Journal of Software Engineering for Robotics

5(2), September 2014, 42-49
ISSN: 2035-3928

A middle way for robotics middleware

Paul Fitzpatrick Elena Ceseracciu

Daniele E. Domenichelli

Ali Paikan Giorgio Metta Lorenzo Natale

iCub Facility, Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genoa, Italy

Abstract—Robotics is changing. The amount of software available (and needed) is growing. For better or worse, the glue that holds that
software together, the middleware, has a big impact on its viability. YARP is a middleware for robotics, with over a decade’s continuous
use on various humanoid robots. YARP was designed to help code survive changes, to easily experiment with new code and integrate
with other systems. In a world of constant transition, with a steady stream of hardware and software upgrades, YARP helps code last
long enough to make a real impact, and avoid premature loss of good code through middleware muddles. We review the features
of YARP that support this flexibility, describing those situations in which they have been practically useful. We argue that there are
practices that any middleware author can adopt that benefit users of other middleware and raise costs to those users when neglected.
Altruism is not required: we also argue a middleware’s own users will benefit from such practices right now (when collaborating) and in
the future (when upgrading to a new version of the middleware). These concerns are not usually the first things on a user's mind when
choosing a middleware, but a responsible middleware author will foresee them and prepare a happy ending rather than a trap.

Index Terms—Robotics, middleware, interoperability, component-based software.

1 INTRODUCTION

HERE is growing attention in robotics to software mid-

dleware, some specific to robotics (Player [1], ROS [2],
YARP [3], [4], OROCOS [5], Urbi [6], MIRO [7], LCM [8]
and MIRA [9]), others more general (ICE [10], CORBA [11],
@MQ [12]). There are several attempts in the literature to
compare middleware based on the perspective of its users,
looking at features and performance [13], [14], [9]. This is
adequate for projects that operate on short time scales of a
few months or years. For longer time scales, it is useful to
also consider the middleware from an external perspective.
When users enter in collaboration with a partner who favors
a different middleware, and neither party is interested in
changing, then suddenly a new set of desirable properties
surface. When users of a middleware are faced with a breaking
upgrade of that middleware, again there is a new set of
desirable properties. Properties of a middleware that have
no impact on a user of that middleware when evaluating it
for performance may have an enormous impact when they

Short paper — Manuscript received November 11, 2013; revised September
10, 2014.

o The research leading to these results has received funding from the
European Community’s Seventh Framework Programme (FP7 ICT) under
grant agreements No. 270273 (Xperience) and No. 611832 (WALK-MAN).

e Authors retain copyright to their papers and grant JOSER unlimited
rights to publish the paper electronically and in hard copy. Use of the
article is permitted as long as the author(s) and the journal are properly
acknowledged.

www.joser.org - (©) 2014

find themselves trying to collaborate with others or trying to
continue using their software in the future.

Middleware is a mixed blessing. In the short term it helps a
system scale up, but in the long term it can hold it back. Like
operating systems, middleware is “sticky” — developers have
to make a special effort to make their software usable in other
platforms. In the short term, for an individual developer, this is
no big deal, since other platforms are irrelevant. However, in
the longer term or on larger teams, this is a real cost, paid for
through collaborations that never happen or that get bogged
down due to platform fragmentation.

A possible solution is for everyone to get together and
agree to use a common platform. Even with the best of
intentions, a single platform can become a trap, as more
and more components come to rely on fragile quirks of that
platform, increasing the cost of any changes, even positive
ones. This is a problem not just because it raises barriers to
new middleware entering a community, but also raises barriers
to future versions of the middleware itself. Either there will
be a “big bang” change of infrastructure and all the pain that
goes with that, or development of the platform will slow to a
crawl.

There is a middle way between fragmentation and mono-
culture. We argue that fragmentation and monoculture are
problems only if interoperation is made too expensive. As
the cost (in terms of complexity) of interoperation is re-
duced, then fragmentation creates less waste, and monoculture
creates fewer barriers. When thinking about interoperation,
standardization and Request For Comments (RFCs) are the

by Paul Fitzpatrick et al.

