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Abstract—Robots should be capable of interacting in a coop-
erative and adaptive manner with their human counterparts in
open-ended tasks that can change in real-time. An important as-
pect of the robot behavior will be the ability to acquire new knowl-
edge of the cooperative tasks by observing and interacting with hu-
mans. The current research addresses this challenge. We present
results from a cooperative human–robot interaction system that
has been specifically developed for portability between different
humanoid platforms, by abstraction layers at the perceptual and
motor interfaces. In the perceptual domain, the resulting system is
demonstrated to learn to recognize objects and to recognize actions
as sequences of perceptual primitives, and to transfer this learning,
and recognition, between different robotic platforms. For execu-
tion, composite actions and plans are shown to be learnt on one
robot and executed successfully on a different one. Most impor-
tantly, the system provides the ability to link actions into shared
plans, that form the basis of human–robot cooperation, applying
principles from human cognitive development to the domain of
robot cognitive systems.
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I. INTRODUCTION

C OOPERATION is a hallmark of human cognition. Early
in their development, human children begin to engage in

cooperative activities with other people. Critically, from early
on, children are able to cooperate in novel situations, based upon
social-cognitive capacities such as representing other people’s
intentions, visual perspective-taking, and imitation [1], [2]. Cru-
cially, this requires extensive learning in the early years of life.
The premise of our research is that similar skills are required
also for human–robot cooperation. Specifically, we derive the
fundamental skills which enable young children to learn to en-
gage in cooperative activities, and then implement these in an
integrated system capable of running on several robotic plat-
forms to study human–robot interactions. The current research
builds on our previous work on action perception [3] and ex-
ecution [4], constituting the third (III) part of this research. It
extend this work in the context of shared plan learning, and the
exchange of acquired knowledge between different versions of
the iCub [5] and the BERT2 [6] robot platforms via the internet.
Our research thus focuses on learning required for coopera-

tion. These methods are all based on a platform-independent ar-
chitecture that allows the knowledge generated by one robot to
be used by another one. The targeted skills all involve the con-
cept of Action and they range from action perception and recog-
nition to action execution, sequencing and shared planning. All
these implemented skills have been isolated and studied in chil-
dren, and they are building blocks for higher level cooperative
abilities and cognition in general.
During the first years of life, children acquire these skills and

use them in order to gain experience about the world and in-
teract socially with other people. This learning process often re-
quires direct experience and feedback to find a good solution.
Moreover, even if an individual has acquired the skill to solve
a problem in one situation, generalizing to novel situations is
often difficult and requires adaptations and often (re)learning.
Consider an alternative approach in which multiple children

had direct access to a combined representation of their distinct
experiences, such that each of them could benefit from the ex-
perience of all the others. In this situation of distributed and
parallel learning the children’s shared development would be
vastly accelerated because knowledge acquired by one indi-
vidual would be accessible to all others without loss or dis-
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tortion. Although human cultural transmission through obser-
vational learning and language serves this function, this prop-
agation of knowledge is always error-prone and imperfect so
that the knowledge content might be lost or distorted during the
learning process [7]. This idea of a shared cognitive system for
multiple bodies is still “science fiction” if we speak about bi-
ological systems; however it need not be the case with robots.
Robots can be distributed throughout the world, they can have
different bodies, experience different situations but, in contrast
to humans, there is no reason why they cannot share their ex-
perience directly. This requires an important distinction in the
context of embodiment [8]. Knowing how to grasp, or walk is
clearly platform specific and cannot be transferred between dis-
tinct platforms. A higher level plan, e.g., “walk to the table and
grasp the bottle,” can abstract over these platform specific as-
pects, and can effectively be shared by physically distinct robots
that can walk and grasp. Through the internet they can provide
knowledge to others about things they have learned, and they
can also benefit from others’ knowledge.
In this context, a central idea in the current research is to pro-

vide skills and learning mechanisms that are independent of the
robot platform used. In this way, robots can communicate the re-
sults of their learning over the internet so that other robots will
not need to repeat this learning process themselves. In this con-
text, we present learning methods for action recognition, com-
posite action sequencing, and shared planning. For each of these
skills, we demonstrate that the knowledge generated can be used
by other robots to bypass their learning phase.

II. CONTEXT: HUMAN–ROBOT COOPERATION

We first identify a set of requirements that the system should
meet based in part on an analysis of human cognitive develop-
ment.

A. Cooperation Requirements

Studies of human infants [2], [9], [10] indicate that rec-
ognizing actions and engaging in cooperative interactions
develops over the second and third year of life. From around
14–18 months of age, infants begin to engage in novel coop-
erative tasks with adults, in which they have to collaborate
jointly to achieve a shared goal (such as one agent holding
something in place so that another agent can manipulate the
object). It has been argued that from this early age, infants are
already able to represent a shared plan of action (an action plan
encompassing both the child’s and the partner’s actions taken
to bring about a certain change in the world), and are able
to reverse complementary roles if necessary. In other words,
infants are taking a “bird’s eye view” on the social situation,
representing not only their own actions, but both their own and
the partner’s actions as part of a shared plan [11].
Such a shared plan allows children to demonstrate “role re-

versal,” where they can take on the role of either partner in a
cooperative activity. We have recently implemented this type of
shared planning in robotic systems which can observe actions,
attribute roles, and then use the resulting shared plan to perform
the cooperative task, taking the role of either one of the two par-
ticipants [12], [13].

This basic representational capacity appears to be in place
in human development very early on. However, during devel-
opment, children become increasingly skilled in coordinating
their actions with different social partners. They start to co-
operate successfully with more competent adults early in the
second year of life, and gradually become able to cooperate with
peers also around two years of age [10]. Importantly, cooper-
ating in fairly simple novel situations does not require extensive
learning [2]. However, in more challenging tasks, with comple-
mentary actions that require a multistep sequence and a goal
that is not transparent, direct instruction appears to be necessary
[14]. Thus, we have used spoken language in human–robot co-
operation in order to make the nature of the tasks explicit, so that
they can be used by the robot to learn the structure of the task
[15], [16]. Spoken language will be central to the interactions
by allowing the user to manage the interaction, and to guide the
learning of new actions and shared plans (plans that include the
coordinated actions of both agents toward their shared goal), as
specified below.
A crucial aspect of this human cooperative behavior is the

ability to perceive and analyze new actions in real time, during
the course of observation of an ongoing cooperation. Children
can be exposed to novel physical devices and, within a few trials
of observation, learn new actions involved inmanipulating these
devices [1], [2].

