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Abstract— Software engineering and best practices in
robotics promote modularity and composability in the attempt
to reduce development time and improve maintainability of
software. This, however, leads to an increased complexity of
the system and in the effort required to properly coordinate
the interaction between components. This short article proposes
a mechanism for coordination of components in distributed
architectures based on port arbitration and exploiting the
same connections already used to transfer data. Our approach
i) intrinsically reduces the number of links required for
coordination and ii) it relies on standard data flow port offered
by the middleware. Thus, make it suitable to be adopted by
different robotic frameworks.

I. INTRODUCTION

Different coordination models and languages such as
data–driven, event–driven, centralized and decentralized are
studied in [1], [2] and [3]. Robotic middlewares and
frameworks usually use architecture–dependent mechanism
(e.g. BIP in GenoM [4], [5] ) or adopt some standard
approaches such as finite state machines (e.g. rFSM in
Orocos [6], SMACH in ROS [7]) and petri net (e.g.
RoboGraph [8], RTM [9]) to properly orchestrate the
interaction of components. This, however, requires that
some specific features are implemented in the underlying
component to be properly employed by the coordination
system and therefore, it places burden on adopting
approaches from other robotic frameworks. This is probably
one of the reason that caused the development of different
component models (which is also one of the issues addressed
by BRICS [10]). A quick review of components model
offered by different robotic middlewares (e.g. OROCOS,
OPROS, OpenRTM, Rt-Component, YARP, ROS) shows that
using data flow ports [11] (or decoupled communication
port [2]) to stream data asynchronously, has become a
standard in most of the robotic frameworks. This, in fact,
encouraged us to investigate the possibility of exploiting the
connections among components for their own coordination.

We focus on the typical scenario of a software architecture
developed using one of the robotic middleware commonly
used in the literature [12]: The output of a component can
be connected to one or more input ports of other components.
It is also possible to connected multiple outputs to an input
of a component. We also make the following assumption:

• Data is streamed out through outputs if and only if the
computed data is valid. For example, an object detector
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Fig. 1. Avoiding race conditions of competitive connections to an input
port using port-based arbitration mechanism.

sends object position information through its output port
only if the object has been detected.

In the example from Figure 1, Face Detector and
Object Detector can both send 3D position information
to Gaze Control which controls the robot’s head to gaze
accordingly. Components are running in parallel. In term
of implementation, they can be distributed over different
machines which communicate through network interfaces.
Since there is no synchronization among behaviors, data
can be delivered to an input port at any time, potentially
causing race conditions. For example, in a simple scenario
where a person keeps an object in front of the robot,
Face Detector conflicts with Object Detector by
spontaneously sending information to Gaze Control.

II. COORDINATION MECHANISM

In our approach, every connection in an input port, has a
stimulation level which is accumulated using a specific type
of leaky integrator whenever data arrives to the port through
this connection (similar to the artificial neuron model). When
the stimulation level reaches its threshold, the connection is
in active state and can deliver (fire) its data (see Figure 1).
To arbitrate between simultaneously activated connections,
each connection has a set of weighted links (similar to
synaptic weights in neural networks) to the other connections
to regulate (inhibit or excite) each other.

When data arrives to an input port from the connection Ci,
it generates an event with weight σi and the leaky integrator
accumulates it to produce the stimulation level si[t] which is
also saturated up to the threshold (1.0). The stimulation level
exponentially decays over time until it reaches the minimum
level after time τi. When si[t] reaches its threshold, Ci is in
active state until it gets completely discharged and decays



to zero. An active connection Ci can inhibit or excite other
connections using its bias βi and weights αi j.

Upon receiving data from connection Ci (at time t) to the
input port, the latter should decide whether to accept the
message or discard it. First, it updates the stimulation levels
of all m connections (si[t] ... sm[t]) to calculate the active
inputs (xi ... xm) using Equation 1.

xi =

{
1 if Ci is active ,
0 otherwise.

(1)

yi = xi

m

∑
j=1

(
α ji y j

)
+βi , (i ̸= j) (2)

Next, outputs (yi ... ym) are calculated using Equation 2,
as well as the maximum output yk. If yk > 0 (i.e. it is not
inhibited) and i = k (i.e. connection Ci has the maximum
output value), Ci is chosen by the selector and its message
will be delivered to the behavior; otherwise it will be
rejected.

Imagine in the example from Figure 1, we want the robot
to gaze at a face if there is no object in the scene. In other
words, If C2 is active, C1 should not be selected. This can be
done by self-biasing both connections (e.g. β1 = β2 = 1) and
let C2 (when it is active) to inhibit C1 (α12 = 0, α21 =−1).

A connection can also be configured as an auxiliary
connection. As can be inferred from its name, data from
an auxiliary connection will never be delivered to the
component by the input port thus cannot conflict with other
connections. As such it is only used to regulate other
connections. For example, imagine in the Figure 1, we want
the robot to gaze at an object if there is also a person in the
scene. That is C2 is not initially biased (β2 = 0) and it should
be selected if C1 is also active. Notice that, in this example,
we are not interested in tracking the face. Therefore, C1
should be set as an auxiliary connection to excite C2 by
choosing α12 = 1, α21 = 0.

We implemented our approach using the YARP
middleware [12] and tested it by developing a complex
behavior on the iCub humanoid robot [13] in which the
robot is programmed to search for an object, grasp it and
then look for a person and finally return the object to
him (Figure 2). This behavior uses 10 components which
are coordinated using our approach 1. We show that our
approach allowed us to implement the behavior completely
out of simple existing components and without the need
to develop a special purpose component responsible for
coordination. We also demonstrate that the final behavior is
intrinsically robust to unexpected events (e.g. if the object
is dropped from the hand, the robot interrupts the ongoing
action and attempt to re–grasp the object). More importantly
we developed our behavior incrementally.

III. CONCLUSION

This article has briefly introduced a coordination
mechanism in distributed architectures based on port
arbitration. One of the advantages of our approach is that

1The details and video of the experiment can be provided on demand.
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Fig. 2. More than 10 components interact using our coordination
mechanism to implement a behavior where the robot performs a sequence
of actions: (A) look for an object, (B) reach for the object, (C) grasp the
object, (D) look for a person, (E) approach the person and (F) release the
object.

it exploits the same connections which already used to
transfer data thus minimize number of extra links required
for coordination. Notice that, this does not contradict with the
separation of concerns (so-called “Five C’s”) since it does not
mix Coordination and Connection. Configuring connections
with extra parameters, in fact, implements Coordination.
Another befit of the port–arbitrated–based coordination is
that since it does not need any synchronization among the
components, the latter can be easily distributed over different
machines. Moreover, since no explicit modules are required
to manage the coordination, no task dependent code needs to
be written to implement the final behavior which as a result
is exclusively built out of re-usable components.
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