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Abstract. Instrinsically motivated robots are machines designed to op-
erate for long periods of time, performing tasks for which they have not
been programmed. These robots make extensive use of explorative, often
unstructured actions in search for opportunities to learn and extract in-
formation from the environment. Research in this field faces challenges
that need advances not only on the algorithms but also on the experi-
mental platforms. The iCub is a humanoid platform that was designed
to support research in cognitive systems. We review in this paper the
chief characteristics of the iCub robot, devoting particular attention to
those aspects that make the platform particularly suitable to the study
of intrinsically motivated learning. We provide details on the software
architecture, the mechanical design and the sensory system. We report
examples of experiments and software modules to show how the robot
can be programmed to obtain complex behaviors involving the interac-
tion with the environment. The goal of this paper is to illustrate the
potential impact of the iCub on the scientific community at large, and,
in particular on the field of instrinsically motivated learning.

1 Introduction

Developmental robotics is a young field of research that attempts to build artifi-
cial systems with cognitive abilities (see Lungarella et al., 2003 for a review). In
contrast to other, more traditional, approaches, researchers in this field subscribe
to the hypothesis that cognition is not hard-coded but that, on the contrary, it
emerges autonomously from the physical interaction between the agent and the
environment (Weng et al., 2000; Zlatev and Balkenius, 2001). Developmental
robotics is a strongly interdisciplinary field that brings together researchers from
behavior and brain sciences (psychology, neuroscience), engineering (robotics,
computer science) and artificial intelligence, motivated by the conviction that
each field has a lot to learn from the others. Roboticists in particular have re-
alized that the real world is too complex to be modeled and too dynamic to
hope that static models are of any use. For this reason they have started to seek
inspiration from biological systems and how they deal with the complexity of
the world in which they live.
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The study of humans and biological systems confirms that nature solved this
problem by designing systems that undergo a constant physical and behavioral
adaptation. As humans we are probably the most convincing example in this
respect, since learning and adaptation is so evident in the first period of our lives.
For these reasons developmental approaches to robotics assume that intelligent
behavior and cognition emerge autonomously through development.

Experimental evidence in the field of developmental psychology shows that
motor and perceptual development happen as a result of the constant physical in-
teraction between the body and the world (Bushnell and Boudreau, 1993; Need-
ham et al., 2002; von Hofsten, 2004). Newborns spend a considerable amount of
time exploring the world. They do so by experimenting with their own actions
and by exploring correlations between what they do and what is measured by
their sensory streams.

Unfortunately today’s machines demonstrate learning abilities that are not
comparable to the ones that we observe in animals or in infants. Learning in
artificial systems is often applied to specific, pre-defined tasks and it requires a
certain degree of human supervision for parameter tuning or data preparation.
Finally, exploration, acquisition of new data, learning and exploitation are dis-
tinct processes. On the other hand learning in humans is something that happens
continuously. Children seem to be always actively searching for learning oppor-
tunities; they show what has been defined an intrinsic motivation to engage
in activities that involve exploring the environment in search for novel things
to learn. Intrinsic motivations and curiosity are clearly required ingredients to
design machines that are able to autonomously discover not only how to solve
certain tasks (like object manipulation or perception), but also how to learn or
develop new abilities based on current knowledge (see Chapter ?? and Barto
et al., 2004; Kaplan and Oudeyer, 2008; Oudeyer and Kaplan, 2007).

Progress in developmental robotics and intrinsically motivated learning has
been somewhat slow. In our opinion this is in part due to the fact that research
in these fields requires experimental platforms whose design and construction
is difficult. We list here some of the aspects that characterize human develop-
ment that have deep implications in the design of the hardware and software
architecture of such platforms:

– motion during development is at times dominated by exploratory unstruc-
tured behaviors (sometimes referred to as “motor babbling”);

– failure in performing a task is the norm rather than the exception;

– learning is not cheap, the acquisition of new competences on the contrary
require lots of trials and considerable efforts;

– the development of perceptual abilities requires sophisticated interaction
with the world;

– perception is intrinsically multimodal and multisensory integration is critical
for learning;

– learning is open-ended, i.e. it is an incremental process in which new abilities
provide support and opportunities for gathering newer ones.
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Fig. 1. The iCub.

This implies that developing robots need to be robust and able to operate for
several hours (maybe days) in frequent and unpredictable physical interaction
with the environment. They need to have articulated mechanical structure that
allows interacting with the world in a sophisticated way. For example they should
be able to locomote, manipulate objects and use tools. Their sensory system
should include diverse and redundant modalities ranging from vision and sound
to touch and force. Finally, their software architecture should be flexible enough
to allow development of interconnected modules that receive sensory streams,
perform control and exchange information. The software should be modular to
support re-usability of components so that existing capabilities can work as
building blocks to construct newer, more complex ones.

One of the goals of the RobotCub project1 was the design and construction of
a platform that satisfies the aforementioned constraints. The resulting platform
is the iCub, a humanoid robot with 53 degrees of freedom and a rich sensory
system. The iCub is an open-system: researchers have full access to the details
of the platform and can customize it depending on their particular needs2.