B. Extracting Meaning From Perception

Robots will have to demonstrate similar learning capabilities
in order to face novel situations they will encounter in the
real world. Exhaustive knowledge about the world cannot be
provided a priori by the programmer, thus the robots need the
ability to learn. An important aspect of human social life is our
ability to learn from others through observation and instruction
[17], which is a faster and more accurate way of acquiring
knowledge about complex entities than individual learning,
such as trial-and-error learning.
Mandler [18] suggested that the infant begins to construct

meaning from the scene, based on the extraction of perceptual
primitives. From simple representations such as contact, sup-
port, and attachment [19] the infant could construct progres-
sively more elaborate representations of visuo–spatial meaning.
In this context, the physical event “collision” can be derived
from the perceptual primitive “contact.” Kotovsky and Bail-
largeon [20] observed that at six months, infants demonstrate
sensitivity to the parameters of objects involved in a collision,
and the resulting effect on the collision, suggesting indeed that
infants can represent contact as an event predicate with agent
and patient arguments. Siskind [21] demonstrated that force dy-
namic primitives of contact, support and attachment can be ex-
tracted from video event sequences and used to recognize events
including pick-up, put-down, and stack, based on their charac-
terization in an event logic. Related results have been achieved
by Steels and Baillie [22]. The use of these intermediate rep-
resentations renders the systems robust to variability in mo-
tion and view parameters. We have used a related approach
to categorize movements including touch, push, give, take and
take-from in the context of linking these action representations
to language [23].
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Fig. 1. Overview of the software architecture. Communication between modules is achieved via YARP (see below). All modules presented here are platform
independent.

In the current research, we extend these ideas, so that arbi-
trary novel actions including cover, uncover, take, put, and touch
can be learned in real-time with a few examples each, based
on invariant sequences of primitive events specific to each ac-
tion. We subsequently demonstrate that, using the same archi-
tecture, such actions can be learned on a different robot plat-
form using an entirely different perceptual system. Finally, and
perhaps most interestingly, we demonstrate that knowledge of
action recognition learned on one of the robots transfers directly
for successful use on another.

C. Composing New Actions

In addition to their perception of action, children begin to
demonstrate the ability to compose new actions before two
years. Indeed, they show this ability to sequence hierarchical
elements in several domains including spoken language devel-
opment, tool use and action [24]. Composite actions can be
represented as a hierarchical organization of simpler actions
with the leaves of the tree being called “atomic actions.” This
is concordant with our approach to action recognition and
has been used successfully employed in the action framework
[25]–[28]. A robot with a rich set of atomic actions is useful in
many aspects. However, to produce interesting behaviors we
need to compose these actions in more evolved sequences. The
first level is to name and create composite actions that the robot
will be able to produce by executing the underlying sequence
of atomic actions.
Initially, the robot is only able to perform the actions defined

by the motor command interface (defined below). This defined
interface represents the atomic action pool that the user can use
to build up composite actions. Using speech, the user is able to
instruct the robot about the list of sub actions to execute and to
store the definition of this new action in the Action Definitions
database. From this point on, the user will be able to use the
new action in more evolved sequences. We used this capacity
in our experiments by teaching the action “Put on ” which
is composed of “grasp , release ,” and is then used as part of

a shared plan. This ability is the basis of the spoken language
programming framework and, as we previously demonstrated
[16], [29], [30], allows the interaction between the user and the
robot to be faster and more efficient.

D. Using Shared Plans

Developing the idea of higher level manipulation of the ac-
tion concept, the next step is to extend the robot’s abilities, so
that it will be able to learn and use shared plans in the con-
text of cooperation. One important aspect of cooperative activ-
ities is division of labor and the assignment of who performs
which role in the joint activity. Human children at 14–24 mos
display a remarkable ability to observe adults perform a coop-
erative task (with only one or two demonstrations) and then to
engage themselves in that task, taking the role of either of the
demonstrating adults [2], [9]. The behavioral data indicate that
the children have understood the task in terms of a coordinated
succession of actions, rather than a set of specific motor trajec-
tories. They have a common shared action plan for the joint en-
terprise. (These provide a “bird’s eye view” of the collaboration
and can be demonstrated by the agents’ ability to reverse roles).
We have previously developed in [13] the ability of the iCub

to learn and reproduce shared plans, including a role reversal
capability. In the current work we allow the new complex action
definition to be inserted into a learned shared plan structure,
and we are making their implementation platform independent.
Different robots can thus share the same representation of shared
plans, exchange them, and eventually use them together.

III. THE CHRIS ARCHITECTURE

Given these requirements, we can now begin to specify the
corresponding architecture. In order to be platform-indepen-
dent, a cognitive architecture should abstract away from plat-
form-specific representations of perception and action at the
lowest level possible. An overview of our architecture in this
context is presented in Fig. 1.
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Robot specific components for the 3-D-perception and motor
command levels illustrated on the right are isolated from the
rest of the system at the lowest level. The architecture can be
most clearly described in terms of information flow for percep-
tion and action, respectively, and their interaction. In the percep-
tual flow, robot specific sensor data enters Egosphere in stan-
dardized, real-time, position, and orientation format. Primitives
(moving, in contact, etc.) are extracted by primitive detection,
and used by Action Recognition. In this context, spatial repre-
sentations are communicated to and organized in SPARK,which
then makes high level spatial information available to the rest
of the system via ORO. In the action flow—the executability
for planned or requested actions (issued from the user via inter-
action management, or through planning) are verified a query
of knowledge base: action definitions to verify the actions are
defined, and knowledge base : ORO to verify visibility and pre-
conditions. If the execution conditions aremet, a request is made
to motor command where knowledge base: OPDB allows ac-
cess to position information to translate name based request to
robot implementation with spatial coordinates. In case of visu-
ally guided actions, the vision–motor bridge manages the trans-
formation from object-related labels to the spatial coordinates
of those objects in conjunction with OPDB. The following sec-
tions describe the architecture in detail.

