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Abstract—This study describes the transfer of object grasping
skills between two different humanoid robots with different
software frameworks. We realize such a knowledge and skill
transfer between the humanoid robots iCub and ARMAR-III.
These two robots have different kinematics and are programmed
using different middlewares, YARP and ArmarX. We developed
a bridge system to allow for the execution of grasping skills
of ARMAR-III on iCub. As the embodiment differs, the known
feasible grasps for the one robot are not always feasible for the
other robot. We propose a reactive correction behavior to detect
failure of a grasp during its execution, to correct it until it is
successful, and thus adapt the known grasp definition to the new
embodiment.

I. INTRODUCTION

Sharing knowledge and skills across different robotic plat-
forms is a challenge for collaborating research institutes.
For future service robots, sharing real world experiences and
acquired knowledge offers a huge opportunity to accelerate and
achieve proper handling of novel situations. The first step in
this direction is to achieve software compatibility. Best prac-
tices in software architecture for robotics promote modularity
and distributed component–based [1] software development.
Following these paradigms, several attempts have been made
to develop middlewares such as ROS [2], OROCOS [3] to
facilitate robot programing in distributed environments, some
of which are based on customization of some standard com-
munication libraries (e.g., CORBA [4], ICE [5]). Diversity
of robotic middlewares makes knowledge transfer between
robotic platform more difficult due to lack of interoperability
between software architectures.

Although there is no silver bullet to solve this problem,
the robotics literature describe some attempts to support
interoperability between software architectures. Fitzpatrik et
al. [6] described design choices that proved crucial to achieve
compatibility between middleware, namely: support for inter-
changeable protocols, IDLs and multiple name servers. Wienke
et al. [7] proposed a meta–model for data type mapping

Fig. 1: The ARMAR-III (top) and iCub (bottom) robots and
their respective hands.

and a code generation toolchain to improve interoperability
of robotic frameworks. In the real–world, middleware users
usually rely on custom bridges [8] which perform the transfor-
mations and operations required to interconnect heterogeneous
systems. Bridges are a suboptimal solution because they intro-
duce maintenance overheads and communication latencies. In
some applications the reduction of performance may not even
be acceptable.

A more fundamental stumbling block to skill transferring
and research collaboration in robotic is diversity in the embod-
iment and physical characteristic of robots. For abstract skills
these differences are not the major issue since the robot control
is mostly done in the task–related space which is independent978-1-4673-7509-2/15/$31.00 c©2015 IEEE



from how the primitive actions are performed by the robot. For
example, adopting a pick–and–place skill from another robot is
respectively easier if both robots know how to grasp the object.
On the other hand, skills can be more robot dependent (such
as object grasping). That means that their feasible execution
heavily depends on specific characteristics of the robot such
as the size of the hand or number of the fingers. Therefore the
skill and knowledge for a robot can not be easily and feasibly
transfered to the other one without proper adaptation.

This paper illustrates an experiment of knowledge and
skill transfer between the humanoid robots iCub [9] and
ARMAR-III [10] (See Fig. 1) which differ significantly in their
physical characteristics and software framework. A conceptual
representation of grasp skill is demonstrated in Fig 2. As
shown in the figure, the upper layer contains grasp knowledge,
the middle layer represents robot software framework and
the lower layer shows the relevant robot platform. The grasp
knowledge is, in fact, a database of feasible grasp descriptions
defined by the position and orientation of the robot hand
relative to each known object. The grasp descriptions can be
given to robot as prior knowledge or it can be automatically
reasoned and learned by robot from interaction with the object.
Regardless how the grasp knowledge is provided, it is highly
robot dependent. For example, due to the different robot
embodiments (in particular size of the hands) grasps that are
feasible on ARMAR–III cannot be successfully realized on
the iCub and they need to be adapted to a new embodiment.
Moreover, the software framework which is used to implement
the grasp skill on the ARMAR–III is entirely different from
the one is used for programing the iCub robot.

Therefore, two problems arise: i) how to interconnect
software components developed for the two robots and ii)
how to adapt a grasping skill to robots with different embod-
iments. We address the first problem by proposing a solution
to interconnect the two middlewares (i.e., ArmarX [11] and
YARP [12]) using plug-in system. The approach is based on
our previous works on software reusability using port plug–
ins [13] and extends it for the interoperability of different
frameworks. Moreover, to be able to use the grasp knowledge
of Armar-III directly on the iCub, we adopt a run–time learning
and adaptation approach [14] to detect the causes of failure
of a grasping skill during its execution and reactively correct
it until it is successful. In the rest of paper we describe these
approaches and demonstrate the experimental evaluation of our
grasp-skill-transfer scenario from ARMAR-III to the iCub.

