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Synonyms

Robotic software middleware.

Definitions

Computing hardware in modern robotic platforms ranges from embedded microcon-
trollers to general-purpose CPU. To implement complex software applications, it is
therefore common practice to separate computation in different components, whose
execution is concurrent and distributed on the available hardware. Components in a
distributed application exchange information – typically through a wired or wireless
network – and are coordinated to obtain the desired behavior of the robot. Robotic
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researchers adopt software middleware to simplify the task of writing distributed
applications and increase code reuse. The goals of this Chapter are to illustrate the
general concepts of a software middleware, revise the specific middleware adopted
in robotics and discuss open problems that remain to be addressed.

Overview

A robot application is often too complex to be executed on a single processing unit.
This complexity may be due to the large amount of data that the robot needs to pro-
cess in real-time, or, simply because the robot is interfaced with external devices or
other robotic systems. Computation is therefore separated in components, which run
concurrently on different CPUs on a set of interconnected hosts. This is a distributed
system (Fig. 1).

Notice that in this Chapter the term component is used to identify any software
unit which can be executed independently on a distributed system. This definition
differs and is much broader than the one usually adoped in the field of Component
Driven Software Development (Szyperski 2002). Finally, because components are
often implemented as separate processes, these terms are used interchangeably.

In distributed systems software components are typically implemented as ide-
pendent processes, and a software middleware is adopted to simplify development.
A middleware is a software framework which provides common functionalities for
inter-process communication and primitives for synchronization among processes.
Conventionally, computer programs are organized in functions or classes (depend-
ing on the programming paradigm). The latter are compiled and linked together and
made accessible to one or multiple threads running in the same executable. Threads
running on the same executable usually share memory, communication is therefore
trivial. In distributed systems, on the other hand, computation is split among sev-
eral processes which are executed on different hosts. Messages are exchanged to
distribute data and aggregate result of the computation performed by the individual
hosts that take part in the computation. A software middleware offers functionalities
to support writing software following this paradigm.

The next section revises these functionalities and it introduces the problems
solved by a middleware. For reasons of space this Chapter focuses only on the func-
tionalities that are offered by the software middleware commonly used in robotics
(the reader is invited to read (Tanenbaum and Maarten 2006) for a more complete
treatment on the subject).

General concepts of software middleware

One of the goals of a software middleware is to provide the programmer with an
easy to use API supporting communication between components. Operating systems
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already provide functionalities for inter-process communication on the same host
(IPC) or, using network protocols, across different hosts (inter-host). The former
can be done using shared memory or message queues. The latter is typically done
using sockets and TCP/IP protocols. These functionalities are relatively low-level,
and are mostly concerned with transferring bytes. Relying on these functionalities
to transfer messages is possible but leads to code that is complex and difficult to
re-use across different operating systems, network protocols and medium.

The communication layer in a middleware is designed to hide details of specific
communication protocols and to offer an abstraction which deals directly with com-
plex structures including floating point variables and dynamically linked lists. Code
on top of the communication layer is portable across different systems, communi-
cation medium and protocol. The majority of middlewares are also multi-platform,
this allows porting code across different operating systems.
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Fig. 1 A robot distributed system. Bottom: components (represented by circles) are executed on
a set of computers (hosts). Components on the same host communicate using inter-process com-
munication (IPC, dashed arrows), inter-host communication is obtained using network protocols
(solid arrows). Top: deployment and monitoring. Some middlewares provide tools that allow the
user to install, configure, execute and monitor components from a console.
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Interface Description Language

Data travels on the network in the form of bits and bytes. Because complex data
structures are rarely contiguous in a computer memory, one of the tasks of the mid-
dleware is to collect all the fields that make up a data structure (following pointers in
case of dynamically allocated data structures) and transmit it on the network. This
process is called serialization. The opposite process, de-serialization, collects bits
and bytes received from the network and fill memory appropriately (Fig. 2). Be-
cause memory copy may be expensive for large data types, these operations need to
be carefully optimized.

To proper serialize and de-serialize data structures the middleware needs to know
how data is represented. It is the task of the programmer to proide this descrip-
tion using a special language made available by the middleware, called Interface
Description Language (IDL). Data descriptions in IDL format are automatically
parsed by an intermediate compiler which is responsible to produce language spe-
cific code that implements the data type, including serialization/deserialization rou-
tines (Fig. 2).