A. Scene Perception

1) EgoSphere: The first layer of abstraction between the sen-
sory perception system and the higher level cognitive architec-
ture and motor control elements is formed by the EgoSphere.
Unlike the sensory ego-sphere (SES) by Peters [31] which im-
plements short termmemory, associations, direction of attention
in addition to localization, our simpler implementation solely
acts as a fast, dynamic, asynchronous storage of object positions
and orientations. The object positions are stored in spherical co-
ordinates (radius, azimuth and elevation) and the object orien-
tation is stored as rotations of the object reference frame about
the three axes of a right-handed Cartesian world-frame
system. The origin of the world frame can be chosen arbitrarily
and, for our experimental work, we located it at the centre of
the robot’s base-frame. Other stored object properties are a vis-
ibility flag and the objectID. The objectID is a unique identifier
of an object which acts as a shared key across several databases
(described in more detail in Section III-B below).
The robot-specific 3-D perception system adds objects to the

EgoSphere when they are first perceived, and maintains posi-
tion, orientation or visibility of these objects over time. Mod-
ules (e.g., primitive detection in Fig. 1) requiring spatial infor-
mation about objects in the scene can query the EgoSphere. No
assumptions are made about the nature of an object and any fur-
ther information (e.g., object name and object type) will have to
be queried from the Knowledge Base using the objectID. This
architecture makes the EgoSphere particularly useful for storing
multimodal information.
The EgoSphere is implemented in C++ as a client-server

system using the YARP infrastructure. Software modules
requiring access to the EgoSphere include a client class
which provides methods like , ,

, or , etc. Clearly, at the

current state, the EgoSphere is merely a convenient abstraction
layer. With increasing complexity of human–robot interaction
tasks during the course of our research, we plan to add further
complexity (human focus of attention, confidence, timeliness
etc.), whilst preserving modularity.
2) Primitive Detection: Based on the EgoSphere representa-

tion, the robot should be able to recognize actions performed by
other agents in order to learn, to cooperate or for safety reasons.
We have previously demonstrated in [23] that actions involving
change of possession can be described in term of perceptual
primitives such as contact. Here we extend the primitives to in-
clude motion and visibility. Thus, an action such as “Larry takes
the ball” can be characterized in terms of a sequence of percep-
tual primitives:
• motion: Larry’s hand starts to move;
• contact: there is a physical contact between Larry’s hand
and the ball;

• motion: both Larry’s hand and the ball start to move to-
gether, then they both stop.

We refer to these low level events as perceptual primitives.
Dominey and Boucher [23] demonstrated that a variety of ac-
tions can be recognized with the primitive . Here
we extend this approach by including, in addition, the primitives

and . These primitives, and their corre-
sponding arguments and truth values, are computed in the Prim-
itive Detection module, which polls the EgoSphere for changes
in position and visibility. Contact is recognized by a minimum
distance threshold which is determined empirically. Likewise,
motion is detected when the position of an object changes over
an empirically determined threshold. Visibility is directly avail-
able from the EgoSphere.
3) Action Recognition: It is clear from above that, when a

physical action occurs, values encoding object positions in the
EgoSphere change accordingly. Primitive detection transforms
this position information into sequences of perceptual primi-
tives. Action recognition reads this stream of perceptual primi-
tives and groups the elements into candidate actions. Based on
empirical measures, we determined that primitives which are
separated by less than one second belong to a common action.
In other words, a primitive sequence for an action may last sev-
eral seconds, but no successive primitives are separated by more
than 1 second. This limitation on fast successive actions is con-
sidered in the discussion section. When an action is performed
and processed, its primitive sequence is thus segmented by the
action recognition module, which tries to recognize it.
The action recognition module generates and manipulates the

action definitions database of primitive sequences as follows.
It tries to match the current sequence by an exhaustive search
through the database. If the sequence is not recognized, the ac-
tion recognition module triggers the interaction management to
ask the user for a description of the action, providing the action
name, agent, and object of the action. It then associates this de-
scription with the recorded sequence for future recognition. If
the sequence is recognized, the spoken language interface ex-
tracts the action and arguments, and reports this to the user. The
system thus provides object independent action recognition (i.e.,
if it has learned “Larry takes the ball,” it is able to recognize
“Robert takes the coffee-cup”). The module also detects, and
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Fig. 2. Specific Robotic Platforms. A. vision processing using Spikenet™with
the video image from the iCubLyon01 robot, pictured in B. C. The Vicon™
configuration for visual perception with the BERT2 Robot, pictured in D.

stores within an action definition, the initial state of the objects
linked to the action, and the consequences of this action on the
world (e.g., if Larry covers the ball with a box, then the ball will
not be visible anymore); this allows creation of new inference
rules within the ORO (open robots ontology server, specified
below) module of the Knowledge Base, described below.
4) SPARK: Spatial peasoning mnowledge (SPARK) module

is in charge of generating symbolic knowledge from the geom-
etry of the world. The module, which is linked tightly to percep-
tion (EgoSphere), builds and maintains a complete 3-D model
of the environment containing objects, the robot itself, and hu-
mans. With a coherent 3-D world representation, SPARK as-
sesses the current state of the world, including visual perspective
taking, and generates facts in terms of visibility and readability
of objects from the robot’s and human’s points of view, as well
as geometric relations between objects such as “in,” “on,” and
“next to.”
These facts are computed online and sent automatically to

ORO for maintenance and further inference. Once the facts are
stored in ORO, they are available to the rest of the system (under
request or as events) via the knowledge base.

B. Knowledge Base

Through interaction with the user and the physical world, the
system acquires new knowledge, and it is also initialized with
certain background knowledge.
1) Object Properties Database: The OPDB is the common

namespace manager for objects that can be perceived by the
system. It contains physical parameters of objects, including
their perceptual signature, as defined by the EgoSphere. Each
object that is known to the system (that can be perceived and
represented in the EgoSphere) has a unique identifier (the ob-
jectID) which serves as an index into the OPDB and the knowl-
edge base in general.
2) The Open Robot Ontology: ORO (the “OpenRobot On-

tology” server) is the semantic layer of the system. It has been

designed to integrate easily in different robotic architectures
by ensuring a limited set of architectural requirements. ORO
is built around a socket-based server that stores, manages,
processes and exposes knowledge. ORO is portable (written
in Java), and can be easily extended with plug-ins, making it
suitable to new applications. In the frame of the CHRIS project,
a YARP bridge has been added, thus exposing the ORO Remote
Procedure Call methods in a network-transparent way.
ORO relies internally on the OWL ontology dialect to store

knowledge as RDF triples. It uses the open-source Jena1 RDF
graph library for storage and manipulation of statements and the
equally open-source Pellet2 first order logic reasoner to classify/
apply rules and compute inferences on the knowledge base.
In addition to storing and reasoning about knowledge, ORO

offers several useful features for human–robot interaction: event
registration (e.g., “Tell me when any kind of tableware appears
on the table”), categorization capabilities, independent cogni-
tive models for each agent the robot knows and different pro-
files of memory (short-term, episodic, long-term).
The server loads an initial ontology at startup, the so-called