II. BRIDGING THE MIDDLEWARES

YARP and ArmarX are two robotic middlewares which
are independently developed based on component–based and
distributed software architecture techniques. Both middle-
wares support data streaming based on the publish–subscribe
paradigm and Remote Procedure Calls (RPC) for inter–
component communication but still differ in the way they
implement these functionalities. While ArmarX relies on the
ZeroC Internet Communication Engine (ICE) [5], YARP aims
at abstracting communication from the underlying protocol
(known as YARP carriers) which implements data transfer
among the end points. However, the available carriers in YARP
do not support communication in an ICE–based network.
YARP and ArmarX also differ in the RPC (services) imple-
mentations. YARP uses the Apache Thrift IDL [15] format
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Fig. 2: A conceptual representation of transferring grasp
knowledge and skill from ARMAR–III to the iCub robot.

and syntax with its own native serialization, while ArmarX
employs the Slice IDL to define interfaces and classes in a
network transparent manner. For these reasons the software
components from one middleware cannot communicate with
those implemented in the other framework and the two mid-
dlewares need to be bridged in some way.

There have been many research efforts and studies on
the interoperability of the middlewares which mostly con-
centrate on the bridging of communication protocols or data
type mapping and conversion. For example, a set of carriers
has been implemented in YARP to support YARP-ROS [6]
interoperability via XML/RPC and TCPROS protocol. How-
ever, interconnecting two robotic platforms requires more than
simply solving the interoperability problem on the communi-
cation level. Performance constraints and incompatibility at the
component interfaces are other issues that need to be solved.
Each middleware may provide different ways for accessing
the robot sensory data or commanding the actuators. For
example, separate interfaces are implemented in YARP to
control the iCub joint sets individually (e.g., left arm, right
arm, torso) while ArmarX sees them as a unique set and
has a single interface to access all the joints. Further, images
from the iCub cameras are streamed out using data–flow ports
while, in contrast, image processing components (e.g. an object
localizer) in ArmarX require an image provider service (ICE
proxy) to access the image data using remote procedure calls.

A. Port Plug-ins approach

Consider the example from Fig. 3a. The Image Grabber
is a YARP component which captures camera images and
streams them out using a data–flow port. The Object Lo-
calizer is a component already implemented in the ArmarX
framework which requires a specific ICE proxy object to
access a stereo image pair and localize a known object in
it. To allow the image data from the YARP network to be
accessible in the ArmarX framework, a simple solution is
to implement a dedicated bridge (called Bridge Module in
Fig. 3a). It has a YARP input port to receive the image data,
converts it into the ArmarX image format and provides the
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Fig. 3: Different ways to bridge components from different
middlewares.

required ICE service to make the image data available in the
ArmarX framework for the Object Localizer. The drawback
of using a separate bridging component is that it introduces
communication and execution overhead to the system since
data has to be transfered to the Bridge Module, received
and then processed. Moreover, when many of these bridging
components are required, their maintenance and deployment
put extra overhead to the application development cycle.

In our previous works, we have introduced the port plug–
ins [13] approach and its application in software reusabil-
ity [16] and coordination of the components [17]. The basic
idea is to extend the port’s functionalities in order to dynam-
ically load a run–time script and plug it into the port of an
existing component without changing the code or recompiling
it. In our approach a port extension is called Port Monitor:
in brief it allows accessing data passing though a connection
from/to the port for monitoring, filtering and transforming it.
A port monitor has a set of callbacks which can have their
corresponding implementations in the user’s script. Using these
callbacks, users have full control over the port’s data and can
access and modify it.

Until recently port plug–ins have been implemented using
a scripting language (Lua) and mostly used for data filtering
and conversion within components which are implemented
in the YARP framework. But in fact port plug–ins can be
used as hooks that convert data and make it accessible for
the components from other frameworks too. Towards this
and to achieve better performance, the port monitor object
is extended to be able to load plug–ins implemented using
compiled languages and linked as dynamic loadable object.