Some middlewares support remote object invocation, which is sometimes also
referred to as Remote Procedure Call, or RPC (OMG 1997a; ZeroC Inc 2017). Re-
mote object invocation allows a process to request execution of a function that is
implemented in a given, remote object. In this paradigm the middleware keeps track
of the remote objects and the functions they offer. The user code invokes functions
as if they were linked locally in the process. The middleware catches such invoca-
tions, and is responsible for looking up (and eventually execute) the process that
hosts the required object. It then dispatches the requests made by the user program
to the remote hosts, collects the result of the computation and delivers it back to
the calling program (this process is called parameters marshalling/de-marshalling).
The code required for remote execution of objects, parameter marshalling and de-
marshalling is usually generated automatically from a compact description of the
objects using specific keywords in the IDL.

The IDL of a middleware allows programmers to describe messages and compo-
nent interfaces in a intermediate language. From this description, the IDL compiler
can generate code for any target language. This greatly simplifies interoperability
between components written in different languages (Fig. 2).

Communication paradigms

In a system that supports Remote Procedure Calls (RPC) a component can request
the execution of a procedure (or subroutine) in a remote machine. An Object Ori-
ented Middleware extends RPC systems, by supporting instantiation of remote ob-
jects and invocation of their methods. Communication in Object Oriented Middle-
ware and RPC systems is typically synchronous (although asynchronous variants
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exist), in which a sender waits for an explicit acknowlege from the recipient of a
message.

In a Message Oriented Middleware, on the other hand, the infrastructure pro-
vides primitives for sending and receiving messages, and components communicate
in an asynchronous way, usually following a publish-subscribe paradigm. In this
paradigm processes are not aware of other parties involved in the communication,
but communicate through named entities called topics. A process that produces data
advertises it by registering itself as a producer for a given topic in a shared database.
A consumer that wishes to read this information registers itself as a subscriber for
that topic . Therefore, in a publish-subscribe architecture a process that needs to read
data from a source needs to know only its name in the shared database. The mid-
dleware takes care of establishing connections between publishers and subscribers
when needed.

Publish-subscribe is widely adopted for the following reasons. Firstly, it is in-
trinsically many-to-many in that there are no limitations on the number of publish-
ers and subscribers that are concurrently producing or reading data on the same
topic. Secondly, it offers various degrees of decoupling between components (Eug-
ster et al 2003). Publishers do not need to know the location (i.e. the host) in which
they are executing (space decoupling). Communication is asynchronous. Publish-
ers are allowed to continue execution immediately after they have published data.
Symmetrically, subscribers do not need to wait for receivers but can check for new
messages whenever they want. This level of decoupling allows running processes
asynchronously and avoids dangerous timing dependencies when multiple receivers,
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Fig. 2 Top: data travelling on the network needs to be serialized at the sender side and deserial-
ized at the receiver side. This is especially important for complex structures that are not stored
in a continuos chunk of memory (like the structure depicted in the figure). Bottom: the program-
mer describes data types using an IDL (e.g. the Apache Thrift). The IDL compiler automatically
generates language specific code that defines the type, including serialization and deserialization
routines. Notice that the same IDL descriptor can be used to generate code for different languages.
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with different computational loads, exists (synchronization decoupling). This fea-
ture is particularly relevant for robotics, because introducing time dependencies
between software components running on different machines may have negative
effects. Finally, publish-subscribe does not require publishers and subscribers to be
running to receive data. Published data can be stored by the middleware even when
the publisher is no longer running and is delivered when a publisher subscribes (time
decoupling).

Data persistency is an important property of communication, it allows fine
grained control of how data is stored and in which order it is delivered. A mid-
dleware may provide different strategies for storing messages: First-In-First-Out
(FIFO) stores all messages to guarantee delivery, while Oldest-Packet-Drop (ODP)
attempts to minimize communication latency by dropping old messages as soon as
new ones are available.

Finally, it is worth mentioning the Data Centric middleware, which is adopted
in growing number of distributed applications that adopt the DDS standard (OMG
1997b). This approach is also asynchronous, and can be implemented on top of a
publish-subscribe system.

Managing complexity: starting up and monitoring large
applications

The procedure required to execute a distributed application is called deployment
(Fig. 1). In general this requires the installation and update of the software on the
hosts, the execution of all the components and, eventually, their deactivation or shut-
down. Deployment of a large distributed application becomes easily cumbersome,
and for this reason software middlewares provide dedicated tools that can perform
at least some of these steps automatically.