OpenRobots Common-Sense Ontology. This initial ontology
contains a set of concepts (over 400 in the last version), rela-
tionships between concepts and rules that define the cultural
background of the robot, i.e., the concepts the robot knows a
priori. This common-sense knowledge is very focused on the
requirement of our scenarios, namely, human–robot interaction
with some well-known everyday objects (cups, cans, etc.). It
also contains broader concepts such as agents, objects, and lo-
cation. The common-sense ontology relies heavily on the de-
facto standard OpenCyc upper-ontology for the naming of con-
cepts, thus ensuring a good compatibility with other knowledge
sources (including Internet-based ones, like WordNet3 or DB-
Pedia4).
The ontology then dynamically evolves as the robot acquires

new facts; provided from one of two sources. One is the Ego-
Sphere, via the primitive detection module, which provides
the list of known objects, and asserts object relationships like:
“robot sees the object or not,” “object is moving or not,” and
“object is touching another object or not,” The other source of
new facts is the interaction management human–robot interface
we have built with the CSLU Toolkit [32] (described below).
3) Action Definitions: Actions are defined in terms of per-

ception and execution. For perception, actions that have been
learned are stored in the action definitions database. Actions are
defined in terms of three types of information. The enabling state
defines the state of the objects involved in the action before the
action takes place. The primitive sequence is the time ordered
set of primitive events that make up the dynamic component of
the action. Finally, the resulting state is the (potentially) new
state of affairs after the action is completed. The action recogni-
tion capability described above relies primarily on the primitive
sequence for action recognition. For execution, composite ac-
tions are defined by the user, through spoken language, in terms

1http://jena.sourceforge.net
2http//clarkparsia.com/pellet
3http://wordnet.princeton.edu
4http://dbpedia.or
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Fig. 3. Action queue of the motor command interface: notice how the action executions called within the code are defined in terms of primitives with respect to
the internal timeline.

of the sequence of primitive actions in the learned sequential
order.

C. Motor Command

Analogous to the Egosphere, which is the abstraction layer
for Perception, we need the same mechanism for dealing with
motor actions in a platform independent manner. The module
that handles this task is called robotmotor Ccommand. A second
module, called Egosphere motor bridge, coordinates communi-
cation between interaction management, Egosphere, and motor
command.
1) RobotMotor Command: We have identified an initial pool

of atomic actions required for the robot to be able to participate
in rich human–robot cooperative activities. The actions iden-
tified were the following: Grasp, Release, Point, Reach, and
Orient.
A C++ library has been devised to provide the higher level

modules a suitable abstraction layer to cope with the need of
generating, independently from the specific platform, the move-
ments required by these atomic actions. The underlying idea
is that any kind of goal-oriented action can be effectively de-
scribed by a collection of primitives expressed both in the op-
erational and configuration space of the robot along with the
time order according to which they have to be executed. Ac-
tions such as Orient, Reach, Point are actually concerned with
movements of the robot end-effector in the task space, whereas
Grasp and Release are a combination of the Reach action fol-
lowed by proper activation of the end-effector (fingers or pincer)
in the joint space. To this end, the library exposes a set of C++
methods that enable the caller to access the internal timeline
(the so called action queue depicted in Fig. 3) by sequencing
the action in terms of its primitives, without reference to the
motion control details. This is the way the atomic actions have
been specified, and the same approach can be easily generalized
to define more sophisticated tasks starting from Reach, Grasp,
and Release as building blocks.

In order to address the requirement of being independent from
any specific robot in the CHRIS community (or potentially any
other robot using a suitable YARP interface), the library imple-
mentation relies on the bioinspired Cartesian controller based
on the iKin framework [33] that, in turn, allows generation of
human–like movements of the end-effector in the task space
given the kinematic description of the robot’s structure.
2) EgoSphere Motor Bridge: The Robot Motor Command

capability requires information about the localization of the ob-
ject being manipulated. The role of the Egosphere Motor Bridge
is to translate high level commands that include the object iden-
tification, e.g., “grasp the toy.” In this example, it would query
the Egosphere to get information about localization and orienta-
tion of the “toy,” and then propagate it to the Robot Motor Com-
mand. It is also responsible for checking certain validity aspects
of the required action: if the targeted object is not in the world,
then an error code will be returned to Supervision and Planning.
The module also maintains a representation of the objects held
by the robot, e.g., it keeps in memory which hand is holding
which object. It uses this representation in order to choose which
hand to use in case of a “grasp” or a “release” action (e.g., “Re-
lease the toy on the left” requires the robot to know which hand
is holding the toy). This functionality is currently being tested
only on humanoid robots, so the word “hand” was used, but in-
deed it could be generalized to any kind of manipulator.
Error codes generated by the Egosphere motor bridge are then

handled by the interaction management to translate them into
proper speech. The robot will say “Sorry, I cannot grasp the toy
because I don’t know where it is.” or “From what I know none
of my hands is holding the toy, I cannot release it.” Speech thus
provides amechanism for pertinent state information to bemade
available to the user.

D. Supervision and Planning

1) Interaction Management: Interaction management is
provided by the CSLU Toolkit [32] Rapid application devel-
opment (RAD) state-based dialog system which combines
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state-of-the-art speech synthesis (Festival) and recognition
(Sphinx-II recognizer) in a GUI programming environment.
RAD allows scripting in the TCL language and permits easy
and direct binding to the YARP domain, so that all access from
the interaction management function with other modules in the
architecture is via YARP.
Our system is state based, with the user indicating the na-

ture of the current task, e.g., including whether the user wants
to interact in the context of object recognition, action recogni-
tion or cooperative interaction tasks. In each of these sub do-
mains, the user can then indicate readiness to show the robot a
new example (object, action perception or execution, or coop-
erative shared plan), and the robot will attempt to recognize or
learn what is shown. Interaction management also allows the
system to indicate error states to the user, thus allowing the
user to explore alternative possibilities. Interactionmanagement
thus allows the user an intuitive access to the system via spoken
language, so that the basic sensory–motor functions can be ac-
cessed. Related work in linking language and action has been
developed in [34]. Interaction management also allows the user
to employ spoken language to manage the creation and use of
shared plans for cooperative interaction.
2) Planning: The core aspect of planning is the capability to

learn and execute shared plans. As defined above, a shared plan
is a sequence of actions, with each action attributed to one of
two agents. Shared plans can be learned via two mechanisms.
The first involves perceptual action recognition: the robot ob-
serves two agents perform a cooperative task, and decomposes
the perceptual sequence into a discrete sequence of action–agent
components [12], [13]. The second method involves a form of
spoken language programming, in which the user verbally de-
scribes the succession of action–agent components that make
up the shared plan. We have also used a mixed method that in-
volves visual demonstration and spoken language for assign-
ment of roles [12], [13]. The robot can then use the resulting
shared plan to take the role of either agent, thus demonstrating
the crucial role-reversal capability that is the signature of shared
planning [1].

