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Abstract— In this paper we tackle the problem of object
recognition using haptic feedback from a robot holding and
manipulating different objects. One of the main challenges
in this setting is to understand the role of different sensory
modalities (namely proprioception, object weight from F/T
sensors and touch) and how to combine them to correctly
discriminate different objects.

We investigated these aspects by considering multiple sensory
channels and different exploratory strategies to gather mean-
ingful information regarding the object’s physical properties.
We propose a novel strategy to train a learning machine able to
efficiently combine sensory modalities by first learning individ-
ual object features and then combine them in a single classifier.
To evaluate our approach and compare it with previous methods
we collected a dataset for haptic object recognition, comprising
11 objects that were held in the hands of the iCub robot while
performing different exploration strategies. Results show that
our strategy consistently outperforms previous approaches [17].

I. INTRODUCTION

The literature on object recognition focuses primarily on
vision. However there are many properties of objects that are
difficult to infer from vision alone, but are directly observ-
able using haptic information. Exploiting haptic information
for object recognition is, however, a difficult task. This
is because haptic information includes data from multiple
channels (namely proprioception, touch and force) which are
affected by the various object properties (weight, texture,
size and volume) in different ways. Also, haptic object
recognition is intrinsically active: appropriate exploratory
procedures are required to extract the information related to
different properties and channels. To tackle this complexity,
experiments are usually performed in simplified settings in
which objects are manipulated in a controlled, repetitive way.
On the same line, existing work usually rely on carefully
designed features and machine learning techniques.

In this paper we consider a more realistic and less con-
trolled scenario, in which objects are given to the robot
while varying their orientation and position in the hand.
Drawing our inspiration from humans, two compatible strate-
gies can be adopted to compensate for the additional com-
plexity: 1) exploit the complementary sensory modalities
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available to haptic perception and 2) use different object-
exploration strategies. Indeed, as pointed out in Lederman
and Klatzky [10] humans make use of stereotypical ex-
ploratory procedures (EPs) to assess object properties (and
also increase the information available by repeating these
actions multiple times).

A main challenge for haptic recognition in robotics is
how to deal with the multiple sensory modalities available
during this process. To this end, we propose a novel method
that learns how different sensory modalities (acquired during
different EPs) can be combined for haptic recognition. To
evaluate the effectiveness of our approach we collected a
dataset comprising 11 objects held in the hand of the iCub
robot while it performed different movements to explore
them. Empirical evidence shows that our strategy for haptic
object recognition consistently outperforms previous meth-
ods. We will make the dataset available for the community
as a benchmark for haptic object recognition.

The paper is organized as follows. The state-of-the-art is
described in Sec. II, followed by a description of the experi-
mental setup, Sec. III, and the tools for data analysis, Sec. IV.
Sec. V-A provides a comparison of several techniques for
combining data from different sensory modalities or EPs.
Sec V-B and Sec.V-C discusses pros and cons of combining
multiple EPs together or several trials of the same EP. Finally,
Sec. VI draws the conclusions of the paper.

II. STATE-OF-THE-ART

One way to cope with the complexity of the haptic
modality is to use controlled exploration schemes to get
reliable data. A good example is [2] where a carefully
designed protocol is used to gather the data. However, this is
not how human usually interact with their environment and
not how we expect robots to behave. If one wants a robot
to be able to work effectively in the same environment as
humans, they should be able to face uncertainty and deal with
less structured situations. In this work, we explore how well
a robot can recognize objects in such conditions, leveraging
on several human-inspired strategies that have already been
successfully applied in the literature.

Humans are particularly good at combining different
haptic cues to recognize objects, and the different haptic
channels have been extensively used in robotic applications,
confirming that they can provide complementary information
about objects: joints positions is really effective for global
shape and size estimation [8], [13], while tactile data gives
essential information about textures and material [3], [7],
[9] or precise shape [11]. Finally, force/torque (F/T) sensors



Fig. 1. Object recognition pipeline: (Top) iCub performs different ex-
ploratory procedures while holding an object. (middle) the raw sensory
signal is coded into feature vectors (bottom) which are used to train haptic
classifiers.

are useful to infer weight [12]. It has further been shown
that object recognition is improved when several sources of
information are available [14], [17].

Haptic object recognition is an active process. In hu-
mans, Lederman and Klatzky [10] have well described how
stereotypical exploratory procedures are used in a consistent
way to obtain haptic information from objects. Six EPs
are described by the authors for the acquisition of static
properties. Depending on the task and the dimension involved
(weight, shape, temperature and so on), different EPs will
be performed as they do not provide the same kind of
information. For example, unsupported holding is used to
estimate the weight of an object while static contact is
better for temperature. The enclosure is the action providing
information for the broadest range of dimensions even if in
a crude way. It is also fast and thus is usually the first one to
be performed when exploring an object, before more specific
gestures take over.

