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Abstract— Hand-coded deliberation components are prone to
flaws that may not be discovered before deployment and that
can be harmful to the robot and its execution environment,
including the people within it. To reduce development effort
and at the same time increase confidence in robot’s safety,
we propose to model deliberation components at a conceptual
level, to automatically generate code from such models and
also to monitor their execution during robot operation. We
present two tools, one which compiles models of deliberation
components into executable code, and one which generates
runtime monitors from the models. We have tested them in
simulation, to demonstrate the usefulness of combining together
model-based development, code generation, and monitoring.

I. INTRODUCTION

In spite of substantial technological progress in robotics
and Al the issue of making autonomous decisions in dy-
namic and unstructured environments while maintaining safe
and secure operations is still standing [1]. Moreover, this
challenge is faced by development teams where professionals
with diverse technical backgrounds and with various levels
of experience are involved in the design and implementation
of control software. The part that often turns out to be critical
is the deliberation layer, i.e., the components that are meant
to shape the behavior of a robot considering its mission
and the current state of the environment. Traditional code-
based design, implementation and integration of deliberation
components are prone to flaws that can escape simulation and
testing and that may not be discovered before deployment
where they can cause inefficient or unwanted behaviors. It
is to address such issues that researchers have been putting
increasing effort in methodologies that can support design
and implementation of control architectures that guarantee
the expected quality of service as well as stated safety and
security requirements [2], [3]. Our research follows on these
steps by considering a model-based design (MBD) approach.
In particular, we assume that deliberation components are
modeled at a conceptual level using well-known abstractions,
such as finite-state machines (FSMs) and behavior trees
(BTs), and that the implementations of the components
interact among them and with other layers of the control
architecture through well-defined protocols and a common
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middleware — ROS 2 in our case [4]. In this context,
our main research question is to understand whether we
can ease the development of deliberation components and,
at the same time, improve the confidence in their correct
behavior without introducing unnecessary burden on the de-
velopers. We contribute two tools and their experimentation
on a case study to show that it is possible to reconcile
shorter development time and improved confidence in the
implementations: Model2Code (M2C), which automatically
compiles conceptual models of deliberation components into
executable code compatible with ROS 2 ; and MOnitoring-
ON-line (MOON), which generates runtime monitors from
the models to improve confidence in the generated code as far
as compliance with their specification is concerned. MOON
can monitor properties and models. The former are a set of
conditions expressed in formal language that data exchanged
through the communication channels in the architecture must
satisfy (see Table I for examples of properties). For the
latter, MOON verifies that monitored components in the
architecture behave according to a given model. We test the
combination of M2C and MOON considering a simulated,
but realistic, use-case scenario where we demonstrate that
(i) M2C generates code that does not trigger unwanted or
inefficient behaviors during execution, (i¢) MOON can spot
different faults injected in the implementation of deliberation
components and (i7¢) model monitors run without excessive
overhead even in combination with property monitors. Fur-
thermore, we show that, in some cases, model monitors —
that come “for free” by the specification of components —
can spot issues that property monitors may not intercept.

II. PRELIMINARIES

a) CONVINCE project: The tools and methods pre-
sented in this work are part of the CONVINCE project
(CONtext-aware Verifiable and adaptlve dyNamiC dElib-
eration) which aims to develop a software toolchain that
assists developers in designing and developing fully verified
robot deliberation systems [3]. The goal of CONVINCE is to
advance the capabilities of robots to perform complex tasks
robustly and safely within unstructured environments via
autonomous and unsupervised adaptation to the environment
and operational context, by developing cognitive deliberation
capabilities that ensure safe robot operation over extended
periods of time without human intervention. In CONVINCE
the reference architecture is made of three layers:

e A deliberation layer which orchestrates the various
skills in order to obtain the desired behavior, e.g., guide



a group of visitors in a museum and present them some
artworks.
« A skill layer which implements basic robot capabilities,
e.g., understand whether visitors are still engaged or not.
« A functional layer which interacts directly with the
hardware, e.g., navigation, speech recognition, vision
and object detection.