E. YARP

Softwaremodules in the architecture are interconnected using
YARP [35], an open source library written to support software
development in robotics. In brief, YARP provides an intercom-
munication layer that allows processes running on different ma-
chines to exchange data. Data travels through named connec-
tion points called ports. Communication is platform and trans-
port independent: processes are not aware of the details of the
underlying operating system or protocol and can be relocated at
will across the available machines on a network. More impor-
tantly, since connections are established at runtime, it is easy to
dynamically modify how data travels across processes, as well
as addition of new modules or removal of existing ones.
Interface between modules is specified in terms of YARP

ports (i.e., port names) and the type of data these ports receive or
send (respectively, for input or output ports). This modular ap-
proach allows minimizing the dependency between algorithm
and the underlying hardware/robot; different hardware devices

Fig. 4. iCubGenova01 (left, resorting to external forces measurements) and
iCubLyon01 (right, pure position control).

become interchangeable as long as they export the same inter-
face.
Finally, YARP is written in C++, so it is normally used as

a library in C++ code. However, any application that has a
TCP/IP interface can talk to YARP modules using a standard
data format. Within the CHRIS project this turned out to be
of fundamental importance as it allowed us to “glue” together
different applications (e.g., the RAD toolkit, the ORO server, or
the VICON system) into a single integrated, working system.

F. Internet Interaction Mechanism

The exchange of knowledge over the internet occurs at two
levels.
1) Software Versioning: The cognitive architecture software

is available to all the CHRIS project partners over our subver-
sion repository. This has allowed fast and painless integration
of new components, and remote collaboration of developers.
2) Internet Knowledge Exchange: The robot knowledge is

also stored on the SVN repository. All the information about
actions, plans, and even some platform specific perception pat-
terns are available. While allowing the robot to update itself to
the latest version of the shared knowledge base, it also permits
the human and robot to contribute to the extension of this knowl-
edge. Since all these definitions are stored in text or xml files,
the versioning system used allows merging different knowledge
bases. While, at the moment, the resolution of conflicts is done
by the user, we could consider interfacing this process with
speech, so that the user could be free of the keyboard. Part of the
overall objective of this research is to provide a basis for increas-
ingly technically naïve users to cooperate with these robots. The
speech based interaction contributes to this objective.

IV. INTEGRATION PLATFORMS

The CHRIS Software Architecture has been successfully
tested on three different robotics platforms illustrated in Figs. 2
and 4.

A. Platform iCubLyon01(in Lyon)

1) Robot Platform: The iCub [5] is an open-source robotic
platform shaped as a three and a half year-old child (about 104
cm tall), with 53 degrees of freedom distributed on the head,
arms, hands and legs. The current work was performed on the
iCubLyon01 at the INSERM laboratory in Lyon, France. The
head has 6 degrees of freedom (roll, pan and tilt in the neck, and
tilt and independent pan in the eyes). Three degrees of freedom
are allocated to the waist, and 6 to each leg (three, one, and two,
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respectively, for the hip, knee, and ankle). The arms have 7 de-
grees of freedom, three in the shoulder, one in the elbow and
three in the wrist. The iCub has been specifically designed to
study manipulation, for this reason the number of degrees of
freedom of the hands has been maximized with respect to the
constraint of the small size. The hands of the iCub have five fin-
gers and 19 joints. All the code and documentation is provided
open source by the RobotCub Consortium, together with the
hardware documentation and CAD drawings. The robot hard-
ware is based on high-performance electric motors controlled
by DSP-based custom electronics. From the sensory point of
view, the robot is equipped with cameras, microphones, a gyro-
scope, position sensors in all joints, and force/torque sensors in
each limb.
2) 3-D Spatial–Temporal Object Perception: The

iCubLyon01 platform employs vision based perception oper-
ating on the image streams from the robot’s cameras. Objects
are recognized based on detection of predefined object tem-
plates using the commercial system Spikenet [36]. It uses a
spiking neural network technology to provide fast recognition
of objects in an image. Under the assumption that the robot is
manipulating objects on a flat table, we can use an orthographic
projection to estimate the Cartesian coordinates of the objects
and feed the EgoSphere. To do so, a simple wrapper around
the Spikenet API is used for retrieving the camera images,
processing them with Spikenet, and broadcasting the results
over the network via YARP. Another module is then used
to read this data, filter the noise and update the EgoSphere
appropriately. Once in the EgoSphere, the spatial–temporal
object information is platform-independent.

B. Platform iCubGenova01(in Genoa)

1) Robot Platform: Compared to the iCubLyon01 the iCub
robot at the Italian Institute of Technology in Genoa is equipped
with additional sensory capabilities such as the measurement
of forces and torques applied at each limb [37], and sensorized
skin. Such an upgraded version of the iCub allows better adap-
tation and control of the interaction with the environment. The
capacitive touch sensors composing the skin have beenmounted
on the iCubGenova01 only recently, and therefore are not used
for the experiments described in this paper. On the other hand,
the force/torque limb sensors have been exploited to detect ex-
ternal forces during reaching or object grasping. In fact, unless a
perfect tuning of cameras parameters is performed, a procedure
that usually requires a considerable effort, the vision system re-
turns an inaccurate estimation of the object position. This af-
fects the accuracy with which the arm is controlled and might
cause an object grasp to fail. To compensate for this, the robot
moves the hand to touch the objects, but it immediately stops
the movement if an external contact is detected (i.e., the force
applied by the arm exceeds a given threshold). This strategy has
been demonstrated to be effective, as it significantly increased
the likelihood of successful grasps.
Furthermore, the robot can enter a special ’coaching phase’

during verbal interaction. In this situation the arm is compliant
and the operator can ’teach’ the robot the precise location of
the hand to grasp a certain object by manually guiding the end-

effector. In this way the iCub builds a map that stores the correct
positioning of the hand with respect to the object, thus achieving
reliable object grasping.
Finally, the implementation details concerning force control

on the iCubGenova01 have been hidden inside the Motor Com-
mand Interface so they can be handled transparently by higher
level modules. For instance a call to the method pro-
duces two different behaviors depending on the platform on
which it is executed.
2) 3-D Spatial–Temporal Object Perception: The perception

system of these two versions of the iCub is the same: purely
vision based. However, it is interesting to test it in different
environments. Moreover, the model file used to recognize dif-
ferent objects is shared over the SVN repository, so that the
iCubLyon01 and iCubGenova01 can both use it and contribute
to it.

