Model-based Verification and Monitoring
for Safe and Responsive Robots

S. Bernagozzi*Tg, S. Faraci*, E. Ghiorzi’™*, K. Pedemontef, A. Ferrando*, L. Natale*, A. Tacchella'
*Istituto Italiano di Tecnologia — Genova, Italia
tUniversita di Genova — Genova, Italia
YUniversita di Modena e Reggio Emilia — Modena, Italia

Abstract—Model-based development (MBD) is gaining
widespread acceptance as a design technique in robotics. Not
only it eases the work of developers and makes software
deployment faster than traditional code-based approaches, but
it also enables the application of formal methods without the
need of specific training for developers. In particular, (off-line)
automated verification is known to improve the quality of
software and enable early recognition of hard-to-find bugs
whereas (on-line) monitoring helps to close the reality-gap by
running either on simulators or actual hardware. In this paper
we present a comprehensive approach to MBD, verification,
and monitoring that enables developers to design robust
control software by featuring both off- and on-line checks in a
push-button fashion, i.e., one where all the complexity of formal
methods is hidden under the hood of the development tools.

Index Terms—Model-based Development, Verification, Moni-
toring

I. INTRODUCTION

Once dismissed as a purely technological matter, method-
ologies to design and implement control software for robots
have been drawing increasing attention from researchers. The
need to develop robots that can take autonomous decisions
in dynamic and unstructured environments while maintaining
safe and secure operations is a formidable challenge that
makes traditional code-based design and implementation of
software components inadequate for most kinds of applica-
tions. Following similar developments in more mature sectors
like automotive and aerospace, model-based design (MBD)
emerged as a viable solution, to the point that a substantial
body of literature is now available on the subject, including
methodologies and their successful applications to robotics.

While MBD - coupled with the availability of middleware
and off-the-shelf software components — eases the design, im-
plementation, and composition of control architectures, robots
are not just complex cyber-physical implements, they are also
expected to take autonomous decisions that (i) do not cause
damage to the environment or themselves and (ii) do achieve

§Corresponding Author: Stefano Bernagozzi.

Email: stefano.bernagozzi @iit.it

This work was funded by the European Union under the Horizon Europe grant
101070227 (CONVINCE). As set out in the Grant Agreement, beneficiaries
must ensure that at the latest at the time of publication, open access is provided
via a trusted repository to the published version or the final peer-reviewed
manuscript accepted for publication under the latest available version of the
Creative Commons Attribution International Public Licence (CC BY) or a
license with equivalent rights. CC BY-NC, CC BY-ND, CC BY-NC-ND or
equivalent licenses could be applied to long-text formats.

expected results. MBD alone is not enough to guarantee either
requirement, and traditional software engineering practices
like testing, might be too difficult or expensive to implement,
even considering just simulated scenarios. In particular, de-
velopers need a way to catch bugs in their designs to avoid
expensive fixes at later implementation stages. Also, since not
all errors can be caught timely, it is important to ensure that
no remaining error impacts adversely on the environment or
the robot during operation.

Our proposal is a synergistic combination of three elements:
(¢) model-based design (i¢) off-line automated verification and
(7i1) on-line monitoring. We claim that all three ingredients
are required in order to improve confidence in the control
architecture to the point of ensuring that robots remain safe
and responsive while maintaining their ability to react to
changes in the environment. In particular, model-based design
is a fundamental enabler because it shifts focus from code
to models which can be assigned a formal semantics to
encode their intended behavior. While programs have formal
execution semantics as well — the one implemented by the
compiler/interpreter — the advantage of models is that their
syntax is simpler and their semantics crispier than correspond-
ing codebases. Therefore, automated verification of models
is usually simpler than automated verification of programs
because lots of implementation details are omitted, but flaws
in the logical design and combination of components can still
be spotted. The main limit in off-line verification is that the
considered models abstract away details. Simulation and real-
world operation may behave differently with respect to the
models considered during verification, possibly because the
robot reacts autonomously to a change in the usual operation
scenario. For this reason, monitoring is the third required
ingredient, one which ensures that the reality-gap will never
affect adversely the operation of the robot. Indeed, the very
same requirements that are verified off-line on models, can
be also checked on-line in simulation or real operation using
monitors generated automatically from the requirements.