Thus, it is not surprising that grasping (enclosure in the
seminal nomenclature) is the most common action used in
robotics for object exploration [1], [2], [6], [8], [13], [14],
[17]. Nevertheless, there are many examples of use of other
EPs like pressure [2], static holding [2], regrasping [6], lateral
motion [2], [3], [7], [9], contour following [11], or other
actions which are not part of the original list from Leder-
man and Klatzky [1], [2], [17]. It has further been shown
that combining different actions and modalities improve the
perception capabilities and that the effectiveness of an actions
depend on the modality used as well as the property you
are interested in [2], [17]. Finally, it was observed in [7],
[14] that, similarly to what happens for humans, performing
the same EP multiple times on the same object significantly
improves the recognition accuracy in both object and texture
recognition settings.

When developing an artificial system for haptic recog-
nition, a critical question is how to combine the multi-
modal information across multiple exploratory procedures.
A straightforward approach is to concatenate all sensory
inputs in a joint vector which is then used to train a
learning machine to perform classification [1], [14]. This
strategy however does not account for the differences (in

magnitude and structure) of the difference sensory signals
and can lead to sub-optimal results. A possible solution is
to train an individual learning machine for each sensory
modality and then group their results either using a majority
voting strategy [7] or a weighted sum of predictions [2],
[17]. In this work we propose novel strategies to combine
the multi-sensory input in a haptic recognition setting and
compare them with previous methods. Our approach builds
on a hierarchical model organized in two layers: the first
layer is composed by classifiers trained on a single sensory
modality and can be interpreted as the process of learning
individual objects’ features. The second layer effectively
learns how to combine these individual features in a joint
haptic classifier. The experimental evaluation performed on
the iCub demonstrates that our method allow recognition
accuracy higher than other methods previously proposed in
the literature

III. HAPTIC EXPLORATION OF OBJECTS

In this section we introduce our approach to haptic object
recognition. In its general formulation, this task consists in
training a robot to classify a set of objects by physically
interacting with them and solely based on the information
acquired through haptic/tactile sensors (i.e. without using
visual cues). We assume that objects are sufficiently small to
be held by the robot and that most of the interaction occurs
while the robot is holding them. The robot will use various
sensors, including proprioception and force and torque from
F/T sensors mounted on the arms.

In this setting, one of the major challenges is to success-
fully combine multiple measurements gathered from different
sensors of the robot. Furthermore, depending on the way the
robot interacts with the object (e.g. grasping, pushing, etc.)
such measurements could differ dramatically. We devised a
set of exploratory procedures that the system can use to in-
teract with hand-held objects and assessed different machine
learning strategies to combine the multi-modal haptic data.
Fig. 1 gives an overview of the overall pipeline.

A. Hardware

Our investigation was carried on the iCub robot. iCub is
a full humanoid with a total of 56 Degrees of Freedom
(DOF). In particular, the arms have 16 DOFs: 3 for the
shoulder (pitch, roll, yaw), 1 for the elbow, 3 for the wrist
(pronosupination, pitch, yaw) and 9 DOFs for the hand:
3 DOFs for the thumb, index and middle finger proximal
phalanges, 3 for the corresponding distal phalanges (the two
distal joints of each finger are coupled), 1 for the six joints of
the ring and little fingers (they are all coupled together), 1 for
the thumb opposition and 1 for fingers adduction/abduction
(see [15] for further details). Coupling in the joints of the
fingers is achieved using springs that allow the fingers to
conform to the objects being grasped. Magnetic encoders in
the phalanges allow retrieving the configuration of all joints
of the hand. The robot arm is equipped with a 6-channels
F/T sensor in each arm.



B. Sensory Modalities

In this work we focused on two main sources of haptic
information, which correspond to the Kinesthetic sensory
modalities in humans: Proprioception via the joint encoders
readings and Force/Torque sensing, via the F/T sensor mea-
surements. By adding minimal amount of prior information
about the robot’s model, we identified the following 5 types
of sensory information:
• Joints positions: We recorded the joint’s angle position

of the main three fingers of the robot’s hand for a total
of 7 measurement at each time instant: thumb 3 DOFs,
index 2 DOFs and middle 2 DOFs.