In this paper we provide an overview of the platform, focusing on the func-
tionalities that we consider more interesting for researchers in the field of de-
velopmental robotics and intrinsically motivated learning. Section 2 provides
an overview of the hardware platform, the mechanical structure, the actuation
system and the sensors. Section 3 describes the software architecture and the
motivations that have driven its design. Section 4 describes three examples of
software modules in which actuators and sensors are used for controlling the
interaction with the environment, namely: force control, detection of grasp us-
ing the sensors on the hand, and reaching. Section 5 demonstrates a complete
behavior in which the robot grasps objects on the table. Finally Section 6 draws
the conclusions.

1 The RobotCub project was funded by the European Commission, Project IST–
004370, under Strategic Objective 2.3.2.4: Cognitive Systems.

2 The iCub software and hardware are licensed under the GNU General Public License
(GPL) and GNU Free Documentation License (FDL), respectively.
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2 The Hardware Platform

The iCub (Metta et al., 2008; Tsagarakis et al., 2007) was designed specifically
for manipulation and locomotion (Figure 1). This is reflected on how the degrees-
of-freedom (DOF) are allocated on the robot. Each arm has 16 motors, 3 of which
control the orientation of the hand (roll-pitch-yaw) and 4 the shoulder and the
elbow. Each hand has five fingers, and is actuated by nine motors. Thumb, index
and middle fingers are independently actuated, while the fourth and fifth fingers
are connected to a single motor. The joints that are not driven by dedicated
motors are mechanically coupled. As usual in these cases the coupling is elastic
to allow better adaptations to the objects. A motor on the palm is responsible for
controlling the fingers abduction. This DOF is critical to better adapt the hand
to objects with various shapes and size. A detailed description of the fingers and
their actuation is reported in Figure 2.

The initial design criteria of the legs aimed to allow the robot to locomote by
crawling on the floor (see Figure 1). From an early analysis it was determined
that five DOF were sufficient. To allow standing and walking it was later decided
to add an additional motor at the ankle. Overall in the current design the legs
of the iCub have six DOF each.

Three motors control the orientation of the robot at the level of the torso.
This turns out to be an important feature because it significantly extends the
workspace of the arms. The iCub can bend forward to reach for a far object
or turn the attention to different areas while maintaining the arms within their
optimal workspace. The head comprises a three DOF neck (tilt, pan and roll)
and cameras that can rotate around a common tilt and independently around
pan axes to control the gaze direction and the angle of vergence.

Another design choice was to shape the robot as a three-and-a-half year old
child (approximately 100 cm high). The overall weight of the robot is 22 Kg. The
mechanics and electronics had to be optimized to fit in the available space. The
actuation solution adopted was a combination of a harmonic drive reduction
system (100:1 ratio for all the major joints) and a brushless frameless motor.
The harmonic driver gears provide zero backlash and high reduction ratios in
small space with low weight, while the brushless motors guarantee appropriate
performance in terms of speed, torque and robustness. An important decision
in this respect was to use frameless motors. These motors are provided without
housing and bearings in separate components that can be integrated directly
inside the structure of the robot thus minimizing size, weight and dimensions.
In the majority of the cases torque is transmitted from the motors to the joints
using steel tendons routed in complex ways via idle pulleys. Most of the motors
are thus placed closer to the body and away from distal links. The motors of
the shoulder (placed in the torso) and the hand (placed in the forearm) are
examples of this. One of the advantages of this solution is that the robot has
lower inertia and as a consequence turns out to be easier to control and safer
during interaction with humans.

Clearly the decision to use electric motors was dictated by practical consider-
ations, considered that at the beginning of the project (and still now, at the time
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of writing) it was the only solution that met the specifications in terms of speed,
torque and size. The choice of the reduction system originated from similar con-
siderations. Electrical motors, especially when equipped with large reductions,
are difficult to backdrive, and in general are easier to be controlled in position
mode. This is a clear limitation for the targeted research and applications3, so
we equipped the robot with various sensors that allow measuring contact forces
(torque and tactile sensors) and we implemented torque and impedance control.
Section 4 in this Chapter shows some results on these topics.

The robot is endowed with a complete sensory system, which includes (Fig-
ure 3):

– Vision: two color cameras attached to the eyes. We employ commercial Drag-
onfly cameras from Pointgray4. Images are acquired by the PC104 computer
mounted on the head and streamed to the network at the maximum rate of
60 Hz and resolution of 640× 480 pixels.

– Sound: two microphones are mounted on the head (condenser electrets mi-
crophones). A mechanical structure similar to the human pinnae produce
spatial filtering that can be used for sound localization (Hörnstein et al.,
2006).

– Inertial sensor: the Xsense MTx sensor from Xsens Technology5 contains
three gyroscopes, three linear accelerometers and a compass. This sensor
is mounted inside the head and provides absolute orientation and angular
acceleration (the signal from the compass is quite noisy and in practice
of scarce utility, probably because of the interference with the mechanical
structure of the robot).

– Forces and torques: we mounted custom 6 axis force/torque sensors in the
arms and legs. These sensors are mechanically similar to commercial sensors
usually used in robotics (in particular the ATI Mini-45 sensor6). Our sensor
embeds the electronics that perform signal conditioning and A/D conversion.
Signals are transmitted to a canbus network at the maximum frequency
of 1 kHz. In addition we have been working to embed joint level torque
measurement in the shoulder (Parmiggiani et al., 2009).

– Proprioception: all motors and joints are equipped with angular encoders.
It is therefore possible to recover the position of all joints, including those
that are elastically coupled to the actuation.