To the best of our knowledge, the only framework that
targets the same objectives as ours is presented in [1], where
the authors describe an approach that starts from a standard,
but rigorous, framework to specify and deploy robotic soft-
ware components which can also automatically synthesize a
formal model of these components. However, their approach is
reversed with respect to ours in that they execute the resulting

formal model in place of a traditional implementation, and
show how it provides the opportunity to add verification and
monitoring. While several approaches featuring MBD, off-line
verification, and monitoring exist and have been successfully
applied to robotics (see the extensive survey presented in [1]),
most of them do not provide a complete toolchain that spans
from design to implementation.

The paper is structured as follows. In Section II we in-
troduce the basic elements we build upon. In Section III we
describe a scenario to test our methodology that we introduce
in Section IV. The results of our tests are described in Section
V, and in Section VI we conclude the paper with some remarks
and an agenda for future research.

II. BACKGROUND
A. Behavior Trees

Behavior Trees (BTs) [2] are gaining acceptance in the
robotics community for model-based design of deliberation
policies [3]. Since their adoption is relatively recent, the se-
mantics of BTs is not yet standardized. Therefore, while their
graphical syntax is widely agreed upon, it is not infrequent to
find inconsistent semantics across different publications and
code libraries [4]. In the following, we give a brief informal
introduction to the syntax and semantics of BTs considering
the one proposed in [5] as a first attempt to overcome some
of the aforementioned inconsistencies. In Figure 1 we can see
a BT with a root node “0” and a single reactive sequence

“R—>” child node; this node has three children which cor-
respond to subtrees. The subtree in Figure 2 consists of a
reactive fallback “R?” node with two children, a condition
node (“BatteryLevel”) and an action node (“Alarm”). The
execution of the main BT starts by sending a fick signal to
the root node and by propagating it down the structure of
the tree. A condition node responds either success or failure
depending on whether the stated condition is true or false,
whereas an action node may also respond running if the action
is still being accomplished. The response of reactive fallback
and reactive sequence nodes depends on their children’s: a
fallback node will tick the first child and, upon success of
the child it will return success, whereas upon failure of the
child subsequent nodes will be ticked; a sequence node will
tick the first child and, upon success of the child, will tick the
subsequent nodes. Therefore, a fallback node returns failure
only if all children fail, while a sequence node returns success
only if all children succeed. In the case of reactive sequence
and fallback, running is returned when the ticked child returns
running. While this introduction is by no means exhaustive,
it is enough to make sense of most of our case study; further
details will be given in the following sections when necessary.

B. Finite State Machines

Finite State Machines (FSMs) are a well-established
paradigm in model-based design to represent policies at the
deliberation stage and to describe either abstract or concrete
models of elements and the functional and control stages of
a software architecture. Abstract models of the environment

can also be provided in terms of FSMs, possibly including
probabilistic or timed transitions. In our paper, we consider
state machines described with a subset of the SCXML standard
[6], where we disallow hierarchical state machines and code
scripting. Indeed, such features would make formal treatment
challenging: the semantics of hierarchical FSMs are somewhat
inconsistent across contributions in the literature [7], and code
scripting (based on ECMAScript) would require assigning
semantics to code fragments. Aside from these provisions,
we consider the standard syntax of SCXML and the seman-
tics described (informally) in [6], where each machine has
states and transitions among them, and transitions are either
unconditional or based on events which are either internal, i.e.,
coming from the machine itself, or external, i.e., coming from
some other machine. Both internal and external events are
queued and processed according to their order of occurrence.
Handling of external events enables several machines to run
in an asynchronously parallel fashion.