P. Fitzpatrick et al./ A middle way for robotics middleware

first approaches that come to mind. Standardization definitely
has a role to play, and should be encouraged. Nonetheless,
the coordination it requires between middleware developers
is most practical for “solved problems” rather than aspects
of robotics that are still in flux (of which there are many).
In this paper, we would like to demonstrate that there are
many actions that middleware developers can take unilaterally
to reduce the cost of interoperation. We would also like to
encourage middleware evaluators to take these aspects into
consideration, and ask proper questions. For example: does
a middleware assume that the entity on the other side of a
network socket is using the same middleware? This would be
unfortunate, since sockets are a key opportunity for interoper-
ability. Elaborating further, since this is actually a question
of degree, it could be rephrased as: how complex are the
steps an external program needs to take to communicate with
a middleware-using program without using the middleware’s
own libraries or utilities? The simpler this is, the lower the
cost of interoperation. Further examples: does the middeware
lay claim to the main thread of a program? Does it dictate the
tooling needed to build/compile a program? Two middleware
making such claims will conflict fundamentally. And so on.
Again, this is not a call for standardization and elaborate RFCs,
just individual developers bearing the world outside their
middleware in mind, thus benefiting their community today
(by facilitating collaborations) and in the future (by reducing
the pain of upgrades, and so making radical improvements
more practical).

Our goal in this paper is to draw attention to opportunities
and best practices for middleware developers to reduce inter-
operation costs, or to avoid unwittingly increasing interoper-
ation costs. We focus on steps that can be taken unilaterally,
without a standardization process. To be clear, we do not claim
these steps are more important than standardization, or good
practices by middleware users. They are simply useful steps
that can be taken as well, and that we have seen omitted
often enough to merit mentioning. To be concrete, we draw
on examples from YARP (“Yet Another Robot Platform”), a
middleware for robotics that has been in continuous use on
humanoid robots for more than a decade. Those examples
should not be read to imply that YARP is the only middleware
to have ever implemented the example feature. The goal of this
paper is not to promote YARP or any one middleware, but to
encourage longer-term thinking when evaluating middleware
amongst users and middleware developers themselves.

2 DIVERSITY IN PROTOCOLS

Middleware typically plays a role in inter-process communi-
cation. This is a great opportunity for interoperability. Even
when interoperability is not an immediate priority, it is worth
taking some simple steps to avoid unnecessarily hobbling it.
For example, most every middleware has some kind of reg-
ular TCP/IP-based protocol. Suppose the other side of a socket

43

is not controlled by your middleware. They may not know for
sure what protocol we are speaking. Just as it is helpful for
files lying around in a file system to have a “fingerprint” or
“magic number” comprising a recognizable pattern of bytes
early in the file, it is helpful if TCP connections do the same.

For example, HTTP responses begin with “HTTP/”, and
YARP’s native protocols start with variants of “YA...RP” or
other identifying byte sequences. This makes these types of
messages easy to identify. In contrast, TCPROS begins with
two 4-byte integers representing lengths, which in principle
could have any value. A quick fingerprint up front would
be very valuable for simplifying interoperation. If one is
expecting a TCPROS connection from a native ROS source,
it is possible to verify its nature by communicating with the
rosmaster name server, so the lack of a fingerprint is not
an insurmountable obstacle, but we can report that it did raise
the cost of interoperation between YARP and ROS.

There are situations in which a middleware should plan to
speak many protocols. Here are situations end-users hit that
middleware developers do not see:

e You need to use a novel kind of network not broadly

available.

¢ You badly need to interoperate at the network level with

software from a different community.

e You have a problem with some aspect of the current

behavior, and the middleware developers just shrug.

¢ You have a network-aware piece of hardware and you

would like to talk to it without bridging.

Indeed, we are not arguing that every middleware should
support every protocol present and future. We do however
believe that middleware authors have a unique opportunity to
foster collaboration without formal standardization, by treat-
ing network protocols as something their user communities
will choose and, optionally, contribute rather than something
defined by the middleware. Every middleware supports certain
models of data flow, but it is worth being flexible about
how that flow gets expressed concretely on the wire (or
even on which kind of wire). Of course, it is reasonable
for a middleware to provide default protocol implementations
suitable for various scenarios. Yet, it is very helpful if new
protocols can take their place easily and without disruption.
Making this happen takes careful thought at the core of the
middleware.

YARP originally used QNX message passing, so its own
true “native” protocol is lost in the mists of time. Having
a plugin mechanism for protocols allowed developers and
users to extend the original set of protocols and adapt YARP
depending on their needs.

In YARP there are basic protocol options operating over tcp,
udp, multicast, and shared memory, suitable for different trade-
offs between reliability, speed, and bandwidth. In addition
YARP supports other standard protocols that are useful for
talking to the outside world, such as XMLRPC, HTTP with
JSON, MIJPEG, and plain text.

44

Finally there are some notable examples in which specific
users’ needs have been elegantly and efficiently solved with
the implementation of custom protocols.