These layers are meant to be connected via a middleware in
order to exchange data and coordinate with each other.

b) BTs: Recent surveys [5], [6] demonstrate that BTs
[7] are widely used in the robotics community for model-
based design of deliberation policies. We consider the fol-
lowing kind of nodes and related graphical syntax for BTs:

« Root node represented as “)”.

o Control nodes (color-coded in red):

— Reactive Sequence represented as “R —”.

- Reactive Fallback represented as “g?”.
— Fallback represented as “?”.

« Inverter represented as “#” (color-coded in blue).

« Condition Node represented as an oval (color-coded in
yellow).

« Action Node represented as a rounded rectangle (color-
coded in light green).

e Sub-Tree represented as a rectangle (color-coded in
green).

Due to their recent adoption, the semantics of BTs is not
yet standardized across applications in robotics. While an at-
tempt to propose a formal semantics has been done in [8] and
[9], it is easy to find inconsistencies in the implementation
of different libraries [10]. In this paper, we consider the se-
mantics implemented by the library BehaviorTree.cpp!
whereon our implementations are based. To understand how
BTs work, in Figure 1(a) we present a BT with a root node
and a single reactive sequence child node; this node has three
children which correspond to sub-trees. In Figure 1(b) we can
see a BT that consists of a reactive fallback node with two
children, a condition node (‘“BatteryLevel”) and an action
node (‘“Alarm”). Execution starts when a fick signal is sent
to the root node, which propagates it down the structure of
the tree. We assume that ticks are sent periodically (e.g.,
once every second) and that the BT returns a result within
two consecutive ticks. Inside the BT, a condition node can
respond either success if the stated condition is true, or
failure if the stated condition is false. Action nodes may
also respond running, if the corresponding action is still
being accomplished. The execution semantic of the control
nodes depends on their nature. A fallback node will tick
the first child and, upon the success of the child, it will
return success, whereas, upon failure of the child, subsequent
nodes will be ticked; a sequence node will tick the first child
and, upon the success of the child, will tick the subsequent
nodes. Therefore, a fallback node returns failure only if all
children fail, while a sequence node returns success only if
all children succeed. In both nodes, if one of the children
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returns running, then, at the following iteration, that is the
first child to be ticked, while the others keep the result
returned at the previous tick. The reactive sequence will act
like the sequence, but if the previous result of a child node
was running it will send the tick again to all its children.

Battery PoiScheduler Navigation

BatteryLevel

(b) Example of a sub-tree

(a) Example of BT with sub-trees

Fig. 1. Example of BTs

c) FSMs: FSMs are commonly used to model policies
and to represent either abstract or concrete models of the
functional and control stages of a software architecture.
FSMs including probabilistic or timed transitions can also
represent abstract models of hardware components or the
environment. We represent state machines using a subset of
the SCXML standard [11], excluding only hierarchical state
machines and code scripting. Those features can be an issue:
to begin with, the semantics of hierarchical FSMs are some-
what inconsistent across contributions in the literature [12].
Therefore, the implementation is library dependent which
would make model monitoring inconsistent. Secondly, code
scripting (based on ECMAScript) needs to assign semantics
to code fragments, which may become problematic for large
pieces of code.

We use the following representation of SCXML.:

o State: a state of an SCXML machine;

« Event: an event received by the FSM, it can be internal,
i.e. originated from the FSM itself, or external, i.e.
originated from a source external from the FSM;

« Transition: a transition from a state to another, that can
be unconditional or event-based.

Events are managed according to SCXML specification, i.e.,
all of them are queued and processed according to their
occurrence. In addition, we have enriched our language with
middleware-specific elements to retrieve implementation-
specific information. Specifically, in the case of ROS 2 ,
we have implemented “services” and “topics” to specify if
an event is generated or generates a message over them.
Those elements are fundamental for the code generation and
monitoring, explained in Sections III and IV.

d) Middleware: The use of a middleware for the com-
munications among components enables us to distribute them
on different machines with low effort, allowing the control
architecture to scale as needed. In principle, our approach
can be implemented on top of any middleware, but in this
paper we assume that BT and FSMs models are based on
ROS 2 [4], a communication middleware widely used in the
robotics community. ROS 2 is mainly composed of three
primary interfaces:



o Topics: are based on the publisher-subscriber pattern,
their communication is many to many meaning that we
can have multiple publishers and multiple subscribers
for each topic. They are asynchronous and typed.

o Services: are based on the client-server pattern. They
are synchronous and typed. Their communication is
many to one, meaning that multiple clients can connect
to one server.

o Actions: are a fusion between services and topics, and
they are made for long computations. An action is
composed by two services, one for the start of the
computation and one for getting the result. In addition
to that, there is one topic that, once the computation is
started, gives to the client a feedback on the status of
the computation. This allows the client to continue its
work and retrieve the result upon action completion.