C. Middleware

We assume that the implementation of the control archi-
tecture whose models are given in terms of BTs and FSMs
is based on ROS2 [8], a communication middleware widely
used in the robotics community. It is mainly composed of
three types of primary interfaces: topics, services, and actions.
Topics are based on the publisher-subscriber pattern, so they
can have multiple publishers and subscribers for the same
topic. In addition to that, each topic has a message type
which specifies the data that will be published or read on
that topic. On the other side, both services and actions are
based on the request-response pattern, but services are meant
for computation guaranteeing a quick turnaround time, while
actions are for general, potentially time-consuming computa-
tions. While the client of the service is blocked until the server
provides a response, actions support asynchronous interaction
through two services — one for making the request and one
for requesting the result — and a topic which, after the request
has been made, sends feedback to the client with the status of
the computation.

D. Statistical Model Checking

To perform off-line verification we utilize SCAN! (Statisti-
Cal ANalyzer) a statistical model checker designed to verify
models of asynchronous processes exchanging data over FIFO
buffers — a channel system in the parlance of [9], where each
buffer is a channel and data items are messages. In SCAN,
the underlying model features also timed transitions and
invariants [9]. SCAN accepts SCXML-specified FSMs running
asynchronously (section II-B) which are internally converted
to a channel system, where event queues are modeled by
channels, and SCXML events are modeled by messages.

The staple feature of SCAN is to sample concrete execution
of channel systems to find the probability that a property
is satisfied, within specific confidence bounds. In practice,

Uhttps://github.com/convince-project/scan

SCAN runs sufficiently many Monte Carlo simulations of the
model to prove a statistical result characterized by precision
and confidence parameters. To determine the number of tests
required, we adopt the Adaptive criterion from [10] which
updates the halting threshold dynamically, based on the test
results as they are obtained. Other than providing statistically
sound success rate results, SCAN can save the execution traces
it produces in terms of events being sent and received by
SCXML machines, thus allowing developers to directly relate
the execution traces to the specified model and properties.

In particular, SCAN deals with temporal properties ex-
pressed in Metric Temporal Logic with past-tense connectives
(past-MTL) [11] with super-dense time semantics [12] and
state-event support [13], which is meant to align it with the
monitoring system (section II-E) so that the same properties
verified on the models can be monitored at runtime on the
corresponding implementations. We consider standard past-
MTL properties written with the following syntax:

p:=T|p|-a|laAB|aS[a:b]p

where p is a member of a finite set of predicates, o and (8
are formulas. Past-MTL is interpreted over timed-traces where
each element of the trace has a timestamp. Let w be a timed
trace, and ¢ be a timestamp of w, then we write w,t |= ¢ to
mean that w satisfies ¢ at time ¢ according to the following
rules:

e w,t =T forevery t € w

e w,t = p if predicate p is true in w at time ¢

e w,t = —a when w,t £~ «

e w,t|=aAf when w,t|=aand w,t =0

e w,t = aSla: b] B when there exists t' € [t — b,t — a]
such that w,t' = § and for all t” such that ¢/ <t <t
it is also the case that w, ¢ = « for each t”.

Intuitively, the temporal operator since (S) states that 8 should
be satisfied at some time ¢’ preceding ¢ in the interval [a, b]
and « is satisfied ever since. Other propositional connectives
are dealt with the usual equivalences, e.g., oV = =(-~aA—f
and « = [= -« V (3, and additional temporal operators
past eventually (P) and historically (H) can be defined as

Pla:bla:=TS[a: b« Hia: b o :=-Pla: b ~«

Corresponding unbounded versions of temporal connectives S,
P and H can also be given. For instance, ¢, w = Ha if « is
always satisfied before t. In SCAN, predicates are restricted
to the messages sent along the channels corresponding to
messages that can be monitored in the real system. We choose
not to verify the internal state of the processes, as models
might be an abstraction over the actual components in the
system, and thus their actual state neither corresponds to some
state in the actual component, nor it can be monitored.

E. Monitoring

ROSMonitoring [14] is a tool to monitor ROS interfaces
for a system. The tool has three components: instrumentation,
oracle, and monitor. The instrumentation is used to create

a monitor to be subsequently placed as a man-in-the-middle
between two components of the system; the oracle is used to
check whether the monitored parts satisfy certain properties
given in a formal language; finally, the monitor is used to
take the messages from the monitored topic or service and to
forward them to the oracle. The oracle we consider is based on
Reelay [11] to implement past-MTL property checking. In our
case, monitoring is different between topics and services: for
topics, the monitor leverages the publish-subscribe architecture
of ROS: it only listens to the topic for new messages and
logs them leaving unchanged the communication between the
components, for services it acts as a real man-in-the-middle,
so it receives the message from the first component and it
forwards it to the second component.