– Touch: recent versions of the iCub mount tactile sensors on the hands. These
sensors are based on capacitive technology and provide contact and pressure
information. Overall each hand has 108 sensors, 12 in each fingertip and 48
on the palm (Schmitz et al., 2010).

3 In position control potentially large forces are produced to achieved a desired posi-
tion. This is dangerous when unexpected interaction with the environment occurs
because the robot is learning, exploring or interacting with humans. In this scenario,
as explained in Section 4.1, force control is a preferable approach.

4 Point Grey Research, Inc.: http://www.pointgray.com
5 Xsens 3D Motion Tracking: http://www.xsens.com
6 ATI Industrial Automation: http://www.ati-ia.com
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Fig. 2. Hands details. All fingers have three moving phalanges. The middle and
distal phalanges are mechanically coupled to bend in a natural way. The coupling
is elastic to allow better adaptation to the objects. The thumb has an additional
joint that allows it to rotate at the base to oppose different fingers. Pictures 1a,
1b and 1c demonstrate the degrees of freedom of the thumb; in particular picture
1c shows the coupled motion of the middle and distal phalanges. Pictures 2b and
2c show the coupled motion of the proximal phalanges of the index and middle
finger respectively (compare with 2a). Index and middle fingers can rotate at
the level of the proximal phalanges (4a and 4b). All the phalanges of the fourth
and fifth fingers are coupled together and are actuated by a single motor (4c).
Finally 3a and 3b demonstrate the abduction of the fingers.

The sensory system is one of the key features of the iCub. The availability of
a rich sensory system makes it possible to use the robot to study algorithms that
exploit and integrate different sensory modalities (e.g. sensory fusion, multimodal
calibration and multimodal perception to mention a few). The force and tactile
sensors on the limbs enable the implementation of control strategies to monitor
and regulate the interaction forces between the robot and the world. This is
crucial for applications that involve autonomous exploration and learning or the
interaction with humans.

3 Software Architecture

Very often academic research laboratories need robotic platforms as tools for
testing and experimenting new ideas or algorithms. The robotic platforms that
are built within these laboratories are not the main goal of the research, but
are considered as useful tools whose development is just a preliminary effort
before the real work. When the research focuses on the robot itself (e.g. when
it involves the study of mechanical solutions, actuators or sensors), it only pro-
duces results that rarely go beyond the status of prototypes. In fact the research
community gives reward mainly to publication of new ideas or principles. This
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Fig. 3. The iCub sensory system.

happens for good reasons, and in this paper we do not want to criticize this
approach. It is true, on the other hand, that this trend has several drawbacks
that make research in robotics suffer in different aspects. The first we discuss
here is the lack of off-the shelf solutions for common problems: with some no-
table exceptions (OpenCV7, OROCOS8 and more recently ROS9) it is difficult
to find good implementations of existing algorithms, especially that work on a
given platform and for applications in humanoid robotics. Often a researcher
working on a specific topic has to start from scratch the development of even
the most basic functionalities (like control of attention or reaching). This clearly
slows down research that involves the implementation of complex behaviors (like
grasping or human robot cooperation) and contributes to a second fundamen-
tal problem: the lack of a scientific methodology that, by comparing different
techniques, allows the identification and promotion of better algorithms.

The iCub software architecture intends to mitigate these problems. We review
here the key design choices that drove its development: ease of use, modularity
and scalability.

7 Open Computer Vision Library: http://sourceforge.net/projects/opencvlibrary
8 Open Robot Control Software: http://www.orocos.org
9 Robot Operating System: http://www.ros.org
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3.1 Ease of use

One of the design choices of the software platform was to reduce as much as
possible the learning curve for new users. We tried to minimize the time a new
user would have to spend in order to get accustomed not only with the software
itself, but also with the developmental environment. Particular attention was
taken to avoid forcing people to a particular development environment, be it
the operating system, compiler or IDE. The iCub software is fully working on
Windows and Linux (and with minimal effort on MacOS), and more importantly,
a mix of the two. Users can take advantage of the platform that best suits their
needs and skills. For examples psychologists find it more natural to use Windows,
and it is not unusual to have to interface the robot software with off-the-shelf
devices that are supported only in the Windows operating system (i.e. an eye
tracker). Linux, on the other hand, appears the natural choice of people that have
a more technical background. Similar considerations apply to the development
environment. In addition, and to a more limited extent, the software provides
interoperability with other languages like Python, Java and Matlab. Winning
choices in this respect have been the use of open source tools like CMake10,
SWIG11 and ACE12.

3.2 Modularity

The iCub software architecture was built on top of YARP (Fitzpatrick et al.,
2008). YARP is an open source software middleware that support code reuse
and development in robotics. In YARP software is organized as modules (usually
executables) that communicate using objects called ports. Ports are entities that
receive or transmit data with each others. Modules are executed on a set of
computers (nodes) and cooperate through ports. On top of this, YARP allows
creating devices that have a standard C++ interface and support remotization
of these devices across the network. Code development is intrinsically modular,
functionalities are added to the system as modules that have a specific interface.
With time modules that become obsolete can be easily replaced with new ones
that offer the same interface. Clearly the advantage of a distributed architecture
is that it is easily scalable; as long as resources are available new modules can be
added to the system. Connections between modules can be created and destroyed
dynamically, so the system does not need to be stopped when new modules
are added or, for any reason, moved across machines. The other advantage of
YARP is that the system can be made of heterogeneous nodes (i.e. nodes running
different operating systems).