II1. M2C

The skill layer (Section II-a) is implemented using FSMs
based on the SCXML language (Section II-c). In these
models, events trigger state transitions, enabling the machine
to change its behavior and interact with the external world.
Although SCXML state machines can be compiled and
executed, they cannot directly interface with the functional
layer, as these elements are not defined in SCXML. This
introduces a gap between the skill and the functional layer,
requiring an interface that translates SCXML events into
actionable commands that interact with the system according
to the chosen framework. M2C is a tool designed to automate
the generation of this interface system for each state machine.
The tool allows users to focus on the high-level design of
the state machines while automating the generation of the
underlying interface, whose manual development would be
time-consuming and error-prone. M2C employs a template-
based approach, taking as input the SCXML models and
generating as output the corresponding ROS 2 C++ code
that translates SCXML events into ROS 2 interfaces as
stated in Section II-d. The input files include the SCXML
model and the XML file describing the system architecture
specifying the definition of the interfaces. Starting from a
set of C++ template files, it produces the following output:
C++ header and source of the executable skill, a main file
containing the event handling code and the corresponding
ROS 2 translation, the CMakeLists.txt configuration file
and the XML ROS 2 package file. The output can be built
directly with CMake without further editing. The code of the
tool can be found on github?.

IV. MOON

MOON is a runtime monitor developed for CONVINCE,
implemented on top of ROSmonitoring [13], to which we
have added a model verification and an automatic monitor
generation.

MOON accepts the same model specification as M2C and
provides monitor generation for properties and models. As

2https://github.com/convince-project/model2code

of now, monitor generation is only available for services
and topics, with the aim to extend it also to actions in
the future. For inspecting messages travelling across chan-
nels and verify properties, MOON relies on asynchronous
communication facilities provided by the publish-subscribe
mechanisms available in ROS 2 . For monitoring models,
on the other hand, it introduces specific man-in-the-middle
components that intercepts messages exchanged by ROS 2
services. This introduces a certain degree of overhead, which
can be reduced using introspection facilities available in
recent distributions. Implementing model monitoring using
these facilities is in progress. Once the messages are in-
spected, they are forwarded to the oracle. The oracle supports
monitoring through property specification and through model
specification. In the former case the oracle checks that the
monitored communication channels satisfy a property as
described in [14], and in this case we can both monitor
the call of the service and the response of the service,
depending on what is specified in the property. For model
monitoring, the oracle considers the FSM of a skill created
at design-time and ensures that the execution of the skill
implementation — generated by M2C from the very same
FSM — is compliant to the model. The oracle is currently
implemented using the Apache Commons SCXML library?,
in order to support SCXML models. Our model specification
is compiled into a fully compliant SCXML state machine,
called the Oracle State Machine, which is the state machine
that used at runtime to evaluate if the skill is compliant
to its FSM specification. The oracle processes inputs and
outputs of the monitored skill and simulates its behavior by
forwarding the monitored communication to the Oracle State
Machine, and compares produced outputs with monitored
ones, alerting in case any discrepancy is found. In gen-
eral, monitors need to be configured manually by providing
information on the relevant parts of the system that need
to be monitored; however, since all relevant information is
included in our model specification, MOON automatically
generates the monitor configuration files. The code of the
tool can be found on github®.