III. CASE STUDY

We consider a simulation example representing a simplified
humanoid robot museum tour guide task. The simplified task
requires the robot to navigate to two designated points of
interest (POIs), while checking the percentage of its battery
and the presence of the group of visitors it is guiding.

The behavior tree in figure 1 represents the simulated
task. It comprises three subtrees: battery management, POI
scheduling, and navigation.

o
o
559 Navigation

[w]
5% poiScheduler

Gan BatteryManagement ‘

Fig. 1. Case study Behavior Tree: each of the three leaf nodes is a sub-tree.
Here we can see the logic, at first we check the battery and if it is low we
manage it, then we set the current Pol with the Pol scheduler and finally we
navigate to the current Pol.

The Battery Management subtree checks if the robot battery
level (in percentage) is below a given threshold. If so, it starts
an alarm. This is done using a ReactiveFallback control node,
the “BatteryLevel” condition node, and the “Alarm” action
node, as shown in Figure 2.

i‘_]J_'J3Batta-r).rl'tll‘lanagement
I
R ?

Fig. 2. Battery Management sub-tree: it checks the battery level and if it is
below 30% it ticks the alarm skill.

The POI scheduling subtree, shown in Figure 3, handles the
setting of two POIs. The subtree is composed of two identical
branches, one for each POI. Each branch is composed of a
“IsPoiDone” condition leaf which checks whether the POI
has been executed; if false the POI is set as the current POI

with the “SetPoi” leaf, otherwise, it executes the branch of the
second POI. When both Pols have been visited, the “Reset”
leaf is ticked, both Pols are marked as not done and the tour
starts from the beginning.

=N
“°% PolScheduler

Fig. 3. Poi Scheduler sub-tree: it checks on the blackboard if a Pol is already
done, and if so it goes to the next one. If all the Pols are done it reset
everything to start again.

The first part of the Navigation tree (Figure 4) is the
visitors following sub-tree which comprises the *“VisitorsFol-
lowing” node that checks if the group of visitors is present
and performs appropriate actions. For simplification, here the
fallback is a simple “Wait” action. In the second part of the
navigation tree the “GoToPoiAction” activates the navigation
component to bring the robot to the current POI, while
“SetCurrentPoiDone” sets that POI as done when it is reached.

—
58 Navigation

ol
ahn
Visitors

Following

[GoToPOI][SetCurrentPOlDone

Visitors
Following

Fig. 4. Navigation sub-tree: at first it checks if visitors are following the
robot, if not it waits for them. Then it goes to the current Pol and, once
reached, it marks the current Pol as done.

We consider five requirements that the task described above
should satisfy, namely:

1) If the battery level is above or equal to 30% threshold
then the alarm should not be active.

2) If the battery level drops below the 30% threshold then
the alarm should activate.

3) The battery level should be published every ¢ seconds.

4) If POI_1 is not completed it should be selected.

5) The state of the visitors should be published every ¢
seconds.

IV. METHODOLOGY

As shown in Figure 5, we assume that the design structure
comprises four levels: task plan, plugins, skills, and compo-
nents. Each level is formally modeled in XML and has a C++
executable counterpart. In our case, the task plan is a policy

[Sy S

BehaviorTree.cpp </ USZSerwces) / Ros ZSerwces N

_— \tODICS and actlons/

>——{ Components

VERIFIABLE - —

Fig. 5. System interfaces: here we can see the whole architecture with the
interfaces between the various pieces and where the monitoring can happen.

represented in XML by a behavior tree. Its leaf nodes are
handled by two different kinds of plugins, one for actions
the other for conditions. Plugins are simple ROS nodes that
directly interact with the skills, by forwarding the tick to them.
The skills, which have the prefix of the name equal to the leaf
nodes, provide the desired functionality by orchestrating the
components that interact with the environment. For plugins and
components, the models are abstract SCXML formalizations
of the actual executable code and, therefore, are given as input
only to the model-checking tool; while the code of task plan
and skills is directly generated from the model. The generation
of the code for task plan and skills gives us the opportunity
to monitor them at run-time, allowing us to discover bugs due
to reality-gaps in the models. While in principle it is possible
to extend our approach to also monitor components, we are
focused on verification and monitoring of task plan and skills.