Bayer carrier

A special purpose protocol plugin was made to carry raw
Bayer pattern image streams and decode them on the receiver
side, rather than decoding them closer to the hardware. This
saves bandwidth without introducing compression artifacts,
and it is fully backward compatible, since as far as user code is
concerned it receives color images as normal. When there are
multiple receivers, it does increase overall CPU usage, which
is the main trade-off. As a side benefit, users have the freedom
to choose how colors are reconstructed, and this choice can
be made per-receiver. A protocol like this is very useful, but
so specific to a class of camera that it would be unlikely to
get supported in a middleware without a culture of protocol
plugins.

ROS compatibility carriers

A set of plugins were added to support YARP-ROS interoper-
ability, via XML/RPC and TCPROS. This is discussed further
in Section 6.

Priority carrier

A new protocol was introduced to experiment with the concept
of priority arbitration into YARP, so that messages from
different origins arriving at the same target could inhibit each
other in defined ways. This plugin made use of the fact that
plugins can be chained (currently in a rather crude way), so
that the new priority mechanism could be overlaid on existing
protocols. This is discussed further in Section 9.

3 DIVERSITY IN NAMING

Middleware typically has some mechanism for converting
symbolic names into detailed information on how to access
a resource (for example, to convert the name “/camera” to
“machine 192.168.1.15, port 10012, protocol mjpeg”).

We found that naming can become a barrier preventing in-
teroperability and forcing users to resort to inefficient bridging
code. With time YARP extended naming support so that it
could interface with other systems. At this time it now offers
the following options:

o The YARP name server accepts arbitrary registrations,
so (for example) a webcam at a random location can be
named and read from directly without bridging.

e YARP clients can be directed to use a non-native name
server, given an appropriate plugin. For example, there is
a plugin for the rosmaster name server.

e YARP clients can be directed to use multiple name
servers, to better support heterogeneous networks.

Journal of Software Engineering for Robotics 5(2), September 2014

¢ YARP clients can be used without any name server for
basic tcp connections where host names and socket port
numbers are given directly.

A broad-minded nameserver is a boon for interoperation. Of
course the general case of naming external resources is full
of pitfalls, but most particular cases are quite simple.

4 DIVERSITY IN TYPE SYSTEMS

YARP historically has avoided any code generation step,
specifically any compilation of an Interface Description Lan-
guage (IDL) definition to source code. The reasons for this
were twofold. Firstly, having an IDL introduces an extra step
in the build process which we wanted to avoid to reduce
the learning curve for inexpert users. This problem was
eventually solved with the adoption of appropriate build tools
and consequent automation of code generation and linking
(i.e. CMake). The second problem is that IDLs are often a
source of incompatibility (and lock-in) among systems. We
did eventually find an approach to code generation for YARP
that we were happy with, which was simply to support multiple
IDLs. By avoiding reliance on a single blessed IDL, we hope
to reduce the pain needed to support any future IDLs needed
by our users for interoperation.

We assume that IDLs will come and go, and that we may
need to support several at a time. So IDL support was added
to YARP in the same pattern as for carrier plugins. There is
no assumption of uniqueness. So far YARP supports types
expressed with the following IDLs:

o Apache thrift. YARP uses the .thrift file format
and syntax, with its own native serialization. Thrift is
appropriate for expressing both structures and procedure
calls. The source code for thrift has a plugin mechanism
of its own for supporting code generation in different pro-
gramming languages. We (ab)use this plugin mechanism
to generate YARP-specific code.

¢ ROS msg (and srv) format and serialization method.
This format is adequate for expressing structures, but
awkward for expressing procedure calls. We wrote a
parser and code generator for it. For convenience, we also
wrote a server that can query a ROS installation for the
msg/srv files relevant to a named type, and distribute
type information to machines that are not running ROS.

In general some combination of IDL plugins, carrier plugins,
name server plugins, and perhaps device plugins may need
to work in concert to support comfortable interoperation with
another middleware.