C. Platform BERT2 BRL (in Bristol)

1) Robot Platform: BERT2 (Bristol-Elumotion-Robot-
Torso-2) [6] is an upper-body humanoid robot that was de-
signed, and is currently still under construction, at Bristol
Robotics Laboratory in close cooperation with their mechanical
engineering partner Elumotion5. The torso comprises four joints
(hip rotation, hip flexion, neck rotation, and neck flexion). The
hip rotation forms the most proximal joint to the rigid mounting
base. Each arm is equipped with seven degrees-of-freedom.
The shoulder flexion joint forms the mounting point of the
arm to the torso and the wrist flexion joint is the most distal
joint of the arm. The wrist provides a mounting interface for a
sophisticated humanoid hand or a simple gripper. Each of these
18 joints is actuated by a brushless DC motor via a harmonic
drive (TM) gear box. Low-level motor control is achieved
through EPOS motor controllers from Maxon Motor.
One of the main motivations that guided the design of

BERT2 was the suitability to interact with humans safely and
naturally using expressive face and gaze tracking. One impor-
tant nonverbal communication channel we have focused on is
facial expression with a particular emphasis on gaze, as used in
human–human interaction [38].
2) 3-D Spatial–Temporal Object Perception: The BERT2

platform uses the VICONmotion capture system (with eight sta-
tionary IR cameras) and light reflective markers arranged into
unique patterns, to distinguish between scene objects and to de-
tect their position and orientation in 3-D space. This provides
reliable and robust 360 degree scene perception. The human
interacting with the robot also wears a garment equipped with
markers, thus body positions and postures are also available to
the robot.
There are several layers of abstraction in BERT2VICON per-

ception. At the lowest level there is VICON hardware and soft-
ware together with VICON object and actor model templates,
which store information about the marker topology of the ob-
jects to be captured. The VICON software broadcasts this cap-
tured data on the network, using TCP/IP. This data is picked up
by the module “ViconLink,” which is the first layer of abstrac-
tion of the VICON perception subsystem. The main purpose of

5www.elumotion.com
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“ViconLink” is to create an easily reconfigurable data bridge be-
tween the VICON software and the YARP framework.
The next layer of abstraction is the “object provider” module

which is largely based on YARP classes. Its main purpose is to
update the EgoSphere module with the most recent object posi-
tions and also to prevent the false updates when objects are not
moving, even though the values are changing due to the noise
in the VICON data. To do so, during initialization, the module
estimates the levels of noise and calculates the noise thresh-
olds. In its main loop “object provider” constantly polls data
from “ViconLink,” filters out the noise, and monitors the trans-
lation and rotation quantities for all objects. It triggers the Ego-
Sphere update as soon as translation or rotation exceeds some
preset minimum value for any of the objects. In this way “ob-
ject provider” updates EgoSphere as soon as minimal prescribed
movement occurs, but does not allow false triggering. Again,
once in the EgoSphere, the spatial–temporal object information
is platform-independent.

V. EXPERIMENTS

Multiple experiments have been performed in a distributed
manner on the three platforms. Experiments A and B are related
to perception and were performed on iCubLyon01 and BERT2.
Experiments C and D are related to motor execution, and were
performed on iCubLyon01 and iCubGenova01. Again, the two
iCubs used are different at the motor control level and, in this re-
spect, we consider them as two different platforms for the motor
command implementation.

A. Object Learning

The goal of the experiment is to allow the user to teach the
system the names and properties of new objects. In these exper-
iments, two sets of objects have been prespecified respectively
for each of the two 3-D perception systems. This corresponds to
visual templates for Spikenet on the iCub, and reflective marker
topologies for VICON on BERT2. Initially, the objects can thus
be recognized and tracked, but they have no associated seman-
tics.
In the experiment, the human moves an object to indicate the

focus of attention to the robot, and then the robot asks for the
name and the type of the object. Learning the object’s type (i.e.,
“cup”) links its semantics to the other concepts the robot already
knows, including initial commonsense knowledge from ORO.
When an object moves, the platform specific perception sys-

tems identify and accurately localize the object. The respective
object perception module then updates the EgoSphere in real
time. At this point, we are entering the platform-independent
CHRIS architecture. The primitive detection module regularly
polls the EgoSphere for visibility and object coordinates, and
sends extracted primitives to other interested modules. In this
case, it sends to ORO a notification when an object starts or
stops moving. In parallel, the Interaction Management system
handles the verbal human–robot interaction. It queries ORO to
know which objects are currently moving and if the names of
these objects are known. If they are unknown then it asks the
human for more information, as described in the dialog below.
• [Robot] Initializing… about 5 sec…What’s next?
• [Human] moves an object

• [Robot] does not know the object.What is it called?
• [Human] coffee cup
• [Robot] Did you say coffee cup?
• [Human] Yes
• [Robot] Ok. Now I know. What kind of object is coffee
cup?

• [Human] A cup
• [Robot] Did you say cup?
• [Human] Yes
• [Robot] So coffee cup is a cup. What’s next?
During this interaction, two new statements are added to the

ORO database. The first associates the objectID for the recog-
nized object with the label “coffee cup.” The second associates
this objectID with the type “cup” which allows the system to
exploit inheritance of knowledge about cups from the preloaded
ontology.
The robot is then able to use this additional knowledge in

order to reason and describe objects. The next time a human
shows the robot a coffee cup the robot will say “this is a coffee
cup.” In addition, we could ask to the robot “could you show
me a cup?” to have the robot point to the coffee cup or to a tea
cup, exploiting the type information. This naming experiment
was successfully completed for multiple objects on the iCub and
BERT2 platforms.