An overview of our methodology is shown in Figure 6.
Since the model comprises also some custom tags to ease
development over the ROS2 middleware?, we need to convert
it to plain SCXML to give it as input to SCAN. This step
is achieved by AS2FM software®, which outputs the whole
system as a set of SCXML files that are compliant with the
standard. For the execution of the model in simulation instead,
the behavior tree can be directly executed using Behav-
iorTree.cpp*. The plugins, and the components are executable,
while for the skills we need a conversion to an executable
code. This step is done via the model2code software 5. which
takes as input a state machine and generates an executable
which executes that state machine and interacts via ROS2, as
in Figure 5.

For each requirement we proceed in three steps: at first we
choose the correct pattern following the patterns presented in
[11], then we write those properties in natural language in a
manner that can be directly translated into the patterns and at
the end we write the resulting PAST-MTL formula based on
the selected pattern. All the intermediate result of this process
can be seen in Table I.

V. EXPERIMENTAL EVALUATION

In order to ensure the correctness and reliability of the
system we want to answer two main questions: i) are results

The tags allow to specify communication over ROS?2 interfaces, but these
ought to be expanded into corresponding models of such protocols in terms
of plain SCXML machines

3https://github.com/convince-project/ AS2FM

“https://www.behaviortree.dev/

Shttps://github.com/convince-project/model2code

Property Pattern Text PAST-MTL formulae
No.
1 ABSENCE It is always the case that the “alarm” does not occur before | H (battery_level > 30% = H (—alarm))
BEFORE the “battery_level < 30%” occurs
2 RESPONSE It is always the case that “alarm” responds to “battery level | H ((alarm = P (battery_level < 30%)) A
GLOBALLY < 30%” within t; —(—alarm Sty :] battery_level < 30%))
3 RECURRENCE It is always the case that “battery_published” at least every | H ((P[t2 ;] True) = (P[: t2] battery_pub))
GLOBALLY to time units
4 RESPONSE It is always the case that “POI_I_selected” responds to not H ((POI1_sel — P -POIl_comp) A
GLOBALLY “POI_1_completed” —(=POI1_sel S[tz :] “~POI1_comp))
5 RECURRENCE It is always the case that “visitors_published” at least for | H((P[ts :]True) = (P[: t4]visitors_pub))
GLOBALLY every ts5 seconds
TABLE I
PROPERTIES WITH THE RELATED PATTERN TAKEN FROM [11], THE TEXT EXPRESSED IN FORMAL LANGUAGE AND THE CORRESPONDENT PAST-MTL
FORMULA
] Offfine model checking the rate at which the components publish the corresponding
High-Level ow-Leve -
models _,{: models [] values (i.e., 1Hz), 'threfore a period of 1.0 time units, in both
o7 b (XML, SCXML) cases. The properties are always true given a bound greater
s (BT, Online monitoring or equal to 10, and false otherwise. The bound of property
Skl (SOM)] Executable 4 is two time units since the system needs to be initialized
Components (SCXML) Code and, at the beginning, the POI 1 is not yet selected. The

BT riJ
Plugins

—— Skills

Components

Fig. 6. Methodology overview: on the left we can see the input of the whole
pipeline, while on the right the outputs and their usage.

of SCAN reliable and can the monitoring find flaws due to
the reality gap? ii) can the use of both frameworks enhance
the reliability of the system? To answer these questions we
have tested separately SCAN and ROSMonitoring using a
simulation, which can be found in the Github repository®. For
the SCAN program, we have a model of the whole system
that can be simulated, while for ROSMonitoring we have a
simulation with all components (Navigator, Alarm, Battery
and Visitors Following) that can be executed stand-alone.