5 EXAMPLE: INTEROPERATING WITH HAWAII

These days, many cameras can connect directly to the network
and stream images natively, for example in Motion-JPEG-over-
http format. Using such an image stream in a component not
written with MJPEG in mind typically requires a bridge —

P. Fitzpatrick et al./ A middle way for robotics middleware

an intermediate program that does nothing but take in MJPEG
images and spit out “native” format images. Bridges introduce
latency, complicate the control network, and need to be figured
out by each new user of the component. YARP takes a different
approach of folding bridge-style code into plugins that hook
directly into the source/sink where they are needed. This keeps
the control network simple, avoids the latency of a non-local
relay, and can be deployed in a more systematic way. For
the example of IP cameras, YARP has an mjpeg plugin that
makes this format a first-class wire protocol for YARP. So
for example, if we wanted to hook up a random webcam in
Hawaii to a YARP image viewer, we could enable that plugin
and do:

Start a YARP image viewer

yarpview /view &

Make connection using mjpeg protocol

yarp connect /67.52.88.202:5159 /view \
mjpeg+path.mjpg/video.mjpg?camera=1

And we immediately see Hawaii'. The yarpview program
itself knows nothing about mjpeg, but a tcp connection is
coming in from Hawaii, going directly to a component input
expecting images, is accepted by middleware code as Motion-
JPEG-over-http, and is decompressed appropriately.

Is this really so different to a bridge? Are we not just
changing the level in the middleware at which “foreign” data
is read or written? Yes, but this choice has real consequences.
With bridging as a separate process, foreign protocols must
pay a serialize-transport-deserialize tax. It is true that in many
cases that tax will be small, especially on well-configured
modern kernels. Still, there are cases where it will be large.
Think “embedded” or “huge messages” or “non-TCP” or
“encrypted” or any of many interesting directions in which
users may be pushing the limits. The point is not that the
tax can be large, it is that we (middleware designers) should
not be forcing our users pay it. The logic is similar to
operating system development: these days, many applications
can get away without being optimized for size or speed, but
responsible operating system developers make architectural
choices with the demanding cases in mind, not the easy ones.
Another downside to bridges as a separate process is that
starting two processes instead of one inevitably introduces
more ways for things to go wrong or be misconfigured. Again,
this can be automated away, but is still a tax on every use of
a foreign protocol.

6 EXAMPLE: INTEROPERATING WITH ROS

ROS, the Robot Operating System, is an extensive framework
for robotics, popularized initially by Willow Garage and now
stewarded by the Open Source Robotics Foundation.

1. The yarp connect command can be read as saying: connect from the
given machine at port number 5159, to the local port called /view, speaking
MIJPEG. The MJPEG plugin requires an additional parameter, a path to com-
plete the URL to the webcam, in this case mjpg/video.mjpg?camera=1

45

ROS presents some specific difficulties for interoperation. It
includes an elaborate packaging mechanism that has, at least
to date, made installation of the basic middleware burdensome
outside of the specific environments its creators support. So,
when implementing methods for interoperation, we need to
take care that we isolate any dependency on ROS packages
carefully, to avoid burdening the entire YARP network (specif-
ically, all the machines it runs on) with a requirement to have
a working ROS installation.

Here are the steps we have taken, in chronological order,
towards ROS interoperability:

e Support for the XML/RPC protocol was added to YARP,
as a new carrier plugin. This is relevant for ROS since it
is the protocol spoken by the rosmaster name server,
and by an administrative server associated with each ROS
“node.”

o Support for the TCPROS protocol (spoken by publishers,
subscribers, and services) was added as a new carrier plu-
gin. Since ROS has a type system with side-information
not included in connections, the carrier cannot automat-
ically match types with existing YARP types — that part
comes later, read on.

e An application for translating ROS .msg/.srv files into
YARP-using serialization code was added.

e A helper utility to generate .msg files automatically by
sniffing existing YARP connections was added.

¢ Support was added for rosmaster as an alternate name
server to YARP’s native name server. This made it possi-
ble for a YARP program to be completely interchangeable
with a ROS program, if desired.

e An implementation of a “type server” was added to
allow ROS type information to be distributed across the
network to wherever it was needed, without requiring
ROS installations on all machines.

« An analogue of ROS nodes was added to YARP, to bundle
a set of ports together. For existing YARP code, node-port
associations can be specified via a naming convention for
ports, requiring no source-code modifications.

o A notion of data flow direction was added to YARP.
YARP ports are not by default committed to any par-
ticular pattern of data flow. However, to know whether a
port corresponds to a ROS subscriber, publisher, service
provider or service user, we need to know what direction
data flows and if there are replies. For compatibility with
existing YARP code, port-dataflow associations can be
set up via a naming convention.

o A notion of external typing was added to YARP. YARP
ports are not by default committed to any particular type,
and messages are JSON-like in content. To know what
kind of data is flowing via a port, in order to present or
interpret it correctly to/from ROS, we need to introduce
type information.

o A method for mapping ROS wire formats to and from

46

YARP messages was added, so that many (but not yet
all) ROS topics could be connected to existing YARP
programs.

