
A middle way for robotics middleware

Elena Ceseracciu Daniele Domenichelli Paul Fitzpatrick Giorgio Metta Lorenzo Natale Ali Paikan

Abstract— Robotics is changing. The amount of software
available (and needed) is growing. For better or worse, the
glue that holds that software together, the middleware, has a big
impact on its viability. YARP is a middleware for robotics, with
over a decade’s continuous use on various humanoid robots.
YARP was designed to help code survive changes, to easily
experiment with new code and integrate with other systems. In
a world of constant transition, with a steady stream of hardware
and software upgrades, YARP helps code last long enough to
make a real impact, and avoid premature loss of good code
through unfortunate dependencies. We revise the features of
YARP that support this flexibility describing those situations
in which they have been practically useful.

I. INTRODUCTION

There is growing attention in robotics to software mid-
dleware, some specific to robotics (Player [1], ROS [2],
YARP [3], OROCOS [4], Urbi [5], MIRO [6], LCM [7] and
MIRA [8]), others more general (ICE [9], CORBA [10],
ØMQ [11]). There are several attempts in the literature
to compare middleware based on features and perfor-
mance [12], [13], [8]. Here, we look at another fundamental
question that is rarely addressed (since difficult to measure):
the question of character.

YARP (“Yet Another Robot Platform”) is a middleware for
robotics that has been in continuous use on humanoid robots
for more than ten years. In character, it is light-weight and
non-prescriptive, designed to be easily extended and play
well with others.

We look here at the character traits of YARP and illustrate
how this has proved helpful in practical cases.

II. FRAGMENTATION OR MONOCULTURE?

Middleware is a mixed blessing. In the short term it helps a
system scale up, but in the long term it can hold it back. Like
operating systems, middleware is “sticky” – developers have
to make a special effort to make their software usable in other
platforms. In the short term, for an individual developer, this
is no big deal, since other platforms are irrelevant. But in
the longer term or in larger teams this is a real cost, paid for
through collaborations that never happen or that get bogged
down.

A possible solution is for everyone to get together and
agree to use a common platform. But even with the best of
intentions a single platform becomes a trap, as more and
more components come to rely on fragile quirks of that
platform, increasing the cost of any changes, even positive
ones. If a platform cannot play well with its peers, there’s
no reason to expect it to play well with future versions of
itself. That implies one of two things. Either there will be
a “big bang” change of infrastructure and all the pain that

goes with that, or development of the platform will slow to
a crawl.

There is a middle way between fragmentation and mono-
culture, and it is not particularly revolutionary. It is simply
this: be polite and considerate of others. Middleware should
not assume that the entity on the other side of a network
socket is under its control, since sockets are a key opportunity
for interoperability. Middleware should not make too many
claims on the main thread in a program, or the program’s
build process, since two middleware making such claims will
conflict. And so on. This is not a call for standardization
and elaborate RFPs, just individual developers bearing the
world outside their middleware in mind, thus benefiting their
community today (by facilitating collaborations) and in the
future (by reducing the pain of upgrades, and so making
radical improvements more practical).

III. NAMING

Middleware typically has some mechanism for converting
symbolic names into detailed information on how to access
a resource (for example, to convert the name “/camera” to
“machine 192.168.1.15, port 10012, protocol mjpeg”).

We found that naming can become a barrier preventing
interoperability and forcing users to resort to inefficient
bridging code. With time YARP extended naming support
so that it could interface with other systems. At this aim it
now offers the following options:

• The YARP name server accepts arbitrary registrations,
so a webcam at a random location can be named and
read from directly without bridging.

• YARP clients can be directed to use a non-native name
server, given an appropriate plugin. For example, there
is a plugin for the roscore name server.

• YARP clients can be directed to use multiple name
servers, to better support heterogeneous networks.

• YARP clients can be used without any name server for
basic tcp connections where host names and socket port
numbers are given directly.

A broad-minded nameserver is a boon for interoperation.
Of course the general case of naming external resources is
full of pitfalls, but most particular cases are quite simple.

IV. IDENTIFYING CONNECTIONS

Middleware typically plays a role in inter-process commu-
nication. This is a great opportunity for interoperability. Even
when interoperability is not an immediate priority, it is worth
taking some simple steps to avoid unnecessarily hobbling it.

For example, most every middleware has some kind of
regular TCP protocol. Suppose the other side of a socket is

not controlled by your middleware. They may not know for
sure what protocol we’re speaking. Just as it is super-helpful
for files lying around in a file system to have a “fingerprint”
or “magic number” comprising a recognizable pattern of
bytes early in the file, it is helpful if TCP connections do
the same.

For example, HTTP responses begin with “HTTP/”, and
YARP’s native protocols start with variants of “YA....RP” or
other identifying strings. This makes these types of messages
easy to identify. This may seem trivial, however in contrast,
another robotics middleware uses a protocol that begins with
two 4-byte integers representing lengths, which in principle
could have any value. A quick fingerprint up front could
be very been handy for interoperation, including with future
versions of that middleware.