V. EXPERIMENTAL EVALUATION
A. Use case description

Consider a scenario where a humanoid robot guides visi-
tors on a laboratory tour. To simplify the simulation, speech-
based interaction is not considered. The robot navigates the
laboratory to reach two predefined points of interest (POIs),
while actively ensuring that visitors are following, stopping
when they fall behind. It also monitors its battery level,
triggering an alarm when it drops below a certain threshold.
According to the architecture defined in Section II-a we
have three layers. The functional layer is not implemented
by us and we only know about its interfaces, the skill layer
is implemented with FSMs as defined in Section II-c, and
the deliberation layer is implemented with a BT, as defined

3https://github.com/apache/commons-scxml
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in Section II-b. All the communications happens through the
ROS 2 middleware. The robot’s policy is encapsulated in a
BT, whose compact representation in sub-trees is shown in
Figure 1(a), while the extended version is shown in Figure 2.
The Battery sub-tree is composed of a reactive fallback
control node that ticks the “BatteryLevel” leaf, which returns
failure when the battery of the robot is below the threshold,
in which case the Alarm leaf node is ticked and an alarm is
triggered. The “PoiScheduler” sub-tree handles the setting
of the current Pol through a fallback node whose first
and second branches refer to the first and the second Pol,
respectively. The “IsPoiDone” leaf nodes checks if a specific
Pol is reached, while the “SetPoi” nodes set a specific Pol
as the current one. The “Reset” leaf node is ticked when
the tour is over to start a new tour and reset each Pol. The
“Navigation” sub-tree checks for the presence of the visitors
and waits for them if not present. Otherwise, the “GoToPOI”
action leaf node is ticked, returns “Running” and the robots
move to the current destination. When the Pol is reached,
the “SetCurrentPOIDone” is ticked and that Pol is marked.

B. Monitoring

We consider the skills “BatteryLevel”, “Alarm”, “Is-
PoiDonel”, “SetPoil” for model monitoring, since they have
a different internal logic and rely on different ROS 2 inter-
faces, i.e., the “BatteryLevel” skill relies only on topics from
the environment while other skills have one or more services
to communicate with. Additionally, some properties related
to system-wide requirements are available. Each property, as
shown in Table I, has an assigned pattern which is translated
to a temporal logic formula from which a property monitor
can be generated — see [14] for details. We run both model
monitors and property monitors to check for configurations
where model monitors can complement property monitors
while providing an even greater level of automation. In
particular, while generating property monitors requires users
to define specific requirements, model monitors are generated
from the FSMs designed by developers, without additional
effort placed on them. To evaluate the ability of the system
to detect anomalous circumstances, bugs are injected into
the selected skills, either on the SCXML State Machine or
in the generated code. We consider both methods because

BT of the case study: expanded version

they give us more guarantees when assessing the robustness
of the overall approach. For instance, changing an SCXML
event we can simulate a wrong translation of that event by
M2C. We introduced three different categories of faults:

1) Unresponsiveness: the skill does not respond to the
tick.

2) Incorrect response: the skill responds to the tick but
not always correctly.

3) Incorrect parameter names: the skill has a spelling
error, for example in the event, service, or topic name.

The code used for the experiments can be found on github’.

VI. EXPERIMENTAL RESULTS

A. Bug discovering

For the tests we use a single fault model, i.e., in each
configuration a single bug is injected, ensuring that this is the
only difference from the nominal behavior of the system. The
monitored properties are shown in Table I, while a summary
of the tests is shown in Table II.

a) Unresponsiveness (T1-2): In these cases the skill
does not respond to the tick, so the BT is stuck waiting for
the response. For T1 we have modified the SCXML of the
“BatteryLevel” skill in order to achieve this behavior. Once
executed, the model monitor detects right away a difference
between the outputs of the skill and its specification, since
the latter has an additional event, i.e., the tick response.
MOON keeps comparing the outputs and asserts that there
is an anomaly after a timeout. The property monitor in this
case uses mainly P1 and P2. P1 is always verified since
the “Alarm” skill is never ticked, therefore MOON does not
detect the anomaly; in case of P2, an anomaly is detected,
but only after the battery level drops below 30% following
its initial value of 100%. In test T2 we have modified the
“SetPoil” skill in the same way as “BatteryLevel” in TI1.
Also in this case, the model monitor discovers the anomaly
in the same way as in T1, while the property monitor does
not detect it because the monitor sets “POI_1_selected” to
true once it receives the tick response, which never happens.