Let’s look at a concrete example?. Suppose we want to run
YARP program within a ROS network. First, we tell YARP to
locate and use ROS’s rosmaster name server:

find ROS name server, respecting ROS_MASTER_URI
yarp detect --ros —--write

give access to ROS type info to ROS-less machines
yarpidl_rosmsg —-name /typ@/yarpros

The yarpidl_rosmsg program is a server’ that gives
remote access to ROS’s type system, and should be run on
a machine that can run the rosmsg and rossrv utilities.

In regular YARP usage, there is a utility called yarp read
which reads data from the network and prints it to the console,
invoked as follows:

yarp read /msg

YARP has port names that do not match ROS exactly, combin-
ing aspects of ROS nodes, topics, and services. We added an
@ syntax to model ROS node/topic naming. If we start yarp
read as follows:

yarp read /msg@/test_node

We now have a node called /test_node and a topic called
/msg which can be inspected with utilities such as rosnode
and rostopic. As invoked, the /msg topic is not committed
to any particular type. We can send it messages of various
kinds from ROS:

rostopic pub /msg std_msgs/String "hello yarp"
rostopic pub /msg turtlesim/Pose 0 5 10 15 20

Basic types like std_msgs/String are recognized by
YARP’s TCPROS carrier plugin and can be translated without
any external assistance. In general, there is not enough infor-
mation “on the wire” to map arbitrary ROS messages onto
YARP equivalents, and in these cases the type server will be
consulted. So for turtlesim/Pose the type server will be
consulted, and these two very different messages will print out
just fine.

As an example of data flow in the opposite direction,
suppose we run the standard iCub robot simulator and then try
to view the simulated camera output in ROS’s image_view
utility:
iCub_SIM
rosrun image_view image_view image:=/icubSim/cam/left

2. The examples in this paper were tested with YARP version 2.3.63,
available at https://github.com/robotology/yarp, and ROS Groovy.

3. The ——name argument here is assigning the server a topic name of
/typ (this is currently required), and a node name of /yarpros (this is
arbitrary). The naming syntax is explained in detail in the remainder of this
section.

Journal of Software Engineering for Robotics 5(2), September 2014

ficubSim/cam/Left

Fig. 1. An unmodified iCub simulator (left), streaming im-
ages directly to a ROS image_pipeline image_view
instance (right). The images depart a TCP socket opened
by the simulator in ROS sensor_msgs/Image format
serialized to a TCPROS connection. No extra copy is made
of the image, represented in the simulator in a non-ROS
structure. The simulator source code is untouched by any
of this, and no explicit bridging node is needed.

To identify a publisher/subscriber uniquely within ROS, we
need a node name and a topic name. YARP ports are not
natively named this way, but rather they have a single name
and can be communicated with in many ways (not just
publish/subscribe). For ROS compatibility, it is simplest for
YARP ports to follow its naming scheme, which has been
supported through an extension to the port name syntax.
This is convenient since ports can be renamed in this way
without touching source code. Specifically, in this case, we
decorate names of camera ports (in Sim_camera.ini) with
a node name and data flow direction for ROS’s benefit, by
adding +@/icubSim (the + gives data flow direction). Those
ports will now show up as ROS publishers associated with
a node called /icubSim. That is the only change needed
(see Figure 1). The same method could be used to access the
physical iCub robot.

7 EXAMPLE: TALKING TO WEB APPS

YARP ports can be contacted at any time in any of many
protocols, including HTTP and JSON. Suppose the default
YARP name server is listening on port 10000 on 192.168.1.2.
All YARP ports are accessible via HTTP for browsing, AJAX
requests, or streaming. For example, from a webpage we
could request the name server to look up a port called
/icubSim/head/rpc:1i (this is the default name of a
simulated controller for the robot head) via the following:

http://192.168.1.2:10000/?reg=query+S$port
gport=/icubSim/head/rpc:i

The reqg parameter determines the type of message we are
sending (a name query in this case), and then any other
parameters needed for that message are supplied separately
(in this case the port name we want to look up). We will
get back a result in JSON, easily consumed by a javascript
application:

https://github.com/robotology/yarp

P. Fitzpatrick et al./ A middle way for robotics middleware

Transferring data from 192.168.1.2...

Fig. 2. Viewing the simulator’s camera output in a browser
(“lceweasel” is Firefox on Debian), via MJPEG (not all
browsers support this). The image stream leaves a TCP
socket opened by the simulator in Motion JPEG over
HTTP format. The simulator source code is untouched by
any of this, and no explicit bridging node is needed.