A. Off-line verification

The models of the system translated into plain SCXML
using AS2FM and the properties written in XML have been
given as input to the SCAN model checker. The selected
SCAN parameters are the default ones: 0.95 for confidence,
0.01 for precision, and the maximum length of execution trace
is set to 500000 steps. SCAN takes a maximum of two minutes
to check each property, and the resulting precision decreases
with the number of runs until it reaches +0.01.

Table II shows the success rate for each property considering
different temporal bounds (multiples of 100ms). The first
property has a success rate equal to one and does not have a
time bound. The bound of property 2 has been found manually
by trials: in this case the bound depends on the interaction
among ticks and scheduling of different processes and it is not
relevant per se, but it shows that a bound exists. Time bounds
for properties 3 and 5 are correct because they corresponds to

Shttps://github.com/convince-project/MBVM-SIMPAR2025

bound corresponds to the time required by the Behavior Tree
to tick the first leaf nodes and retrieve their values from the
components before setting the POI 1 as selected.

Property ID | Temporal Bound | Success Rate

1 - 1.00

2 t1 > 62 1.00
t1 <62 0.00

3 ta > 10 1.00
to < 10 0.00

4 t3 > 2 1.00
tz < 2 0.00

5 tqg > 10 1.00
tg < 10 0.00
TABLE II

MODEL CHECKING RESULTS (TEMPORAL BOUNDS ARE IN MULTIPLES OF

100ms)

B. Monitoring

We tested all the properties in Section III for various time
bounds, in order to catch the ones which lead the properties to
a failure when running on actual code. Results can be found in
table III. The first property has no time bounds and it is verified
correctly by our monitor. Time bounds for properties 3 and 5
are correct because they correspond to the rate at which the
components ~Battery” and “Visitors Following” publish their
messages through topics (i.e., 1 Hz): this explains also the time
bound which reflects the publishing rate of the topic. For the
last two properties their value is independent of the publication
frequency but it is due to the response of the system. We have
found the value for property 2 by trials corresponding to 2.5
seconds. By looking at the traces we determined that this value
corresponds, as expected, to the average time required by the
alarm to become active after the drop of the battery. This is
equivalent to approximatly two ticks of the behavior tree. For
property number 4 instead, the bound value is related to the
time that the behavior tree needs to reach the next action.
Also in this case the bound corresponds to the time required

by the Behavior Tree to tick the first leaf nodes and retrieve
their values from the components before setting the POI 1 as
selected.

Property ID | Temporal Bound [s] | Success Rate
1 - 1.00
2 t1 > 2.5 1.00

t1 < 2.5 0.00
3 ta >1 1.00
o <1 0.00
4 t3 > 0.2 1.00
t3 < 0.2 0.00
5 tg >1 1.00
tg <1 0.00
TABLE III

MONITORING RESULTS

VI. CONCLUSIONS AND FUTURE WORK

Considering the experiments presented in the previous sec-
tion, we can conclude that the overall methodology can deal
successfully with simple but non-trivial systems. In particular,
leveraging statistical model checking with SCAN maintains
the promise of scaling well: the internal channel system cor-
responding to our case study contains more than 50 processes
and 400 channels which would make it prohibitively large for
state-of-the-art classical model checkers. Furthermore, SCAN
can spot bugs at the conceptual level that relate to timing
constraints: all properties tried turn out to be satisfied as long
as the choice of time bounds is consistent with the structure
of the model and the interaction among the components.
However, monitoring is required to fill the reality-gap and
ensure that bounds can be stated so that such constraints
will be fulfilled also during execution. Indeed, monitoring
takes into account time bounds in wall-clock seconds, whereas
SCAN considers abstract “ticks” which may realize differently
depending on the speed at which the overall system runs to.
In the future, we plan to extend our methodology to consider
more complex case studies enabling the monitoring of the
components and wrap the toolchain behind a single easy-to-
use graphical user interface. We are also planning to extend the
experimental analysis to include other state-of-the-art systems,
like SMC-STORM [15], that can be integrated for verification
and monitoring within our framework.