The idea is also demonstrated in Fig. 3b. A port monitor
(shown as a red box with an M) is attached to the output
port of the Image Grabber which loads a plug–in implemented
as a dynamic loadable object. Using this plug–in, user’s
code directly accesses the image frame data from the port,
converts it and provides the required ICE proxy object to
make it accessible for the Object Localizer component. In
other words, the required functionalities for bridging which
are implemented in the Bridge Module (from the architecture

shown in Fig. 3a), can be transparently moved to the plug–in
attached to the output port of Image Grabber (Fig. 3b).

Using the plug–in architecture for bridging components has
the decisive advantage of reducing the communication latency
between the components. In our reactive grasping application,
it is crucial to minimize the communication latency between
the Image Grabber and the components which perform per-
ception to achieve real–time visual collision detection of the
robot hand and the object. Data–flow ports are usually used to
stream data whenever higher rate or communication bandwidth
is required. Thus, in bridging YARP to ArmarX, we have
implemented several plug–ins for the data–flow ports of YARP
components to make the streamed data (such as image frames,
motor encoders status) accessible for the ArmarX components.

III. ADAPTATION OF THE GRASP SKILLS

Due to the different robot embodiments (in particular size
of the hands) grasps that are feasible on ARMAR–III cannot
be successfully realized on the iCub. Thus, when the iCub
robot tries to execute the grasp, there is a substantial risk
that it will fail, as the different hand geometry may cause
collisions with the object before the intended grasp pose
has been reached. To deal with this problem, we apply our
method for visual collision detection presented in [14]. We
observe the hand during the approach towards the object, and
when it prematurely collides, causing the object to move,
this is detected. In such a case, the hand pose is corrected
reactively until the grasp can be executed without collisions.
The approach is explained in more details in the following
subsections.

A. Transfer of the Grasp Skill

Grasping as implemented in ArmarX consists of three
basic blocks: The first is the memory which contains - for
each known object - a visual descriptor for recognition and
descriptors of feasible grasps for the robot ARMAR-III. The
second is a component for visual object recognition and
localization based on the descriptors in the memory, using the
stereo cameras of the robot. The third component executes the
grasp using the object pose from the localizer and the grasp
definition from the memory.

Using the bridge system developed between ArmarX and
YARP, these components can also be run on iCub. The object
recognition and localization pose no difficulties as both robots
have a calibrated stereo camera system. The desired hand
pose relative to the object for grasping it is taken from the
memory. In ArmarX, a velocity based inverse kinematic is
implemented that can be used to move the hand towards a
desired goal. Given the kinematic model of the iCub robot
and using the interfaces provided by the bridge system, this
component can directly control the iCub joints to reach a given
point in cartesian space.

Thus, the grasp skill designed for ARMAR–III can be
executed on the iCub. However, the desired hand pose for
grasping is appropriate for the hands of ARMAR-III which
are significantly bigger than those of iCub, although both
have 5-fingered hands, but with an only roughly comparable
shape (see fig. 1). Therefore it is necessary to monitor the
grasp execution closely and check for premature collisions



between hand and object, and, if such collisions occur, react
appropriately.

B. Visual Collision Detection

The visual collision detection is based on the fact that when
the robot hand collides with the object, the latter starts to move.
While collisions can in theory be detected by haptic or force
sensors, those are usually not sensitive enough for our task.
However, our visual collision detection approach is sensitive
enough to detect any soft collision but only can be applied to
objects that move when they are pushed.

We use optical flow to recognize that the hand caused
the object moved due to a collision. To this end, the hand
is localized in the camera image. When the hand touches the
object it generates in its proximity an optical flow pattern. The
detection of such a motion is complicated by the fact that the
robot itself moves and thus the whole camera image contains
significant optical flow. Therefore, we need to determine
whether the optical flow in front of the hand is different from
the optical flow in the rest of the image. To this end, we cluster
all pixels based on the components of their optical flow vector
to obtain regions of uniform optical flow. Given these sets of
pixels with similar optical flow, we check an area next to the
hand in the direction of its motion that has roughly the size
of the object. If we find a set whose pixels lie mostly inside
that area rather than outside of it, then this set is apparently
caused by a motion that exists solely in that area. This strongly
indicates that the hand caused an object to move with relation
to the environment.