{ lltype": llportll,
"name": "/icubSim/head/rpc:i",
"ip": "192.168.1.2",
"port_number": 10044,
"carrier": "tcp"

}

And now that we know how to contact the head controller, we
can send it a request to tilt the head to one side:

http://192.168.1.2:10044/?reg=set+pos+$axis+S$angle
&axis=l&angle=45

We can check encoder values to make sure this did something:

http://192.168.1.2:10044/?reg=get+encs

The result will be something like this:
[

"iS",
llencslI,
[-0.000031,
"Ok"

1

45.000034, -0.0, 0.0, 0.0, -0.01,

(Note the 45° angle in the result). Alternatively, we could have
asked the name server for an address of a camera port and then
viewed the camera output via MJPEG over HTTP:

http://192.168.1.2:10013/?action=stream

The ?action=stream parameter triggers YARP’s MJIPEG
plugin. Figure 2 indeed shows a tilted head perspective.

47

8 EXAMPLE: TALKING TO A HUMAN

YARP is designed to have a low barrier to entry for program-
mers wishing to communicate with a YARP-using program
without using any YARP libraries or utilities. If they can figure
out how to open a socket, they will be able to read and write
data to and from YARP ports within minutes. We certainly
do not suggest that absolute beginners should be doing this: it
is intended to lower costs to our users and the users of other
middleware when they hit integration problems.

If a socket connection is opened to a YARP port, and
garbage is sent, a helpful human-readable message is returned
showing how to make a real connection. For the sake of
example, suppose we are just using telnet or netcat from
the command-line.

$ telnet localhost 10000

Trying 127.0.0.1...

Connected to localhost.

Escape character is "]’

wepfokwoefp

* Error. Protocol not found.

* Hello. You appear to be trying to communicate
with a YARP Port. The first 8 bytes sent to a
YARP Port are critical for identifying the
protocol you wish to speak. The first 8 bytes
you sent were not associated with any particular
protocol. If you are a human, try typing
"CONNECT foo" followed by a <RETURN>.

The 8 bytes "CONNECT " correspond to a simple
text-mode protocol.

* Goodbye.

Connection closed by foreign host.

Subsequent help shows how to start manipulating the port. All
ports respond to a text protocol, which is easy for a human to
read and write, and adequate for lower bandwidth applications.
For example, here is how we could move and query the iCub
simulator from the command-line (with telnet or netcat)
without using any YARP-specific code:

{
ask for a text-mode connection
echo CONNECT test
send a request to move axis 1 to 45 degrees
echo d
echo set pos 1 45
wait a second for robot to move
sleep 1
ask for encoder readings
echo d
echo get encs
pause telnet to see results
sleep 1

} | telnet 192.168.1.2 10044

A socket connection opened to a YARP port in its native
protocols (including the text protocol) can be used to read or
to write a stream. The direction of data flow is not tied to
which side initiated the connection (as it is in many protocols,
including TCPROS). This eliminates the problem of having
to give the middleware a way to “call you back,” bypassing
the issue of naming external entities and leaving the user free

48

to implement a simple client rather than being compelled to
make a server to listen for connections.

YARP is designed to be super-hacker-friendly. Users planning
to use it on an open network should take extra secturity steps.
such as wrapping it up in a VPN.

9 OTHER CARRIERS

Carrier plugins have proven handy for all sorts of reasons.
For example, a YARP user* substituted YARP’s regular point-
to-point and broadcast protocols with alternatives using MPI.
Another application that came up was distributing images from
a firewire camera prior to debayering them, to save bandwidth
(see Section 2). The plugin mechanism was also convenient
while developing an upgrade for the shared-memory carrier:
the two versions of the carrier could co-exist without disrup-
tion, thus facilitating the testing phase.

More recently, we have come to realize that carriers can
serve much more general purposes than just fiddling around
with wire formats and the like, especially once carrier chaining
is permitted. We successfully added a “priority” carrier that
can be attached to any other existing carrier, in order to allow
incoming messages to be prioritized and to override each other.
For example, we could take an instance of the yarpview
image viewer program, and send it two image streams and have
the priority carrier apply rules to favor one over the other when
available. We could also set up a control signal that modifies
those rules dynamically [15].

Again, all the logic takes place within the yarpview
component’s process space (although it is specified outside
it), and all the network traffic goes directly to that component
rather than to some intermediate bridge.

