
A Generic Testing Framework for Test Driven
Development of Robotic Systems

Ali Paikan, Silvio Traversaro, Francesco Nori, and Lorenzo Natale

Istituto Italiano di Tecnologia (IIT), Genova, Italy
{ali.paikan,silvio.traversaro,francesco.nori,lorenzo.natale}@

iit.it

Abstract. This paper proposes a generic framework for test driven development
of robotic systems. The framework provides functionalities for developing and
running unit tests in a language and middleware independent manner. Tests are
developed as independent plug-ins to be loaded and executed by an automated
tool. Moreover, a fixture manager prepares the setup (e.g., running robot drivers
or simulator) and actively monitors that all the required resources are available
before and during the execution of the tests. These functionalities effectively ac-
celerate the development process and cover different levels of robotic system test-
ing. The paper describes the framework and provides realistic examples to show
how it has been used to support software development on our robotic platform.

Keywords: Robot testing framework, Unit testing, Test-driven development, Soft-
ware engineering, Robotics

1 Introduction

Autonomous robots have evolved in complex systems that are increasingly difficult to
engineer and develop. A possible approach to tame such complexity is to divide the sys-
tem into simpler units that are independently developed, tested and integrated at a later
stage. Further testing is consequently performed on the whole system; this may trig-
ger re-development or debugging of the individual components in an iterative process.
This strategy is known as the test-driven development [3] and it has gained increasing
attention as one of the core extreme programming practices. Proper application of this
technique requires i) alternating writing tests and developing functional code in small
and rapid iterations and ii) executing tests automatically to ensure that modifications
to existing code (new components, bug fixes or new features) do not disrupt existing
functionalities.

Developers have created varieties of tools for supporting test-driven development.
These frameworks usually focus on providing support for a specific programming lan-
guage or for automating unit test execution. For example JUnit [10] is a unit testing
framework for Java based on the xUnit [11] test patterns. AUnit [2] is a set of Ada pack-
ages based on the xUnit family of unit testing framework which is intended to make it
easy to develop and run unit tests. The framework supports easy composition of sets
of unit tests to provide flexibility in determining what tests to run for a given purpose.
CppUnit [5] is another implementation of the xUnit pattern which supports writing unit

2 Ali Paikan, Silvio Traversaro, Francesco Nori, and Lorenzo Natale

tests for C as well as C++ with minimal source modification. It also provides a graphical
user interface for monitoring test execution and facilities for generating test results in
XML format. Google Test [7] is a multi-platform unit testing library for the C++ pro-
gramming language, based on the xUnit architecture. It allows for developing different
types of tests such as unit tests, integration tests and acceptance tests. The framework
also includes a graphical test runner that executes the test binaries.

A unit is the smallest possible testable software component. There is some debate
about what exactly constitutes a unit test [9]. For robotic systems a testable unit can be
a piece of code, a software component, a driver or even a hardware component such as a
sensor or an actuator. A robot testing framework should support different levels of tests,
i.e.: component interface tests, integration tests, stress tests and ideally system (applica-
tion) tests [1]. Tests should be performed on the real robots and on simulation (the latter
is a fundamental requisite, it gives more control on the environment and allows to per-
form fully automated testing). This implies that the framework should be able to setup
the required resources (i.e., fixture), like, for example, running drivers to control the
motors, executing the simulator and/or possible preparatory routines (e.g. for calibra-
tion). Equally importantly, the framework should monitor that these resources remain
functional during the execution of the tests, offering hooks to handle failure appropri-
ately (i.e. restarting the robot, performing parking routines, etc.). This is a fundamental
requirement for robotics which is not supported by the available testing frameworks.
Finally, robotic applications rely on various languages, software libraries and middle-
wares such as YARP [12], ROS [15] and OROCOS [4]. The testing framework should
therefore be designed to offer maximum flexibility to the user in terms of language,
dependencies and middleware of choice.

This article proposes the Robot Testing Framework (RTF)1, a generic testing frame-
work for test driven development of robotic systems. The framework provides function-
alities for developing and running unit tests in a language and middleware independent
way. Individual tests are developed as independent plug-ins (i.e., using scripting lan-
guages or built as dynamically loadable libraries) that are loaded and executed by an
automated test runner. A fixture manager prepares the setup (e.g., running the robot
drivers or the simulator and its interfaces) and actively monitors that all the dependen-
cies for running the tests remain functional during their execution. These functionalities
along with other facilities such as the test result collector, result formatter and remote
interface allow for rapid development of tests that cover the various testing levels of
robotic systems.