B. Action Perception Learning

As described above, an important skill in cooperation is the
robot’s ability to understand its partner’s actions, or the actions
of two humans cooperating while the robot learns by observing.
Fig. 2 illustrates the BERT2 and iCubLyon01 platforms used in
this experiment.
1) Learning to Perceive New Actions: In the “watch action”

mode, the robot tries to recognize and describe the actions it
sees. It can then store the recognized actions in a plan that can be
executed later, or it can ask for more information, if the observed
action is not known or uncertain.
Regarding the flow of information through the system, it is

the same as in the object naming experiment, but it now in-
cludes the action recognition module. Under control of interac-
tion management, action recognition receives primitive events
from primitive detection. It compares the segmented primitive
event sequences with known actions in the action database and
provides, in real time, actions that are recognized. Alternatively,
if an action has been segmented but not recognized, it reports a
“special event.” These recognitions are then processed by in-
teraction management, which manages the situation either by
announcing the name and arguments of the recognized action,
or prompting the user to describe the action and its arguments,
as illustrated in this dialog excerpt.
• [Robot] Initializing… about 5 sec…What’s next?
• [Human] Watch my actions
• [Robot] Ok. Show me something
• [Human] puts a coffee cup on the table
• [Robot] Need to learn this one.
• [Human] John put the coffee cup
• [Robot] Ok. Show me something
• [Human] removes the coffee cup from the table
• [Robot] Need to learn this one.
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• [Human] John takes the coffee cup
• [Robot] Ok. Show me something
• [Human] put a book on the table
• [Robot] I saw John put the book
At this point the robot is able to recognize the two simple ac-

tions put and take independently of the object and agent targeted
by the action. In this scenario a single demonstration was suffi-
cient. In practice the robot may need to see the same action sev-
eral times before being able to recognize it. Lallee et al. [39] pre-
formed extensive testing of this system on the iCubLyon01 plat-
form. In over 100 action presentations, with the actions cover,
uncover, put, take, and touch, on average the system required
less than three examples to correctly learn a given action so that
it could subsequently be recognized without error.
The crucial experiment here involved performing the same

action learning tests on the BERT2 platform, where visual per-
ception based on pattern matching with Spikenet would be re-
placed by reflective marker tracking provided by VICON. We
tested BERT2 with the actions put, take, and touch. These ac-
tions were successfully learned, and generalized to new objects.
This indicates that by abstracting 3-D spatial–temporal informa-
tion in the EgoSphere, the CHRIS architecture is indeed plat-
form-independent.
The next component of this experiment replies to the question

“can knowledge about the spatial-temporal characteristics of an
action learned on one platform be used for action recognition on
another?”
2) Knowledge Transmission Between Robots: Following an

interaction session with humans, the robot Knowledge Base
acquires new knowledge (of object and action definitions)
through learning. This acquired knowledge is stored prior to
system shutdown and reloaded at subsequent system startup,
thus allowing progressive accumulation of experience over ex-
tended time. In the current experiment, the Action Recognition
database that was generated while actions were being learned
on BERT2 was transferred via internet to the iCubLyon01 file
system, and loaded at startup on the iCubLyon01. We then
tested the action recognition capability, by performing put and
take actions.
In a set of 20 trials (10 each for put and take), we observed

an overall recognition accuracy of 85%. The errors were due to
noise in the vision system which produces false indications of
motion (see discussion). Importantly, the iCubLyon01 was able
to recognize actions that had been learned on BERT2, thus ex-
ploiting the experience of a different robot via internet knowl-
edge transfer.
Action recognition learning can be seen in this video:
http://youtu.be/NDgBcDi3axw

C. Action Execution Learning

The complement to “learning to perceive new actions” is
“learning to perform new actions.” The motor command in-
terface provides a set of low level actions that can be used to
instruct the robot about what to do. However, using actions at
this level is not very convenient to produce complex behaviors.
The robot needs to build new skills on the top of these basic
motor commands.

1) Learning to Perform New Actions: The learning process
for new actions takes place in a natural way for the user. When
being instructed to do a task, the robot is commanded by the
user. If an instruction is not known by the robot, then it will
ask for explanation from the user. At this point, the user has to
instruct the robot about which commands compose the unknown
instruction. After this learning process, the new instruction is
added to the known commands and the interaction can go on.
This type of learning can occur at different levels, a composite

action can be made only of the simplest motor commands, but
it can also be made of other composite actions. This allows the
actions known by the robot to become richer and richer, and the
learning process to be facilitated by the possibility to use already
complex actions. Here is a dialog occurring during the learning
of a new action.
• [Robot] Tell me what to do.
• [Human] Put the toy on the left.
• [Robot] Sorry, I don’t know what “put” means. Explain it
to me.

• [Human] Grasp the toy.
• [Robot] Grasping… Robot grasps the toy
• [Human] Release toy on left.
• [Robot] Releasing… Robot releases the toy on the left
marker

• [Human] It is finished.
• [Robot] Ok, I know what “put” means. What should I do
now?

We performed this experiment on the iCubLyon01, and
demonstrated that the put action definition could be generalized
to different objects and different locations.
2) Transmission of Action Performance Knowledge Between

Robots: The list of all actions known and their definitions is
stored in a file that is loaded at startup. The user can ask the robot
to update its knowledge base from the SVN repository, thus
loading the new actions that the current user, or previous/remote
users, taught it. In our case described here, we thus transferred
the representation of the “put” action via the internet from Lyon
to Genoa, and this definition was used by the iCubGenoa01. We
demonstrated that this action definition, which had been learned
in Lyon, was successfully used by the iCubGenoa01 in Genoa.
Fig. 4 illustrates the two platforms.

D. Shared Plan Learning

Shared planning represents the current summit of our robot
cognition capability. The current experiment tests the ability to
learn and use a shared plan on one platform, and then to verify
that the resulting shared plan can be used remotely on a different
platform.
1) Learning to Perform New Shared Plans: There are

several ways to teach a new shared plan. We have previously
demonstrated the system’s ability to learn shared plans by ob-
serving two humans perform the cooperative action [12]. Here
we demonstrate a second method in which the user instructs
the robot via spoken interaction, in order to build the list of
action(agent,arguments) that will then be executed by the robot
and its human partner. Here is an example of learning a simple
cooperative game using speech interaction. The game involves
retrieving a toy that is covered by a box.
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• [Robot] Action or shared plan?
• [Human] Learn a Shared plan
• [Robot] Ok what is the first action?
• [Human] Robert grasps the box.
• [Robot] And then?
• [Human] Larry puts the toy on the left.
• [Robot] And then?
• [Human] Robert releases the box on middle.
• [Robot] And then?
• [Human] It is finished.

This spoken interaction results in the following plan to be cre-
ated and stored:
• robert grasp box;
• larry put toy left;
• robert release box middle.