The priority carrier is a first step in a very interesting direc-
tion, where components can be adapted in sophisticated ways
without paying too great a tax in extra latency, bandwidth, and
complexity. We have recently developed a more generalized
carrier modifier that can bring arbitrary transformations (in the
Lua programming language) to ports, which may finally make
it practical for users themselves to be creative in adapting
components right at the source [16], [17].

10 CONCLUSIONS

Most literature on software middleware for robotics focuses on
comparing performance, measured as speed, latency or band-
width. This is useful, but we feel it misses an important point:
support for interoperability. In the real-world middleware users
rely on custom bridges to interconnect heterogeneous systems.
The performance of bridges may well be fine for the applica-
tion, but would not win any awards for latency or bandwidth.
What is worse is that bridges solve specific problems, in
that they perform the transformations and operations required

4. Daniel Krieg, then at the Frankfurt Institute for Advanced Studies.

Journal of Software Engineering for Robotics 5(2), September 2014

for interoperating individual connections. For this reason they
pose maintenance problems.

We hope with YARP to burn a lot of bridges, or at least
make them unnecessary, and to find ways to let users transform
inputs and outputs in more efficient and generic ways.

Who should care about interoperability between middle-
ware? Everyone who works in robotics for more than a year
or two. We need at least confidence that the middleware we
use can interoperate with a future version of itself, so our
users and their collaborators do not end up in a middleware
muddle. In the fast and ever evolving world of robotics, a
good middleware must be designed for change and, above all,
interoperability.

REFERENCES

[1] B.P. Gerkey, R. T. Vaughan, and A. Howard, “The player/stage project:
Tools for multi-robot and distributed sensor systems,” in In Proceedings
of the 11th International Conference on Advanced Robotics, 2003, pp.
317-323. 1

[2] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, and A. Ng, “ROS: an open-source robot operating system,”
in Proc. of the IEEE Intl. Conf. on Robotics and Automation (ICRA)
Workshop on Open Source Robotics, Kobe, Japan, May 2009. 1

[3] G. Metta, P. Fitzpatrick, and L. Natale, “YARP: Yet Another Robot
Platform,” International Journal of Advanced Robotic Systems, vol. 3,
no. 1, pp. 43-48, March 2006. 1

[4] P Fitzpatrick, G. Metta, and L. Natale, “Towards long-lived robot genes,”
Robotics and Autonomous Systems, vol. 56, no. 1, pp. 29-45, 2008. 1

[5] H. Bruyninckx, “Open robot control software: the OROCOS project,”
in Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE
International Conference on, vol. 3, 2001, pp. 2523 — 2528 vol.3. 1

[6] G. Technologies, “Urbi,” http://http://www.urbiforge.org. 1

[71 H. Utz, S. Sablatnog, S. Enderle, and G. Kraetzschmar, “Miro -
middleware for mobile robot applications,” Robotics and Automation,
IEEE Transactions on, vol. 18, no. 4, pp. 493—497, Dec. 2002. [Online].
Available: http://dx.doi.org/10.1109/TRA.2002.802930 1

[8] A. Huang, E. Olson, and D. Moore, “LCM: Lightweight communica-
tions and marshalling,” in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), October 2010. 1

[9] E. Einhorn, T. Langner, R. Stricker, C. Martin, and H. Gross, “MIRA
- middleware for robotic applications,” in International Conference on
Intelligent Robots and Systems, 2012. 1

[10] Z. Inc., “Internet communications engine,” http://zeroc.com/ice.html. 1

[11] OMG, “Common Object Request Broker Architecture (CORBA/I-
IOP).v3.1,” OMG, Tech. Rep., Jan. 2008. [Online]. Available:
http://www.omg.org/spec/CORBA/3.1/ 1

[12] “@MQ, The Intelligent Transport Layer,” http://www.zeromgq.org/. 1

[13] J. F. Kramer and M. Scheutz, “Development environments for au-
tonomous mobile robots: A survey,” Auton. Robots, vol. 22, no. 2, pp.
101-132, 2007. 1

[14] N. Mohamed, J. Al-Jaroodi, and I. Jawhar, “Middleware for robotics:
A survey,” in Robotics, Automation and Mechatronics, 2008 IEEE
Conference on, sept. 2008, pp. 736 -742. 1

[15] A. Paikan, G. Metta, and L. Natale, “A port-arbitrated mechanism for
behavior selection in humanoid robotics,” in The 16th International
Conference on Advanced Robotics, 2013, pp. 1-7. 9

[16] A. Paikan, P. Fitzpatrick, G. Metta, and L. Natale, “Data flow port mon-
itoring and arbitration,” Journal of Software Engineering for Robotics,
vol. 5, no. 1, pp. 80-88, 2014. 9