2 Robot Testing Framework

The RTF architecture is based on the well–known xUnit test patterns, which includes
a test runner, test result formatters and a test fixtures manager. In addition it provides
functionalities for defining test cases (i.e. unit tests), suits and assertions. However, to
fulfill the requirements of robotic systems, the RTF design provides abstraction levels
for the platform (i.e. operating system), the middleware and the programing language.

1 The source code and documentation of the RTF can be accessed on-line at http://
robotology.github.io/robot-testing/index.html.

A Generic Testing Framework for Test Driven Development of Robotic Systems 3

Fig. 1. The architecture of the Robot Testing Framework. Test cases can be developed as inde-
pendent plug-ins using different programming languages and grouped in test suites which are
represented using XML files. A fixture manager can be assigned to every test suite which setups
and monitors the fixture during the execution of the tests. The results of the tests can be stored in
different formats and monitored from the consoler or a Web browser. See text for details.

Moreover, RTF provides functionalities for managing complex fixtures which support
stress testing at the level of individual components (robot hardware like sensors or ac-
tuators) as well as integrated (sub) systems.

Fig. 1 demonstrates the main components of the RTF architecture. Test cases can
be developed as independent plug-ins using scripting languages or can be built as dy-
namically loadable libraries. The plug-ins are loaded by the Test Case Loader and are
executed by the Test Runner. Test cases can also be grouped in different test suites
which are represented using XML. In the latter case, the Test Suite Loader parses the
XML file and, using the Test Case Loaders, it loads the corresponding test plug-ins.
Each test suit can optionally have a fixture manager which is implemented as a separate
plug-in (which is loaded by the Fixture Loader). This fixture plug-in is responsible for
setting up the fixture and informing the Test Suite Loader when the fixture fails (e.g.
crashes). In this case, the Test Suite Loader restarts the fixture and resumes execution
of the remaining test cases. In Section 2.3 we describe an example of a fixture plug-in
which has been implemented for the YARP middleware. The result of the tests can be
monitored from the console (through the Console Reporter) or remotely from a Web
browser (through the Web Reporter). The Test Result Collector allows storing data in
different formats (for example Fig. 1 shows two components for storing output in text
format or XML, Text result Outputter and XML Result Outputter respectively).

2.1 Middleware and language abstraction

Within the robotic community, researchers have been developing a large number of
software components using different robotic middlewares and varieties of software li-

4 Ali Paikan, Silvio Traversaro, Francesco Nori, and Lorenzo Natale

braries. Test cases for those components have the same dependencies. To be as generic
as possible, an ideal testing framework should allow unit tests to be developed indepen-
dently and without posing conflicting constraints due to their dependencies.

Middleware independency in RTF is achieved by allowing unit tests to be imple-
mented as independent plug-ins. Each plug-in can be separately compiled and built with
the required libraries. This approach separates dependencies between different tests.
The test driven development paradigm requires writing automated tests in small and
rapid iterations. Therefore, it is important that test development is done easily and with
minimal amount of programming. The RTF provides features that allow to easily de-
velop and run the test case plug-ins for different platforms. Listing 1.1 demonstrates an
example that shows how to implement a test plug-in that checks a generic sensor using
the YARP middleware 2.

1 #include <TestCase.h>
2 // include test-dependent libraries ...
3 #include <yarp/os/all.h>
4

5 // prepare the plugin
6 PREPARE_PLUGIN(SensorTest)
7

8 class SensorTest : public RTF::TestCase {
9 yarp::os::BufferedPort<yarp::sig::Vector> port;

10

11 public:
12 // initialization goes here...
13 virtual bool setup(int argc, char** argv) {
14 RTF_ASSERT_ERROR_IF(port.open("/sensor"),
15 "Failed to open the port!");
16 // intialize the rest ...
17 return true;
18 }
19

20 // test implementation goes here
21 virtual void run() {
22 RTF_TEST_REPORT("Reading sensors...");
23 yarp::sig::Vector *data = port.read();
24 RTF_TEST_CHECK(data, "reading sensor error!");
25 RTF_TEST_CHECK(data->size() == 6, "sensor size error!");
26 }
27

28 // finalization goes here...
29 virtual void tearDown(){
30 port.close();
31 }
32 };

Listing 1.1. Implementing a test case plug-in using C++.