Such plans can then be parsed and used in execution mode to
send actions sequentially to the EgosphereMotorBridge. In this
context, interaction management allows the user and robot to
determine together who goes first in the cooperation, and then
manages the smooth unfolding of the cooperation.
While this learning method is convenient, human beings

demonstrate another capability: they can watch other humans
performing a cooperative task and extract their shared plan by
observation. The action recognition system of the architecture
has been shown to provide this ability [13]. The robot can
be asked to watch two humans executing a shared plan. Each
action they perform is recognized by the robot; the agent and
the action performed are associated, and integrated in the new
shared plan.
After a shared plan has been learned, the robot can execute it,

replacing the named participants, e.g., Robert and Larry, with
the human and robot. It prompts the user for who will be the
agent starting the first action (robot or user) and then proceeds,
step by step, to the execution of the plan. The iCubLyon01 was
thus able to perform a shared plan with a human, and to demon-
strate role reversal.
Execution of the shared plan, with the learned action

“put” can be seen here: http://www.youtube.com/watch?fea-
ture=player_detailpage&v=kqWm8LCTxP (paste link into
browser).
2) Transmission of Shared Plan Knowledge Between Robots:

The principle for sharing knowledge about plans between the
robots is the same as for composite actions. Since these defini-
tions are stored in a text file on the SVN repository, it is possible
either to update the robot or to contribute to the shared knowl-
edge.
The shared plan that originated in Lyon was thus transferred

via the internet to Genoa where it was used by the Supervision
and Planning component of the architecture. The shared plan
was successfully executed on the iCubGenoa01 in order to allow
the robot to perform the cooperative task with a human.
Importantly, this shared plan required both the shared plan-

ning capability, and the use of a learned composite action within
the shared plan.
Remote execution of the shared plan, can be seen here:

http://www.youtube.com/watch?v=qe0QuPaNDDc&fea-
ture=player_embedded (paste link into browser)

In summary, the interaction management capability which
includes the spoken language dialog management implements
four types of learning dialogs.
A. Object learning: allows the user to associate a name with

an object in the EgoSphere that has not yet been named.
B. Action perception learning: allows the user to associate

a name and arguments with a learned sequence of per-
ceptual primitives. This has been demonstrated with the
following actions: , , ,

, and .
C. Action execution learning: allows learning

composite actions by composing primitives
(grasp, release, reach). Learned actions
include: ;

;
.

D. Shared plan learning: allows the linking of actions and
agents into an articulated plan. An example is for the
shared plan to “uncover the toy” which is decomposed
into: robert grasp box, larry put toy left, and robert release
box middle.

VI. DISCUSSION

We present an architecture that exploits the idea of ab-
stracting the cognitive architecture from the robot specific body
and sensors. Specifically, this abstraction takes place in two
domains. In the perceptual domain, all perceptual information
is encoded in the EgoSphere so that independent of the sensor
(e.g., stereo vision, motion capture) the final 3-D coordinate
representation is the same. Likewise, in the motor domain, a
set of baseline actions is defined in robot motor command (in-
cluding , ; ), that can be performed
on different robots, but with the same name, argument structure
and effects. It should be noted that the cognitive function of
the robot can still be considered embodied as the architecture
acquires all its information from interaction between the robot
and the world, via the low level abstraction of the EgoSphere.
Thanks to this abstraction, we were able to provide different
robots with the same high level capabilities for perception and
action in the context of learning new cooperative shared plans,
and to share this knowledge over the internet between different
robots.

A. Limitations and Future Development

The work described here emphasizes abstraction at the sen-
sory motor level by requiring a common format for spatial input
to the system from diverse sensors, and providing this same
format to the modules responsible of motor commands imple-
mentation. This provides a capability consistent with that de-
scribed by Demiris and Johnson [40] where action execution
and performance can mutually benefit from shared representa-
tions.
Action recognition provides real-time formation and recogni-

tion of sequential patterns of primitive events (motion, visibility,
and contact) specific to different actions. It is thus sensitive to
noise in the 3-D perception sensors; we are currently rendering
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this approach more robust. This includes the use of a proba-
bilistic approach for matching the segmented primitive event
sequences with the learned actions, optimization of spatio–tem-
poral filtering to reduce false motion from visual jitter, and in-
clusion of the initial-to-final state transitions as additional com-
ponents in definition of an action. Likewise, in the current ver-
sion, successive actions (e.g., taking an object, then putting it
at a new location) should be separated by at least one second,
so that the system can automatically distinguish and segment
the perceptual primitive sequences. This situation is consistent
with our current constraint, i.e., that when demonstrating action,
users show actions one after another, then wait to see if the robot
recognizes, before proceeding. Future work will address more
fluent action sequences in the context of learning from demon-
stration [41].
The speech that we have used here is relatively primitive and

sometimes ungrammatical. We have previously explored the
more extensive possibilities of relating the argument structure
of grammatical sentences to the argument structure of actions
in terms of execution [16], [29], [30]. We are now extending
these approaches to action observation and description with the
use of more appropriate grammar.
The current method for sharing the different level of knowl-

edge of the robots over the internet is still very basic, and prob-
ably not easy to carry out for a naïve user. However, we have
alreadymade a step towards amore human friendly interface, by
allowing the most standard operations to be carried out using the
speech interface. Apart from improving the sharing mechanism,
we will also extend the type of content which is shared: robot
vocabulary, platform specific parameters and even real time in-
formation (which robot is on, where, what does it see) could be
shared by the robot community, so as to allow us to proceed to
more evolved interactions. An example of the benefit of such
real time sharing, is illustrated by the following example: Larry
asks iCub if it sees the toy, iCub doesn’t, but BERT2 which is
in another room does. iCub could then use the perceptual in-
formation acquired by BERT2 to answer the user about the toy
location.

B. Conclusion

While robotic platforms are becoming increasingly complex,
the development of cognitive systems can be advanced by the
definition of more standard ways to access the sensory-motor
layer. Our system independent architecture contributes to the
deployment of cognitive abilities on diverse robot platforms
that can interface with the abstraction layer defined by the Ego-
Sphere and the motor command Interface. We believe that the
continued development of increasingly well defined and stan-
dard interfaces between robot platforms and cognitive system
can accelerate the development of robot intelligence, and we
are taking a first step in that direction.
In doing so, we have also taken our first steps towards the idea

of having different learning machines (the robots individuals)
updating and sharing a common global knowledge base, thus
leveraging experience from multiple sources [22]. High band-
width internet could be the support for much advanced sharing
of knowledge: while we are storing at the moment only “static”

information, the same idea could be extended to a more dy-
namic and real time system. For example, one could imagine
a shared online egosphere database that robots in different lo-
cations would update and use in real time. This would trans-
form our actual shared memory system into a global percep-
tion–action system, distributed over the sensory-motor network
of robots. Possibilities of such a global entity are endless, how-
ever, developing and maintaining such a system are challenges
for the upcoming years.
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