The robot offers a YARP interface to communicate with its motors and
sensory system. All the users need to know is how to use the interface to send
commands to the robot and access the sensory information. The complexity of

10 Kitware, Cross Platform Make: http://www.cmake.com
11 Simplified Wrapper and Interface Generator: http://www.swig.org
12 The ADAPTIVE Communication Environment:

http://www.cs.wustl.edu/˜schmidt/ACE.htm
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the networking, low-level hardware and device drivers are completely hidden to
users. This is beneficial because it allows non-experts to use the robot and it
avoids that changes to the low-level hardware have catastrophic impacts on the
user code.

An good example of modularity is the iCub simulator (Tikhanoff et al., 2008).
This software component is implemented using the ODE dynamics engine13 and
it simulates all the sensors, actuators and degrees of freedom of the iCub to
provide the same software interface of the real robot (i.e. the simulator and the
real robot provide compatible YARP ports). Software modules can be developed
using the simulator and later plugged to the real robot without effort. It is
important to point out that the simulator was not designed to simulate the
dynamics of the robot with accuracy. Nonetheless it can be a fundamental tool
for fast prototyping and testing, in particular of learning algorithms that are
time consuming and require that large number of experiments are performed.

We mentioned modularity as a requirement for long term development. In
the iCub architecture modules are loosely coupled and are easily developed by
different people with minimal interference. At the time of writing the iCub com-
munity is made of roughly 40 active developers and a larger number of users
scattered in different parts of the world. Modularity makes it possible for all
these developers to coexist and cooperate within the same project.

3.3 Scalability: from Modules to Applications

The iCub software architecture defines the concept of application as a collection
of modules that achieve a particular functionality. Examples of applications are
the attention system (Ruesch et al., 2008), the reaching behavior (Pattacini et al.,
2010), or the exploration of object affordances (Montesano et al., 2008) (other
applications are reported in Table 1 in Section 6). Applications are obtained
by instantiating a set of modules. Since modules can be configured depending
on the context, an application should also store the information about how
these modules are configured. In other words, applications are somewhat abstract
entities that consist of a list of modules and instructions for running them.

Unfortunately, the execution of an application that is fragmented in many
modules can be complicated and time consuming, especially for people who have
not participated in its development. Good documentation can partially mitigate
this problem, but the effort required to run a certain application has a strong
influence on the probability that the application will be re-used. The risk is
that developers do not perceive the advantages of a modular approach, and
start developing monolithic applications. Modularity can prevent scaling from
simple experiments involving a few modules to complex behaviors obtained by
instantiating many modules (and maybe other applications).

The iCub software contains a manager that simplifies running applications.
Each application is associated to an application descriptor (i.e. an xml file) that
contains all the information required to instantiate it, including: the modules

13 Open Dynamics Engine: http://www.ode.org
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to run, the set of parameters, the name of the machines on which modules
will be executed, and how modules should be connected. From this information
the manager is able to execute all modules on the desired machines, configure
them appropriately, and establish connections between the ports involved. In
other words the manager automates common tasks like starting and stopping an
application, or monitoring its status. Like modules, applications can be uploaded
in the repository, documented and shared across developers. The idea is that the
users do not instantiate modules individually, but rather from the application
descriptors available in the repository (this process is exemplified in Figure 4).

Another limit to the growth of the system is imposed by the delay introduced
by the communication between modules. Latencies are heavily dependent on the
computing infrastructure and for this reason are difficult to estimate. YARP was
implemented and designed to be efficient and minimize overheads, and so far it
has demonstrated to behave well in this respect (we have measured that the
delay introduced by a port is below 300 µs for small packets, see Natale, 2009).
An important design principle driving software development in iCub is to avoid
introducing coupling between the timing of the modules. The reason for this is
that we want to avoid that the performance of slow modules have a negative
impact on the others. Among the different communication paradigm available
in YARP, we favor “streaming” communication in which no synchronization
between sender and receiver is required or enforced. When large packets are
sent to multiple receivers (i.e. packets containing images) we use the multicast
protocol to minimize the associated overhead.

Finally a clear limitation to the scalability of the system is dictated by the
available resources: computing power and network bandwidth. In developing
modules and applications it is important to monitor the available resources and
avoid saturating them. Our experience has shown that with some attention it is
possible to create applications made of a large number of modules (our largest
applications involve running at least 20 interconnected modules, e.g. “Imitation,
Learning Object Affordances” or “Objects and Actions Learning” in Table 1). In
addition since technology has been progressing at a steady pace in these aspects
we believe this is unlikely to be a problem in the near future.

4 Examples of Software Modules

In the previous sections we have described the iCub hardware and software
platforms. In this section we describe some software modules that exploit the
available sensors and actuators to control the interaction with the environment.
These and other modules are available open source and documented in the iCub
software repository14. We report data from experiments with the goal of demon-
strating some of the current capabilities of the robot that appear more relevant
with respect to the topic of this paper.

14 http://icub.org: iCub Software Documentation.
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Fig. 4. Managing applications and modules.