[17] A. Paikan, V. Tikhanoff, G. Metta, and L. Natale, “Enhancing soft-
ware module reusability using port plug—ins: an experiment with the
iCub robot,” in Proc. IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2014. 9

http://http://www.urbiforge.org
http://dx.doi.org/10.1109/TRA.2002.802930
http://zeroc.com/ice.html
http://www.omg.org/spec/CORBA/3.1/
http://www.zeromq.org/

P. Fitzpatrick et al./ A middle way for robotics middleware

Paul Fitzpatrick has a background in artificial
intelligence, robotics, and engineering, with a
PhD in Artificial Intelligence from MIT, and a
BEng in Computer Engineering from the Uni-
versity of Limerick, Ireland. He has worked as
a software engineer in the fields of robotics,
process control and automation, and static ver-
ification. Paul grew up on a small farm in Ire-
land. There were goats involved. He now lives
in Montclair, New Jersey. There are fewer goats
involved.

Elena Ceseracciu holds a MS with honors
(2007) and PhD (2011) in Bioengineering, both
from the University of Padova, Italy. She spent
six months at Stanford University in 2007 as a
visiting student. From 2012 to 2014 she was a
post-doc at the ltalian Institute of Technology,
working on software integration for the Xperi-
ence European Project. Now she is a post-doc at
the University of Padova within the BioMot Euro-
pean Project, working on improving exoskeleton
technology for rehabilitation purposes.

Daniele E. Domenichelli holds a Laurea de-
gree in Biomedical Engineering (in 2007) and
a PhD in Informatics, Electronics, Robotics and
Telecommunication Engineering (in 2011) both
from University of Genoa, ltaly. He worked at
Nice S.R.L. from 2011 to 2012. He is currently a
post-doc at Italian Institute of Technology, iCub
Facility. His main interests include open source
software architectures, and middleware for inter
process communication, collaboration and tool
integration.

49

Ali Paikan is currently a Postdoctoral researcher
at the Istituto ltaliano di Tecnologia (lIT) in the
iCub Facility department. He accomplished his
Ph.D. in Robotics at the IIT in 2014 and he re-
ceived a double M.S. degree from the University
of Genova, ltaly in 2010, and from the Ecole
Centrale de Nantes, France in 2009, within the
joint European Master on Advanced Robotics
(EMARO). During his research period (2005 -
2007) at the Mechatronics Research Labora-
tory (MRL), Iran, Ali was actively involved and
awarded in various RoboCup competitions. He has an extensive back-
ground in robotics and his main research interests include software
architectures for robotics, software reusability and real-time systems.

Giorgio Metta is the director of the iCub Facility,
at the Istituto Italiano di Tecnologia. He holds a
MSc cum laude (1994) and PhD (2000) in elec-
tronic engineering both from the University of
Genoa. From 2001 to 2002 he was postdoctoral
associate at the MIT Al-Lab . He is assistant
professor at the University of Genoa since 2005
and with IIT since 2006. He is Professor of
Cognitive Robotics at the University of Plymouth
(UK) since 2012. Giorgio Metta’s research activi-
ties are in the fields of biologically motivated and
humanoid robotics and, in particular, in developing humanoid robots that
can adapt and learn from experience. He is an author of approximately
250 publications. He has been working as principal investigator and
research scientist in about a dozen international as well as national
funded projects.

Lorenzo Natale received his degree in Elec-
tronic Engineering (with honours) in 2000 and
Ph.D. in Robotics in 2004 from the University of
Genoa. He was postdoctoral researcher at the
MIT Computer Science and Atrtificial Intelligence
Laboratory. He was later Team Leader at the
Istituto Italiano di Tecnologia (IIT) where he cur-
rently holds a position as Researcher. In the past
years Lorenzo Natale worked on various hu-
manoid platforms. His research interests range
from sensorimotor learning and perception to
software architectures for robotics. He has been key investigator in
several EU funded projects and hs is author of more than 70 papers
in international peer-reviewed journals and conferences.

	Introduction
	Diversity in protocols
	Diversity in naming
	Diversity in type systems
	Example: interoperating with Hawaii
	Example: interoperating with ROS
	Example: talking to web apps
	Example: talking to a human
	Other carriers
	Conclusions
	References
	Biographies
	Paul Fitzpatrick
	Elena Ceseracciu
	Daniele E. Domenichelli
	Ali Paikan
	Giorgio Metta
	Lorenzo Natale