Deployment tools require that the user provides information describing the avail-
able hardware (number of nodes, their hardware capabilities and the topology of the
network), the required components and instructions on how they should be executed
(their parameters and the identifiers of the hosts on which they should run). These
tools may ideally provide features for monitoring the CPU usage of the hosts on the
network, and even perform automatic allocation of components on hosts, depending
on their current CPU usage or hardware requirements.

Robotic Middleware

This section discusses some additional, key features that characterize software mid-
dlewares that have been developed by the robotic community. In addition it revises
some of the frameworks that have been adopted in the robotics community.
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Real-time performance

Robotic software must deal with timing constraints, especially when implementing
control loops. To ensure proper operation and safety checks (like maximum torque
or joint limits) the low-level routines for motor control are implemented using real-
time systems (either embedded or not). Hard real-time systems are designed in such
a way to guarantee time constrains. To provide such guarantees a software mid-
delware must rely on an operating system that provides hard real-time capabilities
(examples of real-time operating systems are QNX, RTAI Linux and Linux Xeno-
mai). The majority of distributed systems are soft real-time or best-effort, in that the
system has no way to guarantee a requested level of performance, but it does its best
given the available resources.

Timing aspects that are important for robotics distributed applications are com-
munication latency and jitter. Latency measures the delay introduced by the com-
munication layer, while jitter is its variance. The literature focuses on the effects of
communication latency (Zhao et al 2015), however jitter may even be more danger-
ous, because it prevents latency compensation and prediction in control loops.

A simple way to reduce latency in control loops is to shorten message queues. For
this reason several middleware (Natale et al 2016; Huang et al 2010; Dantam et al
2015) provide buffering policies that drop old messages to minimize communication
latency (Oldest-Packet-Drop).

Another way to reduce latency is to minimize communication overhead. This can
be achieved by designing efficient encoding mechanisms that minimize the bytes
sent on the network. To save CPU cycles a middleware can implement efficient
inter-process communication using shared memory. In this case messages are not
copied to the memory areas of the individual processes, but are stored in a shared
memory space from which they can be directly read or written. This approach is also
called zero-copy and is implemented in the middelware Ach (Dantam et al 2015) and
aRDx (Hammer and Bäuml 2013). A similar mechanism allows the middleware to
copy a message only once (copy-once) when it is received from the network, avoid-
ing extra copies (Hammer and Bäuml 2013). These approaches become important
when transmitting large packets, like, for example, images (Fig. 3).

A source of variable latency in distributed systems come from conflicts arising
when processes compete to get resources. This can be at the level of CPU and on
the network. Inside a computer different processes and threads compete to get CPU
time. How CPU is assigned may affect communication performance. A way to re-
duce communication jitter is to assign higher priority to those threads that handle
the communication. This is clearly a viable solution and it prevents that low-priority
tasks have a negative impact on the threads that manage the communication of high
priority tasks.

In a distributed system there are however other sources of conflicts that affect
communication performance (Fig. 4). Data packets compete to travel on the net-
work. Outgoing packets are queued before they reach the network card and are
dispatched on the network. Similarly, incoming packets are queued when they are
received from the network, before they are dispatched to the applications. In a
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switched network (a typical network topology in a robotic system) data packets from
one computer compete with data coming from other sources when they traverse the
ports of the switch. These conflicts cannot be avoided, but there are ways to assign
priorities to packets so that some connections have precedence over others. This
technology is called Quality of Service (QoS) Control and it is used, for example,
to route voice traffic on the internet and avoid interruptions (Almquist 1992).

Robot abstraction layer

Robot components are made from different vendors and there are no accepted com-
mon standards. Code written for one robot cannot run on another. This problem
sometimes affects even consequent versions of the same robot. One of the func-
tionalities offered by robotics middleware is a robot abstraction layer for hardware
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Fig. 3 To reduce overhead some middlewares rely on shared memory to avoid copying messages
for inter-process communication (zero-copy). The middleware can also use shared memory to store
data from the network, making it available, without further copies, to all the components that have
requested it on the same host (copy-once). In contrast, in conventional approaches, a copy of the
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Fig. 4 Sources of conflicts in the communication of a distributed system (Paikan et al 2015).
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devices and simulators. Similarly to the communication abstraction layer, the robot
abstraction layer provides an interface that is independent of the robot and it allows
recycling code across different robotic systems and simulators.