4.1 Force Control

Force control is a well known technique that is commonly used to better con-
trol the interaction between the robot and the environment, especially in the
presence of uncertainties (Sciavicco and Siciliano, 2005). Recently force control
has obtained renewed importance since researchers and industries have started
to propose applications that see robots working in close interaction with hu-
mans. Safety and uncertainty handling have pushed the need for robots that can
control or limit the amount of force they exert on the external world (De Santis
et al., 2008; Schiavi et al., 2009). Among the possible solutions that allow achiev-
ing safety (light weight designs, intrinsically compliant actuations, see Haddadin
et al., 2009; Zinn et al., 2004), force control has the advantage that it does not
require an increase in the complexity of the system.

We employ 6-axis force and torque (F/T) sensors, integrated within the two
arms and legs. The F/T sensors of the arms are placed in the upper arm, be-
tween the shoulder and the elbow, while those employed for the legs are placed
between the hip joints and the knee (see Figure 3). These F/T sensors employ
semiconductor strain gages (SSG) for measuring the deformation of the sensing
elements.

Commonly force sensors are placed at the end-effector. The adopted solution
however has some advantages, in particular it allows to:

– estimate forces and torques due to the internal dynamic of the links;
– measure external forces exerted on the whole arm;
– derive the torques at each joint.
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The drawback is that, if not compensated for, dynamic forces due to the
links are detected as external forces (something that does not happen when
the F/T sensor is placed at the end-effector). To properly compensate forces
acting on the whole arm, we need to know their point of application. Since
the latter information is not available without tactile feedback in this work we
assumed that all forces are applied at the end-effector (to remove this hypothesis
we have recently installed a distributed tactile sensing system on the arms, see
Del Prete et al., 2011; Schmitz et al., 2011). In addition we suppose also that
the contribution of the internal dynamics of the manipulator are known and
compensated for (see for example Murray et al., 1994). Under these hypotheses
the actual external wrench and the measured F/T vector are related with pure
kinematic relations, and it is possible to estimate the corresponding joint level
torques.

With reference to Figure 5, the output of the F/T is a wrench sFs ∈ R6

represented in the sensor reference frame < s >. We can compute an equivalent
wrench that, applied to the end-effector, produces the same effect. This clearly
depends on the vector pes ∈ R3 – the relative distance of the center of the sensor
reference frame Os ∈ R3 with respect to the position of the end-effector – and
on the rotation matrix relating < s > with < e >. Formally:

bFe = T beH
e
s
sFs (1)

Fig. 5. Schematic representation of the reference frames and coordinate trans-
formations involved in the computation of the joint torques from the measures
of the F/T sensor. See text for details.
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Fig. 6. Impedance controller during interaction with an external disturbance
(only the four shoulder joints are considered). The external disturbance is ap-
plied to the arm at roughly t1 ≈ 2 s, t2 ≈ 4.5 s and t3 ≈ 12 s. Top plots:
displacement of each joint during interaction (q1, q2, q3 and q4). The solid line
shows the encoder value. During the whole experiment the reference value re-
quested to each joint is maintained stationary. The compliant behavior of the
arm is demonstrated by the fact that during the interaction with the disturbance
the joints are allowed to move away from the reference position. Bottom plots:
requested (black line) versus actual (gray line) torques at the joints (torque1,
torque2, torque3 and torque4). The requested torques increase when the joints
move away from the desired position and attempt to restore the desired position
of the arm (forces are proportional to the displacement).
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Fig. 7. Measuring the stiffness of each joint (only the four shoulder joints are
considered). In these experiments the virtual springs have a constant equilibrium
point at q = (−30, 37, 6, 73) degrees. Top rows: all joints maintain a certain
stiffness, the plots show the values of torques versus position. Crosses represent
measured values, dashed lines 95% confidence interval for the measured stiffness,
and least square linear fit. Solid line is the value of K used in the controller.
Bottom plots: in this case we tested three different values of K. We plot the
ideal response that would be obtained using the desired value of K (solid lines)
versus least squares fit (dashed lines).
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in which bFe ∈ R6 is the external force (represented in the reference frame < b >)
and He

s and T be ∈ R6×6 are defined as:

He
s =

[
Res 0

−S(p)Res R
e
s

]
, (2)

T be =

[
Rbe 0
0 Rbe

]
. (3)

Here Rba ∈ R3×3 represents the rotation matrix from < a > to < b >, and
S(.) ∈ R3×3 is the matrix operator of p×.

From bFe it is straightforward to compute the joint level torques:

τ̂ = JT (q) bFe, (4)

where J(q) ∈ R6×n is the Jacobian of the n-joints manipulator, and q is the vec-
tor of joint positions. Given the value of τ̂ corresponding to the current reading
bFe , the following control strategy:

u = PID(τ̂ − τd), (5)

employs a proportional–integral–derivative controller (PID) to compute the mo-
tor command u ∈ Rn that achieves a desired value of joint torques τd (which, in
turn, produce a corresponding net force exerted by the arm at the end effector).

A simple way to demonstrate force control is to implement an impedance
controller15. At the joint level this is easily achieved by computing τd as in:

τd = −K(q − q?), (6)

being K ∈ Rn the vector of virtual joint stiffnesses. This controller simulates
virtual springs attached to each joint i, with stiffness K and equilibrium point
at q?i .