Shttps://github.com/convince-project /CGM-IR0S2025



ID Pattern

Property Description

P1 ABSENCE BEFORE

It is always the case that the “alarm” does not occur before the “battery_level < 30%” occurs

P2 | RESPONSE GLOBALLY

It is always the case that “alarm” responds to “battery level < 30%” within ¢

P3 | RESPONSE GLOBALLY

It is always the case that “POI_1_selected” responds to not “POI_1_completed”within ¢

TABLE I
MONITORED PROPERTIES

b) Incorrect response (T3-4): In these cases the skill
responds to the tick but the response is aleatory due to errors
in the state machines. Specifically, in T3 we inject the fault
in the SCXML of the “BatteryLevel” skill to randomly return
success or failure. Similarly, in T4 in we inject the fault in
the SCXML of the “Alarm” skill, which randomly returns
success or failure but it also never forwards the alarm to
the functional layer. In both tests, the model monitor detects
the anomaly at the first occurrence. The property monitor
P1 detects the fault in T3 at the same time as the model
monitor, since the “BatteryLevel” skill returns “Failure” and
the BT ticks the alarm when the battery charge is still high.
The monitor P2, instead, does not become false because it
never happens that the battery drops below 30%. In T4, the
monitors P1 and P2 never become false because they only
check the tick of the skill and not its response.

c) Incorrect parameter name (T5-6): In these cases
the skill has a misspelling in the name of a parameter.
Particularly, in TS the “BatteryLevel” skill is subscribed to a
misspelled ROS 2 topic, so it does not read the level of the
battery, keeping its internal level variable at 100%. Instead, in
T6 the “IsPoiDonel” skill has 2 interfaces communicating
with the functional layer (due to the man-in-the-middle of
MOON) one monitored and the other not monitored by the
model monitor. In this case, the skill calls the interface that
is not monitored, so the model monitor does not receive any
information about the call to the functional layer. In TS5, the
model monitor detects the anomaly when the battery level
drops below 30%. Since the model monitor cannot see that
the internal state of the variable and the response to the tick
is always successful, the model monitor does not detect any
anomaly. Instead, when the battery level drops below 30%,
the skill returns always a successful answer while the one
in the monitor returns failure. The property monitor detects
the anomaly at the same time as the model monitor with the
property P2, while P1 never detects anything since alarm
is never ticked. Finally, in T6 the model monitor detects
the anomaly immediately, while the property monitor does
not detect any anomaly because the program seemed to be
working correctly from its standpoint.

B. Overhead added

To test how much overhead our monitor added, we have
retrieved the tick time of each skill with each configuration:

o conf 1 no monitors,

o conf 2 only property monitors active,
o conf 3 only model monitors active,

o conf 4 all monitors active.

As we can see in Table III, the tick time of each skills
with both monitors increases as expected. The main differ-
ence between property monitors and model monitors is that
property monitors use asynchronous communication from
ROS 2 instead of a synchronous man-in-the middle. The
overhead added by the model monitors is on average 200-
250 millisecond per skill. This is because the execution of the
tick blocks while waiting for the execution of the monitors,
which executes synchronously with the service call. These
results demonstrates that monitoring properties and models
together is feasible. The added overhead is not negligible but
it is acceptable in this context, as we focus on monitoring
components at the deliberation level, whose response time is
larger than the added overhead. In addition, we expect that
most overhead due to model monitoring can be reduced by
replacing the man-in-the-middle approach with asynchronous
channel inspection based on ROS 2 introspection mecha-
nisms.

VII. CONCLUSIONS AND RELATED WORK

Our experimental results provide convincing evidence that
automating the generation of skill implementations and mon-
itoring the resulting code can effectively increase confidence
in the correct behavior of deliberation components without
increasing the burden of developers. Our tests also demon-
strate that model monitors can successfully complement
property monitors and do not add additional burden on the
developers since they do not require them to elicit specific
properties. To the best of our knowledge, the only framework
that targets the same objectives as ours is presented in [2],
[15], where the authors describe a rigorous approach to
specify and deploy robotic software components which can
also automatically synthesize a formal model of these com-
ponents. However, their approach is reversed with respect to
ours in that they execute the resulting formal model in place
of a traditional implementation, and show how it provides
the opportunity to add verification and monitoring. While
several approaches featuring MBD, off-line verification, and
monitoring exist and have been successfully applied to
robotics (see the extensive survey presented in [2]), most
of them do not provide code generation from conceptual
models (as done by M2C) together with property and model
monitoring (as provided by MOON), both on top of a widely
used and supported middleware such as ROS 2 .
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