Examples of such an abstraction layer are ROS Control (Tsouroukdissian 2014)
and the device interfaces in YARP (Natale et al 2016). These abstraction layers
define a set of hardware interfaces for reading the status of arrays of joints and
control them in position, velocity or torque mode. They also define interfaces for
devices like force and torque sensors or inertial units. The YARP middleware im-
plements objects that automatically provide remote invocation of such functions in
a distributed state of computers. H-ROS (Acutronic Robotics 2017) is a recent ef-
fort that aims to develop a standard framework for developing interoperable robot
components. In addition to sensing and actuation it defines three other classes of
devices, namely communication, cognition and hybrid.

Comparison of software middleware for robotics

General purpose middlewares like CORBA (OMG 1997a), ICE (ZeroC Inc 2017)
or ZeroMQ (iMatix Corporation 2014) are mature frameworks for developing dis-
tributed systems. They have been rarely used in robotics – with some exceptions,
e.g. ICE has been used on the ARMAR robots (Vahrenkamp et al 2015). This is
due to the fact that they have a steep learning curve and provide functionalities that
were not considered fundamental for robotics. For many years, the robotics com-
munity preferred to develop custom solutions, sometimes adopting general purpose
middleware as transport layers, and exposing only a subset of their functionalities
to the user. This trend started with frameworks like OROCOS (Bruyninckx et al
2003), Smartsoft (Schlegel and Worz 1999; Stampfer et al 2016), GenoM (Mallet
et al 2010), Player (Collett et al 2005), and YARP (Metta et al 2006; Fitzpatrick et al
2014; Natale et al 2016), until ROS (Quigley et al 2009) established itself as the de
facto standard.

The main features of OROCOS are that it provides real-time support and a
component model. Communication in OROCOS includes RPC and asynchronous
publish-subscribe paradigms, implemented with transport layers for real-time inter-
process communication and inter-host communication (based on CORBA, ROS and
YARP). LCM (Huang et al 2010) is a framework based on UDP multicast. In TCP/IP
networks multicast allows efficient one-to-many communication without retrans-
mission. LCM leverages on UDP multicast to provide an efficient publish-subscribe
mechanism and tools for logging and message inspection without overhead. Open-
RDK (Calisi et al 2012) proposes a communication framework based on a shared
memory concept (called white-board) in which processes can read and write data.
The framework ensures that data written on the white-board is distributed and main-
tained consistent among all hosts in the network. Ardx (Hammer and Bäuml 2013)
provides a communication framework which aims at maximizing performance by
reducing unnecessary memory copies and by providing efficient protocols for inter-
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process communication (IPC). In addition, Ardx provides support for real-time
systems and it allows tuning priority of channels by controlling QoS parameters.
Ach (Grey et al 2013; Dantam et al 2015) also provide real-time support and effi-
cient IPC communication with minimal latency.

ROS is a middleware which was developed in 2005 for a robotic project at
Stanford University. It was initially supported by Willow Garage and later by the
OSRF. ROS offers communication through topics in a publish-subscribe system
and, through services, with RPC. A central server takes care of registering topics
and establishes connections. ROS has an IDL that allows describing data types and
RPC services. It is strongly typed in that it ensures that publishes and subscribers
exchange exactly the same data type. Data is exchanged directly by components
without intervention from the central server. ROS implements a simplified form of
publish-subscribe, in which senders and receives need to be running to receive data
(although a topic can be configured to store the latest published data for later deliv-
ery). In addition a parameter server allows components to exchange data in the form
of parameters. This centralized form of communication is inefficient but it provides
an easy way to feed parameters to ROS components.

YARP is a communication middleware in which components exchange data via
objects called Ports. YARP promotes asynchronous communication and it is close
to a publish-subscribe system like ROS. However, in this case connections are estab-
lished dynamically and can be re-routed at runtime without restarting components.
Ports are named entities that are registered on a central name server. YARP is not
strongly typed. Messages describe themselves using tags and can be interpreted and
translated at run-time. Custom data types can be defined with an IDL (the Apache
Thrift IDL). It supports stream-based communication and RPC for services. Ser-
vices can have complex interfaces and can be specified with the IDL. YARP in-
cludes built-in protocols (i.e. TCP, UDP, multicast, XML/RPC, MJPEG and HTTP
with JSON), and it includes a plug-in system for dynamically loading custom pro-
tocols at runtime (Fitzpatrick et al 2014; Paikan et al 2014). For interoperability
with the ROS system, YARP provides ROS-compatible protocols and it is able to
interpret messages written with the ROS IDL. It also allows tuning priorities for in-
dividual data channels, to reduce jitter and latency of time-critical loops (Paikan et al
2015). Finally, YARP includes a robot abstraction layer which defines interfaces for
reading sensors and for motor control in joint and operational space.