When the value of the stiffness K is low the arm exhibits a “compliant”
behavior, as demonstrated in the following experiment. The controller maintains
q?, or equivalently, a certain position of the arm. We apply disturbances by means
of variable forces applied at the end-effector. Forces produce a displacement of
the end-effector; depending on the stiffness K the controller tries to oppose the
external disturbances with a restoring force proportional to the displacement
(Figure 6). This situation is similar to what happens when the arm interacts
with the environment. In theory if K is large enough q → q? and we can use this
controller to achieve any desired configuration of the arm. In practice, however,
we would like to use small values of the stiffness K so to reduce the effects of
unwanted collisions. To better validate the control system, in Figure 7 we report
the plot of torque versus displacement with constant and variable values of the
parameter K (respectively left and right).

15 An impedance controller drives the arm by simulating virtual springs attached be-
tween the arm and a desired equilibrium point.
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4.2 The Sensors on the Hand: Grasp Detection

The sensory system of the iCub allows us to determine when the fingers get in
touch with an object. To this purpose we can exploit the encoders in the joints of
the fingers and the tactile sensors on the fingertips and palm. Let us first focus
on the former approach.

We have implemented a mechanism to perform contact detection using the
springs mounted on the phalanges of the hand. Due to the elastic coupling be-
tween the phalanges (see Section 2 and, in particular, Figure 2) the fingers
passively adapt when they encounter an obstacle (i.e. when they touch the sur-
face of an object). The amount of adaptation can be indirectly estimated from
the encoders on the joints of the fingers. In other words, the idea is to measure
the discrepancy between the finger motion in presence of external obstacles (e.g.
objects or the other fingers) and the one that would result in normal operation
(in absence of obstacles/free movement). In a calibration phase we estimate the
(linear) relationship between the joints of the fingers in absence of contact. In
normal operation, we detect contact by comparing how much this model fits the
current encoder readings.

Let us group together those joints of the fingers that are actuated by the same
motors and that are coupled with elastic elements. For each of these groups we
define generic n dimensional vectors q ∈ Rn, each collecting the values of all the
n joints that are actuated by the same motor (e.g. for the thumb, index and
middle distal phalanges n = 2 each, while for the ring and small fingers n = 6,
as explained in Figure 2). For each motor, the following parametric equation, r,
models the mechanical coupling:

r : q = k0 + k1 × s, s ∈ [smin, smax] (7)

where s is the free parameter to be chosen in [smin, smax]. In a calibration phase
we can fit this model to a set of joint positions recorded in absence of external

Fig. 8. The skin system on the hands consists of units of 12 capacitive sensors
each: 5 units are installed in the fingertips and 4 cover the palm. Overall 108
sensors are available on each hand. Left: a picture of the hand. Right: schematic
representation of how the units and sensors are distributed on the fingers and
palm.



The iCub platform: a tool for studying intrinsically motivated learning 17

forces. Once we have determined the values of the parameters k0 and k1 we can
determine if a given value of encoders q fit the mode in Equation 7. The idea is
that the higher the effect of the external perturbation to the fingers the larger the
error with which the model in Equation 7 predicts the value q. This algorithm
was implemented in a software component that is available in the iCub software
repository, along with a more detailed description of the algorithm16.

The hand is equipped with a skin system made of interconnected units pro-
viding a total of 108 sensing elements distributed as in Figure 8. The details of
the technology are reported elsewhere (Schmitz et al., 2008, 2011).

We now report a series of grasping experiments in which we show that the
sensors of the hand (joint encoders and tactile system) can detect when the fin-
gers touch an object. The robot was programmed to perform a series of grasping
actions on different objects. The objects were placed on the same position and
grasping was completely preprogrammed. We collected the information from the
grasp detector (the output of the module, i.e. the error between the measured
data and the model) and the output of one of the taxel of the fingertips (i.e.
the taxel whose activation was stronger). As a reference we also collected data
when the hand performed the same movement but in absence of an object. Fig-
ure 9 reports the data we collected averaged across 20 consecutive trials. The
plots clearly show that both signals allow detecting when the finger gets in touch
with the object. More details on this experiment are reported by Schmitz et al.
(2010).

4.3 Reaching

We here describe a software component that controls the position and orienta-
tion of the hand17. Given a target position and orientation of the hand in the
Cartesian space, a first stage of processing employs a non linear optimization
technique to determine the arm joints configuration qd that achieves the de-
sired posture. The second stage of processing consists in a biologically inspired
controller that computes the velocity q̇ of the motors to produce a human-like
quasi-straight trajectory of the end-effector. The details of this algorithm are
reported by Pattacini et al. (2010) so we report here a brief description of its
functionalities.

The solver module computes the value of the joint encoders q? ∈ Rn that
achieves a given position xd ∈ R3 and orientation αd ∈ R3 of the end-effector
while, at the same time, satisfies a set of given constraints expressed as inequal-
ities. Formally, this can be expressed as:

q? = arg minq∈Rn

(
‖αd −Kα (q) ‖2 + λ · (qrest − q)T W (qrest − q)

)
s.t.:

{
‖Xd −Kx(q)‖2 < ε
qL < q < qU

, (8)

16 graspDetector : see iCub Software Documentation, http://icub.org
17 iKinArmCtrlIF : see iCub Software Documentation, http://icub.org
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Fig. 9. A plot of the fingertips response (left column) and grasp detector re-
sponse (right column) while grasping a plastic bottle. Rows corresponds to dif-
ferent fingers. From the top to the bottom: thumb, index, middle, ring and little
finger. The dashed line is the response when the grasp action is performed with-
out object. The solid line is the average response in 20 trials. The shaded region
is the standard deviation in 20 trials. The horizontal axis reports also the detec-
tion time instant (vertical segment): this instant has been obtained on the basis
of a threshold chosen on a 95% confidence interval. Data from other objects is
reported in Schmitz et al. (2010).