C. Corrective Reaction

When a collision has been detected, the grasp attempt is
most probably failing. Therefore, the robot needs to react to
this event in an appropriate manner so the grasp can still be
completed successfully. When a collision occurs, the robot re-
tracts its hand from the object, and a corrective transformation
(i.e. a slight change of hand position and/or orientation) is
determined and applied to the intended grasp pose. The hand
performs this corrective motion at a safe distance from the
object and then again approaches the corrected grasp pose. If
another collision occurs, this is repeated, until the grasp pose
is reached without premature collisions.

The interesting question here is which corrective transfor-
mation yields the highest chance of a collision-free approach.
We tested different possible strategies [14] and proposed that
the robot should try to determine which finger caused the
collision, which can be done based on the hand tracking and
knowledge of the object shape (or at least its position). Then
the hand position and orientation are modified so that the finger
has touched the object is moved away from it. Empirically, we
determined that a rotation by 20◦ or a translation of 25 mm
or an averaged combination is effective. The optimal choice
of those values probably depends on the size and shape of the
hand, but we left them unchanged for the execution on iCub
and had similar results on ARMAR-III.

IV. EXPERIMENTAL EVALUATION

To evaluate our skill transfer and the bridging architecture
we tested the adaptive grasp scenario on Armar-III and the
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Fig. 4: The architecture of adaptive grasp scenario.

iCub robot. The scenario involves different software com-
ponents developed in the ArmarX framework to recognize
and localize the object and the robot hand, to detect the
object–hand collision from the optical flow and to control
the robot to position the hand at an appropriate pose relative
to the object for grasping it. The adaptive grasp application
requires continuous and real–time processing of the image
data from the robot cameras. We implemented a set of port
plug–ins to allow the image processing components (e.g, visual
contact detection) to directly access the image data from the
iCub cameras with the minimum possible latency. To be able
to control the iCub robot within the ArmarX framework, a
Simox [18] kinematic model of the iCub robot was created.
The model is internally used by the robot API of the ArmarX
which allows the software components to transparently access
the robot joints. A bridge component is also implemented
which uses the YARP motor interfaces to access the iCub
joints and map these interfaces to the proper ICE interface in
the ArmarX framework. Using this bridge, the components in
the ArmarX framework can access the iCub joints and control
the motors in position, velocity or torque mode in the same
way they control the ARMAR–III robot.

A. Using grasp knowledge from ARMAR-III directly on iCub

In the first experiment we directly use the grasp knowledge
from the ARMAR-III robot for iCub to grasp a known object.
To evaluate if the grasp knowledge known by the ARMAR-III
robot can be directly used by iCub, we performed a simple
object grasping scenario. The required software components
for the grasp scenario were executed in the ArmarX framework
and, using our bridging system, they could localize the object
and control the iCub robot. As we expected, due to different
robot hand characteristics, the known grasp knowledge from
the ARMAR–III robot was not valid for the iCub and the
robot failed to grasp the object. We repeated the experiment
with different grasp knowledge for different objects, and in
most cases the robot failed to grasp the object due to a
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Fig. 5: (a) ARMAR-III, (b) iCub robots grasping an object. The middle figures represent robot camera views with the estimated
hand positions. The bottom figures show the result of the hand–object collision detector using the optical flow clustering. For
both sets of figures, (1) shows collision detection and (2) shows reaching for a successful grasp.

mispositioning of its hand causing premature collisions of one
or more fingers with the object during the final approach phase.

B. Adapting grasp knowledge to the iCub robot

In the second experiment, we applied the reactive grasping
method to let the iCub robot learn the correct grasp definition.
We use a known grasp definition for ARMAR-III as the initial
grasp suggestions for the iCub. The robot then tries to grasp the
object, detects the failure(s) and corrects its hand’s pose with
respect to the object until it finds a position and orientation of
the hand that allows for a successful grasp.

A simplified architectural view of the adaptive–grasp sce-
nario is shown in Fig. 4. The prior grasp knowledge of
ARMAR–III is fed to the Visual Feedback Grasping using the
Working Memory unit. The former uses this knowledge and
attempts to perform a reactive grasp on the iCub robot using
the bridge. The Visual Contact detection monitors any collision
with the object and informs the Visual Feedback Grasping unit.
If the grasp is not successful, a new configuration of the hand
is generated by the Grasp Correction unit and it is used for
another attempt to grasp. The process is repeated until the robot
successfully grasps the object. The successful configuration
of the iCub hand with respect to the object is considered as
valid grasp knowledge and it is written to the grasp–knowledge
database for future use.