The Data-Distribution Service (DDS (OMG 1997b)) is a standard specification
by the OMG for a publish-subscribe system. DDS adopts a data centric approach, in
which components describe the data they share and it is responsibility of the mid-
dleware to maintain a globally consistent memory space that is shared by all the
components in the network. DDS provides an IDL for defining data types and in-
cludes a standard API and a standard protocol (RTPS). There are in fact many, com-
patible, implementations of DDS. DDS is fully distributed and there is no need for
any central server for naming and establishing connections. DDS allows fine control
on how data is transmitted, stored and delivered. This is achieved by assigned QoS
parameters (or policies) to data writers and readers. DDS requires that senders and
receivers agree on the QoS of the data they exchange. This prevents an application
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that need data at fast frame rate to be connected to a slow producer. DDS has been
designed for aerospace applications. It is getting popularity in robotics following its
adoption for the next release of ROS, ROS 2.0 (Fernandez et al 2014).

To conclude this Section, Table 1 compares various robotics middlewares, sum-
marizing their main features.

Table 1 Comparison of middleware for robotics.
Comm. paradigm Protocols IDL QoS Operating systems Notes

Smartsoft pub/sub, RPC CORBA custom Windows, Linux, RTAI,
QNX

IDE for component development
and deployment

OROCOS pub/sub, RPC CORBA, YARP,
ROS

CORBA IDL Windows, Linux, OSX,
Xenomai, RTAI

OpenRDK white-board TCP, UDP, IPC Windows, Linux, OSX
LCM pub/sub Multicast Windows, Linux, OSX tools for logging
Ach pub/sub TCP, UDP, IPC low-latency IPC, logging
aRDx pub/sub TCP, UDP, IPC channel Linux, QNX low-latency IPC
ROS pub/sub, RPC TCP, UDP rosmsg Linux tools for remote execution and log-

ging
YARP pub/sub, RPC TCP, UDP, Multicast,

user-defined
Thrift, rosmsg channel Windows, Linux, OSX GUI for remote execution and mon-

itoring, logging
DDS pub/sub RTPS OMG IDL,

XML
data QoS policies allow specifying data

persistence, reliability and priority

Open problems and conclusions

The development of software middleware for robotic applications has been driven
by the need of frameworks that are simple to use and have only the minimal set
of functionalities required by the robotic community. This is clearly demonstrated
by the success of ROS and its establishment as a de facto standard in robotics. The
steady maturation of robotics and consequent push for commercialization is going to
challenge this view, with an inevitable shift towards systems that are more complex.

None of the middlewares developed specifically for robotics has security fea-
tures. While some attempts have been done to extend ROS with security fea-
tures (White et al 2016), secure technologies have not been adopted in robotics
so far. Future applications in the domains of healthcare, safety and domestic service
will put stringent requirements to ensure protection against denial-of-service and
data spoofing. This may come with a cost because adopting data encryption technol-
ogy may increase communication latency and CPU usage. This may be affordable in
modern, high-end CPUs, but could be a serious issue in embedded systems (Morante
et al 2015).

Commercial applications will also require fault-tolerant systems, especially across
unreliable, wireless communication medium. Robotic middlewares have not been
designed to handle these cases. Removing single point of failures and adding reliable
and efficient one-to-many protocols will prove to be important features to support
future applications. Fine control of data persistency was not considered fundamen-
tal in robotics and it is partially implemented in robotics middleware. It is easy to
imagine, however, how this feature becomes critical for fault-tolerant systems.
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Despite the wide adoption of ROS as a common middleware, there are still no ac-
cepted standards for describing software components, hardware devices, and maybe
more importantly, the data they exchange. This is preventing the birth of a mature
app ecosystem in which applications can be made by composing components devel-
oped by independent developers. The adoption of DDS as transport layer for ROS
2.0 has the potential to change the situation significantly, hopefully enabling the
development of interoperable robotic components.
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