where Kx and Kα are the forward kinematic functions that respectively com-
pute position and orientation of the end-effector from the joint angles q; qrest is
a preferred joint configuration, W is a diagonal matrix of weighting factors, λ is
a positive scalar (< 1) and ε a small number. The cost function in Equation 8
requires that the final orientation of the end-effector matches the desired value
αd and that the arm joints are as close as possible to a preferred “resting value”
qrest. The weights W determine which joints receive more importance during
the minimization, whereas the scalar λ determines the overall importance given
to this part of the cost. In addition the solution to the problem has to comply
with a set of constraints. We here enforce that the position of the end-effector
is arbitrarily close to the desired value Xd

18. Other constraints can be imposed

18 In doing so we ensure that this constraint receives higher priority in the minimiza-
tion (Pattacini et al., 2010). This part of the task is fulfilled with a precision up to
the value of the constant ε that is selected to be practically negligible (in our case
10−6m).
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Fig. 10. Tracking a desired trajectory with a lemniscate shape in the operational
space. Left: trajectory in Cartesian space. For better understanding the figure
shows two configurations of the arm: the lower one depicts the starting pose,
whilst the upper one shows the commanded hand orientation during the task.
Right: tracking error during the same experiment.

as well, here for example we require the solution to lie between lower and upper
bounds of physically admissible values. To solve the minimization problem we
employ an Interior Point Optimization Technique, in particular we use the Ipopt
libray, a public domain software package designed for large-scale non linear opti-
mization (Wächter and Biegler, 2006). As demonstrated in Pattacini et al. (2010)
this technique has several advantages, such as, speed, automatic handling of the
singularities and possibility to incorporate complex constraints as inequalities in
the problem.

The controller module is responsible for computing a series of joint space
velocities q̇ that drive the arm from the current configuration q to the desired
final state q? computed by the solver in the previous step. The approach we
follow in this case is similar to the Multi-Referential Dynamical Systems ap-
proach (Hersch and Billard, 2008). Two dynamical systems operate in joint and
task space with the same target position and generate desired commands for the
arm. The coherence constraint between the two tasks is enforced with the La-
grangian multipliers method. This can be used to modulate the relative influence
of each controller. The joint level controller produces straight trajectories in joint
space, while the task level controller produces straight trajectories in the task
space. Both controllers have their own advantages, the former allows to avoid
joint limits, while the latter make sure the arm follows rectilinear bell-shaped
trajectories in the task space. Instead of the second order dynamical systems
proposed by Hersch and Billard (2008), we use a third order system whose co-
efficients are tuned to better approximate a minimum jerk profile (Flash and
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Hogan, 1985) . This allows production of smoother trajectories of the arm, both
in the joint and task space (Pattacini et al., 2010).

To simplify the use of the Reaching Controller YARP defines an interface that
specifies methods for task space control of a robotic structure. The purpose is
twofold: 1) it achieves better modularity and 2) hide the implementation details
of the controller behind a set of immutable interfaces. Examples of these methods
are: go to pose(), get pose(), set trajectory time()19. The functionalities of this
module are also available through the iKin library; this is a general purpose
kinematics library that can be configured to represent the forward kinematics of
any serial link.

Figure 10 shows the Cartesian position of the end-effector while tracking a
desired pose in the operational space; in this particular example 10 degrees of
freedom are controlled (7 for the arm along with the pitch, the roll and the yaw
joints of the torso): one cycle of the lemniscate-shaped desired trajectory in front
of the robot frontal plane was executed in 20 seconds, whereas the time control
gain T for point-to-point movements was set to 0.5 seconds. Our experiments
show that the controller can easily run in real-time and has good response in
terms of accuracy and smoothness.

5 An Integrated Behavior

We present an example of a grasping behavior that was implemented on the
robot using modules in the repository as building blocks. The earliest stage of
the visual processing is the attention system (see for example Ruesch et al.,
2008), which consists in detecting regions in the (visual) space towards which
directing gaze. A commonly adopted solution is to employ a set of filters (each
tuned to features like colors, orientations and motion) and combine their output
to obtain a saliency map. This saliency map is then searched for local maxima
which correspond to “interesting” regions in the visual scene. The gaze of the
robot is finally directed towards these saliency regions using a certain criteria (in
this case using a “winner-take-all” approach, but other strategies like random
walk could be thought). Each feature can be given more importance: in this case
it was decided to give more priority to motion so that moving objects are more
likely to attract the attention of the robot. The gaze control module controls the
motor of the head to bring salient regions at the center of the cameras. A low level
segmentation algorithm groups together areas in the images that have uniform
color and extract the center of the area that is closer to the center of the image.
The process described above exploits visual information from one camera, and
extracts only the location of the target in image coordinates. Since the extraction
of 3D information is difficult and easily imprecise we decided to take a pragmatic
approach and compute the missing information from the assumption that all
relevant objects lay on a table whose height is determined by touch. With this

19 A complete list of available methods is available on the documentation page of the
ICartesianControl interface: http://icub.org, YARP documentation.
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Fig. 11. A grasping sequence. From top-left to bottom-right, an object is placed
on the table, the robot moves the hand above the object and closes the hand.
When a successful grasp is detected the robot lifts the object and eventually
drops it.

assumption the visual processing module computes the Cartesian position of the
target with respect to a known reference frame.