V. SPEAKING MANY LANGUAGES

There are situations in which a middleware should plan to
speak many protocols. Here are situations end-users hit that
middleware developers do not see:

• You need to use a novel kind of network not broadly
available.

• You have a network-aware piece of hardware and you
would like to talk to it without bridging.

• You badly need to interoperate at the network level with
software from a different community.

• You have a problem with some aspect of current behav-
ior, and the middleware developers just shrug.

YARP originally used QNX message passing, so its own
“native” protocol is lost in the mists of time. Having a
plugin mechanism for protocols allowed developers and users
to extend the original set of protocols and adapt YARP
depending on their needs.

In YARP there are basic options like tcp, udp, multicast,
and shared memory, suitable for different trade-offs between
reliability, speed, and bandwidth. In addition it supports other
“edge” protocols (often over regular tcp) that are useful for
talking to the outside world, such as XMLRPC, HTTP with
JSON, MJPEG, plain text.

Finally there are some notable examples in which specific
users’ needs have been elegantly and efficiently solved with
the implementation of custom protocols:

• A special purpose protocol plugin was made to carry
raw Bayer pattern image streams and decode them
on the receiver side, rather than decoding them closer
to the hardware. This saves bandwidth without intro-
ducing compression artifacts, and it is fully backward
compatible, since as far as user code is concerned
it receives color images as normal. When there are
multiple receivers, it does increase overall CPU usage,
which is the main trade-off. As a side benefit, users have
the freedom to choose how colors are reconstructed,
and this choice can be made per-receiver. A protocol
like this is very useful, but so specific to a class of
camera that it would be unlikely to get supported in a
middleware without a culture of protocol plugins.

• A set of plugins were added to support YARP-ROS
interoperability, via XML/RPC and TCPROS.

• A new protocol was introduced to experiment with
the concept of priority arbitration into YARP, so that
messages from different origins arriving at the same
target could inhibit each other in defined ways. This
plugin made use of the fact that plugins can be chained
(currently in a rather crude way), so that the new priority
mechanism could be overlaid on existing protocols.

VI. CONCLUSIONS

Most literature on software middleware for robotics fo-
cuses on comparing performance. In our experience, this
is not the most important characteristic of a software mid-
dleware. In the fast and ever evolving world of robotics, a
good middleware must be designed for change and, above
all, interoperability. Who should care about interoperability
between multiple middleware? All of us. We need at least
confidence that the middleware we use can interoperate with
a future version of itself, so our users and their collaborators
do not end up in a middleware muddle.

VII. ACKNOWLEDGEMENTS

The research leading to these results has received fund-
ing from the European Communitys Seventh Framework
Programme (FP7 ICT) under grant agreement No. 270273
(Xperience).

REFERENCES

[1] B. P. Gerkey, R. T. Vaughan, and A. Howard, “The player/stage
project: Tools for multi-robot and distributed sensor systems,” in
In Proceedings of the 11th International Conference on Advanced
Robotics, 2003, pp. 317–323.

[2] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng, “Ros: an open-source robot
operating system,” in Proc. of the IEEE Intl. Conf. on Robotics and
Automation (ICRA) Workshop on Open Source Robotics, Kobe, Japan,
May 2009.

[3] P. Fitzpatrick, G. Metta, and L. Natale, “Towards long-lived robot
genes,” Robotics and Autonomous Systems, vol. 56, no. 1, pp. 29–45,
2008.

[4] H. Bruyninckx, “Open robot control software: the orocos project,”
in Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE
International Conference on, vol. 3, 2001, pp. 2523 – 2528 vol.3.

[5] G. Technologies, “Urbi,” http://http://www.urbiforge.org.
[6] H. Utz, S. Sablatnog, S. Enderle, and G. Kraetzschmar, “Miro -

middleware for mobile robot applications,” Robotics and Automation,
IEEE Transactions on, vol. 18, no. 4, pp. 493–497, Dec. 2002.
[Online]. Available: http://dx.doi.org/10.1109/TRA.2002.802930

[7] A. Huang, E. Olson, and D. Moore, “LCM: Lightweight communica-
tions and marshalling,” in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), October 2010.

[8] E. Einhorn, T. Langner, R. Stricker, C. Martin, and H. Gross, “Mira -
middleware for robotic applications,” in International Conference on
Intelligent Robots and Systems, 2012.

[9] Z. Inc., “Internet communications engine,” http://zeroc.com/ice.html.
[10] OMG, “Common Object Request Broker Architecture

(CORBA/IIOP).v3.1,” OMG, Tech. Rep., Jan. 2008. [Online].
Available: http://www.omg.org/spec/CORBA/3.1/

[11] “ØMQ, The Intelligent Transport Layer,” http://www.zeromq.org/.
[12] J. F. Kramer and M. Scheutz, “Development environments for au-

tonomous mobile robots: A survey,” Auton. Robots, vol. 22, no. 2, pp.
101–132, 2007.

[13] N. Mohamed, J. Al-Jaroodi, and I. Jawhar, “Middleware for robotics:
A survey,” in Robotics, Automation and Mechatronics, 2008 IEEE
Conference on, sept. 2008, pp. 736 –742.