Listing 1.1 demonstrates that a test case in RTF requires only to write a few lines of
code. This example is written using the C++ language. A test case is an instance of a
class that derives from the abstract RTF::TestCase class; the developer is required
only to fill the run() method with the test functional code. Optionally the test can
specify its own context (i.e. a fixture) which can be prepared in the setup() method.
This method is called to initialize the context before executing the test functional code

2 In YARP data from generic sensors are published and read from Port objects. BufferedPort is
a specialization of Port that support streaming operations.

A Generic Testing Framework for Test Driven Development of Robotic Systems 5

(run()). Similarly the tearDown() method is called to terminate the context after
running the test. The PREPARE_PLUGIN macro adds the required code for generating
the plug-in. The RTF also provides macros for error assertion and condition checking.
During test execution these macros generate detailed information which are uniformly
formatted to be stored or reported to the user.

Unlike most of the available unit testing frameworks, RTF does not enforce adoption
of a single programming language. Indeed the framework provides a clean and simple
abstraction layer for developing test case plug-ins using different scripting languages.
Listing 1.2 shows an example that demonstrates the code for testing an encoder using
the Lua [8] programing language and the YARP middleware.

1 --import test-dependent libraries ...
2 require("yarp")
3

4 -- initialization goes here...
5 TestCase.setup = function(parameters)
6 TestCase.setName("EncoderTest")
7 port = yarp.BufferedPortBottle()
8 if port:open("/encoder") ~= true then
9 TestCase.assertError("Failed to open the port!")

10 end
11 -- intialize the rest ...
12 return true
13 end
14

15 -- test implementation goes here
16 TestCase.run = function()
17 TestCase.testReport("Reading encoder...")
18 local data = port:read()
19 TestCase.testCheck(data ~= nil, "reading encoder error.")
20 end
21

22 -- finalization goes here...
23 TestCase.tearDown = function()
24 port:close()
25 end

Listing 1.2. Implementing a test case plug-in using Lua.

Listing 1.2 is similar to the example of Listing 1.1 for C++. The above script, sim-
ply opens a YARP port and checks whether robot encoder data is available or not. The
test functional code is implemented in the function TestCase.run() whereas ini-
tialization and termination of fixtures are done in the functions TestCase.setup()
and tearDown() respectively. Similarly to the C++ example, error assertions and
condition checking functions are also available for Lua.

2.2 Test Suites

A test suite is a set of test cases which share the same test fixture [11]. In RTF a set
of test cases (plug-ins) can be grouped as a test suite using an XML file and executed
using the test runner. This allows the unit tests to be easily organized in different test
suites which are easy to maintain and extend. Listing 1.3 shows an example of a test
suite (called BasicChecking) that checks a sensor and an encoder using the test cases

6 Ali Paikan, Silvio Traversaro, Francesco Nori, and Lorenzo Natale

described in Section 2.1.

1 <?xml version="1.0" encoding="UTF-8"?>
2

3 <suit name="BasicChecking">
4 <description> checking the robot </description>
5 <environment> simulator </environment>
6 <fixture param="--launch sim.xml"> MyFixtureManager </fixture>
7

8 <!-- add the unit plug-ins -->
9 <test type="dll" param=""> SensorTest </test>

10 <test type="lua" param=""> EncoderTest </test>
11 ...
12 </suit>

Listing 1.3. An example of a test suite. The XML file describes the test suite BasicChecking
which groups the SensorTest and EncoderTest so that they can be executed sequentially using the
Test Runner.

The above example demonstrates a test suite called BasicChecking. Two test
cases (SensorTest and EncoderTest) are added to the test suite using the <test>
tags; the property type specifies the type of the plug-in (e.g., dll or lua for C++ and
Lua respectively). Each test case can optionally have parameters (i.e. param="...")
which can be accessed inside the test’s setup() method for its initialization. The
<environment> tag can specify a set of parameters which form a common envi-
ronment for the test cases in the suite. Using these variables test cases can be quickly
adapted and re-used for execution in different situations (i.e. real robot versus sim-
ulator). As previously discussed a test suite has a fixture manager (specified by the
<fixture> tag) which prepares the test contexts for the unit tests. Fixture managers
are also plug-ins so that different implementations can exist for different platforms (i.e.
operating systems and/or middleware). The following section provides more details
about the Fixture Manager.

