are currently using YCM to maintain four superbuilds
for the following projects funded by the EU:

• The WALK-MAN4 (Whole-body Adaptive Locomotion
and Manipulation) project, which has the goal to develop
a robotic platform (of an anthropomorphic form) which
can operate outside the laboratory space in unstructured
environments and work spaces as a result of natural and
man-made disasters.

• The CoDyCo5 (Whole-body Compliant Dynamical Con-
tacts in Cognitive Humanoids) project, which has the
goal to advance the current control and cognitive under-
standing about robust, goal-directed whole-body motion
interaction with multiple contacts.

• The CENTAURO6 project, which aims at developing a
human-robot symbiotic system where a human operator

4http://walk-man.eu/
5https://www.codyco.eu/
6https://www.centauro-project.eu/

is telepresent with its whole body in a Centaur-like robot
capable of robust locomotion and dexterous manipulation
in disaster scenarios.

• The CogIMon7 (Cognitive Interaction in Motion) project,
which aims at a step-change in human-robot interaction
toward the systemic integration of robust, dependable
interaction capabilities for teams of humans and com-
pliant robots, in particular the compliant humanoid CO-
MAN [43].

Figure 2 and Table III show how YCM superbuild can
manage projects composed by just a few repositories (i.e.
CoDyCo) and projects building a large number of sub-projects
(i.e. WALK-MAN).

Source code from both projects and their dependencies is
hosted on different SCM (mainly git, but also subversion
and mercurial), on both public and private repositories. Most
build systems are written using CMake, but there are a few
exceptions of projects handled by the superbuilds that use other
build systems.

The use of superbuilds contributed in the process of sharing
code between the projects, and favored the collaboration
between different groups. For example:

• The iDynTree and paramHelp libraries were devel-
oped for the CoDyCo project, but are currently being used
also for the WALK-MAN project, whose developers have
also contributed a few patches.

• The GazeboYARPPlugins module was developed in
collaboration between the developers of the CoDyCo and
WALK-MAN projects, and is now adopted by several
developers using YARP, but not involved in these projects.

• The YARP module, developed in another context and
imported by all the superbuilds as “external”, received
valuable contributions by all projects.

Software design and implementation in the WALK-MAN
project was heavily driven by the participation to the DRC8

(DARPA Robotic Challenge), which pushed a fast develop-
ment cycle while ensuring at the same time the quality of the
whole system architecture.

Table III
EVOLUTION OF THE WALK-MAN PROJECT SUPERBUILD.

Month External Modules WALK-MAN Modules
0 – –
5 2 0
6 10 11
9 15 14

12 14 23
18 13 39
36 20 59

Table III shows that, even without a build manager, WALK-
MAN developers were able to integrate a large number of
projects in the superbuild. The WALK-MAN team was split
in different sub-groups (e.g. locomotion group, valve turning
task group, driving task group, etc.): each of them was able

7https://cogimon.eu/
8http://archive.darpa.mil/roboticschallenge/

http://walk-man.eu/
https://www.codyco.eu/
https://www.centauro-project.eu/
https://cogimon.eu/
http://archive.darpa.mil/roboticschallenge/


Figure 2. Auto-generated graph showing the relationship among the sub-
projects and the component of the CoDyCo project superbuild.

to work simultaneously thanks to the superbuild, which also
ensured an efficient integration and code sharing.

A set of workflows has been adopted by the developers:
• installation, external development: the typical use case is

a single developer, or small group, which can use the
superbuild as a means of installing a set of libraries that
can be of use to the development of his code. This allows
one to keep the project “private” for a period of time,
before finally adding it to the list of projects included in
the superbuild for sharing.

• framework development: the typical use case is that of a
developer that has to work on a large set of libraries at
the same time, which typically are interdependent, and
thus need to modify, test, commit changes and push in
all of them.

In all the EU projects in which it was adopted, YCM
allowed us to effectively manage the shared repositories with
an increase in productivity and code sharing across projects.
Table IV provide statistics to show the size of all four
superbuilds (in terms of number of modules) and the number
of modules shared with other superbuilds. These numbers
demonstrates that the YCM allows us to handle repositories
with large number of modules, with considerable re-use among
different superbuilds.

Table IV
EXAMPLES OF YCM SUPERBUILDS ANALYZED IN THIS PAPER. WE

REPORT THE NUMBER OF MODULES AND THE NUMBER OF MODULES
SHARED WITH OTHER SUPERBUILDS.

Project WALK-MAN CoDyCo CENTAURO CogIMon
# modules 79 17 37 48

# modules shared with
at least 1 other projects 28 5 21 15

# modules shared with
at least 2 other projects 18 4 14 9

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we discussed how the “publish or perish”
model, the lack of practical knowledge of students and re-
searchers, and the absence of specialized build and release
managers heavily affect the re-usability of the code written
for academic research projects. We emphasized that the build
system has a key role for achieving a modular software that
can be reused in other projects and that minimizes code
duplication. We described the concept of “superbuild” and
explained how this instrument can overcome several of the
issues related to the code development process in research
projects. Finally, we examined the existing tools that are used
for handling dependencies in software development, and we
studied some of the superbuilds used for building open source
projects.

With all of this in mind, we developed YCM, a set of
CMake modules that helps in the creation and maintenance
of build systems for new projects, and “build system based
superbuilds”. One of the distinguishing features of our ap-
proach is that it favors distribution of source code using
SCM tools. This, as opposed to distribution of binaries, has
several advantages: it ensures that developers and users are
able to compile the code, it favors collaborations and code
contributions, and finally, it removes the cost of maintaining
and distributing binary distributions for different systems.

Finally we showed how the introduction of the superbuild
in our workflow contributes at the creation of reusable code,
and encourages the collaboration between different teams.

We aim to use YCM for the entire iCub software ecosystem.
The iCub Software Repository has grown in the last few
years, up to a size that makes it hard to maintain. The build
system is complex and delicate and most of the changes have
unexpected side effects. Several libraries and modules that
should have been generic and usable by other robots, have
dependencies on parts that are iCub specific, and therefore a
considerable maintenance effort is required to move them in
separate repositories. We believe that by using a superbuild
approach, the strong coupling will dissolve, allowing us to
achieve a better collaboration and widespread use of the
iCub software components. The “robotology-superbuild”9 is
currently under development, and we hope to adopt it in our
future workflow.

Finally we will continue contributing upstream patches and
modules from YCM to CMake, since we believe that in the
future the useful features offered by YCM should be available
to all CMake users.
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