Fig. 5 demonstrates the reactive grasp experiment similarly
performed on the ARMAR–III (a) and iCub (b) robots. The

figures on the top show the robots in action. The middle
figures represent corresponding robot camera views with the
estimated hand positions. The bottom figures represent the
result of the hand–object collision detector using the optical
flow segmentation. For both sets of figures, in (1) the robot
detects a collision of the hand with the object and in (2) the
robot finds the correct hand position for a successful grasp.

As shown in Fig. 5b, using the knowledge from the
ARMAR–III knowledge base, the iCub detects the box and
attempts to reach and grasp it. As the suggested grasp knowl-
edge from ARMAR–III is not precisely correct for the iCub
hand, one of its fingers collides with the object. As the robot
attempts to reach the desired grasp position, it slightly pushes
the box. That generates a region in which the optical flow is
different from the rest of the environment (the region marked
by the red box in Fig.5b is checked for such a unique optical
flow cluster). Thus, the collision is detected which causes the
robot to immediately retract its hand from the box. As we have
explained in Section III-C, the robot then tries to correct its
hand orientation and repeatedly attempts to grasp the object
until it can safely (i.e. without a collision) reach a feasible
grasp pose. This is shown in Fig. 5b (2) where the iCub closes
its hand in a collision–free position next to the object. The
corresponding hand position and orientation with respect to
the object are thus known as a correct grasp definition and are
stored in the iCub’s grasp knowledge base for future use.

A similar experiment which has been also done with the



ARMAR–III robot, is shown in Fig. 5a. In the experiment with
the ARMAR–III, the robot is provided with an approximately
correct grasp definition for a known object by the human. As
this knowledge (i.e. a description of a feasible grasp) is not
accurate, the robot fails to grasp the object during its first
attempt (Fig. 5a (1)). The robot then tries to find the correct
hand pose (Fig. 5a (2)) and store it as a valid knowledge for
grasping the object.

V. DISCUSSION

The knowledge that is used as the initial grasp suggestion
for the iCub robot, is taken from the ARMAR–III knowledg-
base. It is then automatically adapted to the iCub embodiment
in the course of the interaction with the object. Alternatively,
the robot could start without any prior knowledge of grasping
and develop the grasp description by reactively interacting with
the object. Another solution is geometrically reasoning about
the feasible grasps. Although all these hypothesis are valid,
using grasp knowledge from other robots can accelerate an
unknown object learning process.

Moreover, developing a new skill on a robot requires
considerable amount of work and time to design and im-
plement a new set of software components. Thus, having a
proper set of bridging plug-ins to interconnect middlewares,
allows sharing skills between different robots without any
reimplementation of required software components. The only
drawback of the port–plugins approach is that it needs the
required software libraries for the bridge to be available on the
same machine where the plug–ing is deployed into the port of
the component. However, this is a common concern in system
maintenance which can be compromised for the performance
of the middleware interoperability.

It is fair to say that in the current implementation, the port
plug–ins have been used only for data–flow ports. Intercon-
nections between RPC–style services have been implemented
using dedicated bridges. In terms of performance this proved
to be acceptable because RPC connections are never used in
time critical loops. This is because the intrinsic bidirectional
nature of the communication introduces timing dependencies
between processes and imposes communication latency.

VI. CONCLUSIONS

This paper has described the knowledge and skill trans-
fer between two different robots with different embodiment.
More specifically, we have shown how a grasping skill from
ARMAR-III can be used on the iCub robot which has a sig-
nificantly different hand and software framework used for its
programming. We have discussed the major issues in bridging
the middlewares and proposed the port–plugin approach for
bridging components from different frameworks to reduce the
communication latency, especially, when higher bandwidth for
streaming data is required.

To transfer the grasping skill between two robots, we took
the ARMAR–III’s knowledge of grasping and used it as the
initial grasp suggestions for the iCub. The robot then tried to
adapt the skill to its own embodiment by interacting with the
object and finding a valid grasp definition using our approach
for visual collision detection and correction. In this way, the
skill from one robot is transfered and automatically adapted

to a new embodiment. In our future work, we will investigate
transferring more complex skills and knowledge such as tool
use and affordances between different robots.
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