2.3 Fixture Manager plug-in

System tests in robotics require execution of a complex fixture which provides the set
of basic functionalities for running the tests (i.e. low-level software components for
interfacing with the robot or the simulator, etc.). Importantly the fixture should be mon-
itored during the execution of the tests to ensure robustness against failures. We de-
cided to implement the fixture manager as a separate plug-in to avoid reimplementing
or simply interfering with the deployment policy of the robotic framework of choice.
Middlewares usually have their own policies for configuring and deploying components
and executing applications. For example, Orocos components are compiled as dynamic
loadable libraries, configured using XML files and launched using the Orocos com-
ponent deployer (i.e., deployer-corba). ROS components (nodes) are configured
using launch files and executed by the roslaunch toolset. In the YARP middleware
the yarpmanager [14] that gives users the possibility to execute and monitor the life-
cycle of applications from an XML description file 3. In short an application XML file

3 Please refer to http://wiki.icub.org/yarpdoc/yarpmanager.html for the
structure and syntax of the YARP application description file.

A Generic Testing Framework for Test Driven Development of Robotic Systems 7

contains the necessary information for configuring and launching the individual exe-
cutables (called modules in YARP terminology) using the yarpmanager. The frame-
work provides a rich set of the functionalities such as launching executables on a cluster
of computers, monitoring their execution and recovering programs from failure. List-
ing 1.4 demonstrates the implementation (pseudo-code) of a fixture manager plug–in
which uses the yarpmanager libraries to set up and monitor a test fixture.

1 #include <FixtureManager.h>
2 // include middleware-dependent libraries ...
3 #include <yarp/manager/manager.h>
4

5 // prepare the plug-in
6 PREPARE_FIXTURE_PLUGIN(MyFixtureManager)
7

8 class MyFixtureManager : public RTF::FixtureManager,
9 yarp::Manager {

10 public:
11 virtual bool setup(int argc, char** argv) {
12 // parse the arguments, load the application
13 // xml file and run all the modules
14 yarp::Manager::loadApplication(...);
15 RTF_ASSERT_ERROR_IF(yarp::Manager::run(),
16 "failed to run!");
17 // monitor the modules execution
18 yarp::Manager::enableWatchDog();
19 return true;
20 }
21

22 virtual void tearDown() {
23 yarp::Manager::stop() // stop the modules
24 }
25

26 // this is called from the yarp::Manager
27 // if the execution of the modules fails
28 virtual void onExecutableFailed(void* which) {
29 // inform the test suite/runner that the fixture
30 // has been collapsed.
31 getDispatcher()->fixtureCollapsed("reason...");
32 }
33 };

Listing 1.4. An example of implementing the fixture manager plug-in for the YARP middleware.

As it is shown in Listing 1.4, a fixture manager plug-in (i.e., MyFixtureManager)
is an instance of a class that derives from RTF::FixtureManager and implements
the setup() and tearDown()methods. The test runner calls the function setup()
before running the test cases in a test suite. In the above example, we use the yarpmanager
functionalities (implemented in the yarp::Manager class) to load an XML applica-
tion file and run the modules that make the corresponding fixture. When terminating
the execution of a test suite, the test runner calls tearDown() to tear down the fixture
and stop all modules. In the setup() method we also enable the yarpmanager
watchdog functionality; this feature monitors the proper execution of all the mod-
ules in the fixture. The onExecutableFailed() method is inherited from the
yarp::Manager class. The failure of one of these modules (which are monitored in
the yarp::Manager) triggers the onExecutableFailed() method; this func-
tion notifies the test runner by calling the fixtureCollapsed() function. This
event-sender function interrupts the test runner which, in turn, tries to restart the fixture

8 Ali Paikan, Silvio Traversaro, Francesco Nori, and Lorenzo Natale

Fig. 2. Testing the iCub robot using its simulator. The RTF test runner was launched from the
console (at the left side) and the iCub simulator was automatically launched using the YARP
fixture manager. The right side shows how the test results can be monitored from a Web browser.

by calling the setup() method. If this operation succeeds the test runner continues
execution of the next test case, otherwise, the proper error message is reported.

2.4 Running and monitoring unit tests

As described previously (See also Fig. 1), the test cases (i.e., as shared libraries or
scripts) can be uniformly executed using the RTF test runner. The test runner 4 is a
multi-platform tool that loads and runs the test cases in various ways. It can run a
single test case, multiple test cases from a given path, a full test suite or multiple test
suites from a given path. The test runner utility also provides functionalities to monitor
the tests execution progress and the results remotely using a Web browser. Moreover,
RTF provides web services (via a standard Ajax [6] framework) which can be used for
developing any Web-based graphical user interfaces.