The reaching subsystem receives the Cartesian position of the target object
and computes the trajectories of the joints to achieve the desired posture. Once
the hand is above the object the finger closes, with a predefined movement, until
the robot detects the contact with the object. If grasping is successful the robot
lifts the object, otherwise it opens the hand and brings the arm back to the
initial position. The whole sequence is exemplified in Figure 11.

This behavior, although already sophisticated, makes several simplifying as-
sumptions about the locations of the objects and, to a certain extent their shape.
In the context of this paper, this experiment shows an example of how basic mod-
ules can be integrated to perform a meaningful behavior that involves the inter-
action between the sensory system and the controllers of different body parts.
Finally, this behavior could be, itself, a building block for an even more com-
plicated behavior involving the interaction with the environment (for example
learning of affordances or human robot cooperation to mention a few).

6 Conclusions

The design of the robot started with difficult constraints. The targeted research
area required the robot to have a certain degree of complexity to allow sophis-
ticated interaction with the environment. Fitting 53 degrees of freedom and all
the sensors in a small, integrated platform was one of the most difficult design
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challenges. The iCub had to be built in multiple copies, to be used by people that
did not participate in its development and likely to have a mixed background
ranging from engineering and computer science to biology and psychology. For
these reasons the robot had to go beyond the level of a simple prototype but
rather be a mature, documented and robust platform. The software had to min-
imize the learning curve, and be usable by non-expert users. Finally, one of the
goals of the project was to create a community of people working on the same
robots, sharing results and algorithms.

In the past years the community of iCub users has been rapidly growing
around the 20 robots that have been distributed, the mailing list, the summer
schools and the use of the software simulator. As a whole the community is
contributing to the iCub at various levels: from basic functionalities like routines
for calibration, control of attention or grasping to more sophisticated ones like
learning of object affordances and learning by demonstration (a representative
list of these functionalities is reported in Table 1).

In this Chapter we have provided an overview of the iCub platform. We have
covered aspects of the software and hardware architecture that make the plat-
form suitable for research in the fields of developmental robotics and cognitive
systems in general. We have also provided a description of the available function-
alities, with particular focus on those that are more relevant for controlling the
manual interaction with the environment, namely force control and touch-based
control of the arms and hands (references to other functionalities implemented
on the iCub are in Table 1). These features support the implementation of ex-
ploratory behaviors in that they allow safe and prolonged interaction with the
environment. The iCub sensory system also provides a wealth of information
opportunities for learning. The software architecture is intrinsically modular it
allows experimenting with learning architectures in which complex abilities are
formed on the basis of simpler ones. Overall we believe these functionalities make
the iCub particularly interesting to the community of researchers studying in-
trinsically motivated learning. As we have demonstrated the iCub is an unique
integrated platform that embeds most of what is needed to tackle the problems
that are challenging the research community in this field.
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Overview of high-level functionalities on the iCub

Functionality Description References

Attention System
Control of attention using visual and audi-
tory cues

Ruesch et al. (2008)

Log-polar Atten-
tion System

Control the attention using visual cues in
log-polar space

The iCub “contrib”
software repository

Reaching
Control the arm to reach for a point in
space with the hand

Pattacini et al.
(2010)

Force Control
Control the amount of force exchanged be-
tween the arm, legs and the environment

Fumagalli et al.
(2010)

Skin spatial calibra-
tion

Automatic calibration of the tactile sys-
tem, compute the spatial location of each
taxel

Del Prete et al.
(2011)

Head calibration
Perform automatic calibration of the head
using vision and inertial information

Santos et al. (2010)

Crawling Locomotion on the legs and arms
Dégallier et al.
(2011)

Cognitive Architec-
ture

A cognitive architecture for the iCub robot
implementing gaze control

Vernon et al. (2011)

Imitation learning
and grasping

The robot learns a grasp model from a first
demonstration of a hand posture which
is then physically corrected by a human
teacher pressing on the fingertips

Sauser et al. (2011)

Kinesthetic teach-
ing

An action acquisition model based on mul-
tiple time-scales recurrent neural network
and self-organizing maps; the robot learns
multiple behaviors through demonstration

Peniak et al.
(2011a)

Imitation, Learning
Object Affordances

The robot learns a representation of object
affordances and uses it to imitation actions

Montesano et al.
(2008)

Objects and Ac-
tions Learning

Learning under human supervision, in-
cludes visual object recognition and ac-
tions

The iCub “main”
software repository

Object Learning
Replication of the “modi experiment” from
developmental psychology literature

Peniak et al.
(2011b)

Reaching with force
fields and obstacle
avoidance

Plan a trajectory in space while avoid-
ing obstacles; obstacles are represented as
force fields

The iCub “main”
software repository

Body schema: hand
detection and local-
ization

The robot learns autonomously to visually
identify its own hand and arm

Ciliberto et al.
(2011); Saegusa
et al. (2011)

Online Learning
Machine

An incremental learning algorithm for re-
gression

Gijsberts and
Metta (2011)

Table 1. A list of the functionalities that have been implemented on the iCub.
The table reports the name of the functionality and a description. When available
references to the scientific papers that present the work are reported in the right
column.
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