REFERENCES

[1] S. Dal-Zilio, P. Hladik, F. Ingrand, and A. Mallet, “A
formal toolchain for offline and run-time verification
of robotic systems,” Robotics Auton. Syst., vol. 159,
p- 104301, 2023.

[2] M. Colledanchise and P. Ogren, Behavior trees in
robotics and Al: An introduction. CRC Press, 2018.

[3] M. lovino, E. Scukins, J. Styrud, P. Ogren, and C.
Smith, “A survey of behavior trees in robotics and ai,”
Robotics and Autonomous Systems, vol. 154, p. 104 096,
2022.

[4] M. Colledanchise and L. Natale, “On the implementa-
tion of behavior trees in robotics,” IEEE Robotics and
Automation Letters, vol. 6, no. 3, pp. 5929-5936, 2021.

(5]

(6]

(7]

(8]

[11]

[12]

[13]

[15]

E. Ghiorzi and A. Tacchella, Execution semantics of
behavior trees in robotic applications, 2024. arXiv:
2408.00090 [cs.RO]. [Online]. Available: https://
arxiv.org/abs/2408.00090.

J. Barnett, R. Akolkar, R. Auburn, M. Bodell, D. C.
Burnett, J. Carter, S. McGlashan, T. Lager, M. Helbing,
R. Hosn, T. Raman, K. Reifenrath, N. Rosenthal, and
J. Roxendal, State chart xml (scxml): State machine
notation for control abstraction, last accessed 2024-10-
18, 2015. [Online]. Available: https://www.w3.org/TR/
scxml/.

E. André, S. Liu, Y. Liu, C. Choppy, J. Sun, and J. S.
Dong, “Formalizing UML state machines for automated
verification - A survey,” ACM Comput. Surv., vol. 55,
no. 13s, 277:1-277:47, 2023.

S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and
W. Woodall, “Robot operating system 2: Design, archi-
tecture, and uses in the wild,” Science Robotics, vol. 7,
no. 66, eabm6074, 2022. DOI: 10.1126/ scirobotics .
abm6074. [Online]. Available: https://www.science.
org/doi/abs/10.1126/scirobotics.abm6074.

C. Baier and J.-P. Katoen, Principles of model checking.
MIT press, 2008.

C. E. Budde, P. R. D’Argenio, A. Hartmanns, and S.
Sedwards, “An efficient statistical model checker for
nondeterminism and rare events,” International Journal
on Software Tools for Technology Transfer, vol. 22,
no. 6, pp. 759-780, 2020.

D. Ulus, “Online monitoring of metric tempo-
ral logic using sequential networks,” arXiv preprint
arXiv:1901.00175, 2019.

H. S. Sarjoughian and S. Sundaramoorthi, “Super-
dense time trajectories for devs simulation models,”
in Proceedings of the Symposium on Theory of Mod-
eling & Simulation: DEVS Integrative M&S Sympo-
sium, ser. DEVS ’15, Alexandria, Virginia: Society for
Computer Simulation International, 2015, pp. 249-256,
ISBN: 9781510801059.

S. Chaki, E. M. Clarke, J. Ouaknine, N. Sharygina, and
N. Sinha, “State/event-based software model checking,”
in Integrated Formal Methods, E. A. Boiten, J. Der-
rick, and G. Smith, Eds., Berlin, Heidelberg: Springer
Berlin Heidelberg, 2004, pp. 128-147, 1SBN: 978-3-
540-24756-2.

A. Ferrando, R. C. Cardoso, M. Fisher, D. Ancona,
L. Franceschini, and V. Mascardi, “Rosmonitoring: A
runtime verification framework for ros,” in Towards
Autonomous Robotic Systems, A. Mohammad, X. Dong,
and M. Russo, Eds., Cham: Springer International Pub-
lishing, 2020, pp. 387-399, 1SBN: 978-3-030-63486-5.
M. Lampacrescia, M. Klauck, and M. Palmas, “Towards
verifying robotic systems using statistical model check-
ing in storm,” in Bridging the Gap Between Al and Re-
ality, B. Steffen, Ed., Cham: Springer Nature Switzer-
land, 2025, pp. 446467, 1SBN: 978-3-031-75434-0.