Fig. 2 shows an example of using the RTF to tests the iCub [13] robot using its
simulator. A set of test case plug-ins were developed and grouped in a test suite (similar
to Listing 1.3). The test suite was configured with the YARP fixture manager to run
the iCub simulator. The figure shows the output of the test runner launched from a
console (left side); the iCub simulator was automatically launched using the YARP
fixture manager before executing individual tests. Finally the right side of Fig 2 shows
the results of the test as they are collected and monitored from a Web browser. The

4 Please refer to http://robotology.github.io/robot-testing/
documentation/testrunner.html for the documentation of the test runner.

A Generic Testing Framework for Test Driven Development of Robotic Systems 9

source code of the example and further test units for YARP middleware and iCub robots
are available at https://github.com/robotology/icub-tests.

3 Conclusions

In this paper we have described RTF, a generic testing framework for the test driven
development of robotic systems. We have discussed the requirements that we consider
peculiar to the application and that motivated the development and our design choices,
namely: i) the necessity to separate the dependencies of individual tests to avoid mutual
constraints and ii) the need to deal with different level of testing from individual compo-
nents to system tests. The latter is particular important because it required to introduce
a sophisticated mechanism for dealing with complex test fixtures.

We have described the architecture of RTF by demonstrating different examples.
RTF provides functionalities for developing unit tests in a platform, middleware and lan-
guage independent manner. Middleware and language independency in RTF is achieved
by allowing developers to implement and build the unit tests as independent plug-ins
using different programming languages. A fixture manager prepares the setup (e.g.,
running robot interfaces, simulator) and actively monitors that all the requirements for
running the tests are satisfied during the execution of the tests. At the moment we are
actively developing tests for the iCub humanoid robot and the YARP middleware; using
these features we plan to deploy fully automated tests not only for hardware components
but also for robot controllers and complex behaviors that rely on the correct execution
of different layers of software. These tests are available on the following repository:
https://github.com/robotology/icub-tests. The framework has been
currently tested with the YARP middleware but it can be used for any test-driven devel-
opment and other middlewares and robots.

Acknowledgments. The research leading to these results has received funding from
the European FP7 ICT project No. 611832 (WALK-MAN) and No. 600716 (CoDyCo).

References

1. Abran, A., Bourque, P., Dupuis, R., Moore, J.W.: Guide to the software engineering body of
knowledge-SWEBOK. IEEE Press (2001)

2. AdaCore: Ada unit testing framework (2012), http://libre.adacore.com/
tools/aunit.

3. Beck, K.: Test-driven development: by example. Addison-Wesley Professional (2003)
4. Bruyninckx, H.: Open robot control software: the OROCOS project. In: IEEE International

Conference on Robotics and Automation. vol. 3, pp. 2523–2528. IEEE (2001)
5. freedesktop: cppUnit test framework (2013), http://freedesktop.org/wiki/

Software/cppunit.
6. Garrett, J.J., et al.: Ajax: A new approach to web applications (2005)
7. Google: Google C++ Testing Framework (2013), http://code.google.com/p/

googletest.
8. Ierusalimschy, R., De Figueiredo, L.H., Celes Filho, W.: Lua–an extensible extension lan-

guage. Software: Practice & Experience 26(6), 635–652 (1996)

10 Ali Paikan, Silvio Traversaro, Francesco Nori, and Lorenzo Natale

9. Janzen, D., Saiedian, H.: Test-driven development: Concepts, taxonomy, and future direction.
Computer (9), 43–50 (2005)

10. Link, J.: Unit testing in Java: how tests drive the code. Morgan Kaufmann (2003)
11. Meszaros, G.: xUnit test patterns: Refactoring test code. Pearson Education (2007)
12. Metta, G., Fitzpatrick, P., Natale, L.: Towards Long-Lived Robot Genes. Elsevier (2007)
13. Metta, G., Sandini, G., Vernon, D.: The iCub humanoid robot: an open platform for research

in embodied cognition. Proceedings of the 8th workshop on performance metrics for intelli-
gent systems pp. 50–56 (2008)

14. Paikan, A.: yarpmanager: a way of running and managing multiple programs on a set of
machines (2011), http://wiki.icub.org/yarpdoc/yarpmanager.html.

15. Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.:
Ros: an open-source robot operating system. In: ICRA Workshop on Open Source Software
(2009)