• Fingers’ spring model: The actual position of each
finger is measured using magnetic encoders. In absence
of external forces the springs in the phalanges do not
deform and the position of all the joints can be predicted
knowing the motor encoders and the mechanical cou-
pling between the phalanges. When grasping an object,
forces exerted on the hand misalign the predicted and
observed finger position. This misalignment is a cue that
encodes the amount of force exerted by the finger on
the object and, as such, it is a powerful cue that helps
to measure physical properties of the object. Following
this intuition, in this work we include the difference
between predicted and measured joint position of each
finger as a possible cue to discriminate objects.

• Raw Force/torque: The F/T sensor in the arm shoulder
is a six-axis sensor measuring 3 forces and 3 torques at
a 100Hz rate.

• Wrist Force/torque: if we assume that external forces
are acting exclusively on the hand of the robot, we can
exploit knowledge of the robot’s model to estimate the
forces and torques exerted by an object on the wrist.
For this purpose we used the iDyn library available for
the iCub developers community [4].

• Root Force/torque: The force and torque exerted by the
object on the hand can be mapped to the root reference
frame (i.e. the robot’s waist), providing information
about the weight of the object that is independent of
the actual position of the hand.

C. Exploratory procedures

The measurements recorded from the sensors described in
Sec III-B depend critically on the specific way the robot is
interacting with the object. As a consequence, it is reasonable
to expect that different exploration strategies would allow
accessing information related to different properties of the
object. Following this intuition, in this work we devised the
following strategies (i.e. Exploratory Procedures (EP) ), that
the robot can use to gather haptic information about objects
it holds in the hand (all represented in Fig. 2):
• Grasp: This procedure corresponds to the enclosure EP

originally described in [10]. It consists in wrapping the
fingers around the object and seems to be the most basic
EP for humans, giving information about a broad range
of physical properties in a short time. In our setup, a

three-fingers grasp (thumb, index and middle finger) is
used. To simplify our acquisitions process, at each trial
we placed the object in the hand of the robot.
In order to detect contact and avoid the robot’s finger
to close indefinitely, we used a threshold on the springs
model misalignment (described in Sec III-B).

• Weigh: weighing the object can provide finer infor-
mation about the inertial properties of an object. This
procedure corresponds to the unsupported holding EP
in humans ([10]). In our implementation the robot was
programmed to move the object rapidly upwards and
downwards three times.

• Rotate: We implemented an additional EP during which
the robot rotates its wrist while keeping the object
firmly within its grasp (this is similar to the rolling
action in [1], except that the whole forearm is moving).
This strategy provides further information about inertial
properties of the object and turns out to be indeed
particularly useful for object recognition. The Rotate
EP does not have an equivalent in terms of human EPs
originally identified in [10].

D. Features

Using carefully designed features is not unusual in haptic
object recognition and can really improve the performances.
However, in this work, we choose a simpler approach using
raw sensor values or applying only simple transformations
to them (i.e. Fast Fourier Transform). Both of the considered
features can be encoded in a single vector and therefore used
by machine learning tools, as described in Sec. IV (see also
Fig. 1), to perform recognition:

• Snapshot These feature consists in the recording of
all measurements (joint angle, F/T measure, etc.) in
a specific instant in time. We acquired this kind of
features after the Grasp EP was completed in order
to record the state of the hand enclosing the object
of interest and capture properties related to shape and
surface hardness. Clearly this type of feature could be
used also for novel EPs in the future, but for the Weigh
and Rotate EPs adopted in this work, we did not find
any significant point in time to be recorded.

• Fourier In order to capture the dynamic evolution of the
sensory signal during a given EP, we also performed a
frequency analysis on it. For our experiments, we chose
the Fast Fourier Transform (FFT) and condensed each
sensory signal in a vector of fixed length (concatenating
the coefficients of the real and complex imaginary
parts). One advantage of this technique is that it allows
to encode sequences of different length into vectors of
same size. Arguably, this approach is extremely coarse,
and much careful analysis of the signal during an EP
could lead to significant improvement at recognition
time. However it is a very cost effective solution that
can be applied to any EP.



E. Dataset

Using the exploratory procedures described in the previous
section we collected a dataset in which the robot interacted
with a set of 11 objects (Fig. 2). These objects were carefully
selected in order to span a wide range of physical properties
such as weight, shape and surface hardness. As a conse-
quence, one of the major challenges of haptic recognition in
this setting is that, for any sensory modality considered, there
are always 2 or more objects that cannot be distinguished
using such modality alone (e.g. the empty and full bottles
have exactly the same shape but different weight).

Haptic measurements in our dataset were acquired in
sessions during which the three EPs (Grasp, Weigh and
Rotate) were executed in sequence. More precisely, each
acquisition session would start with the robot presenting
its open hand with the palm facing upwards, waiting for
an object. Then, the experimenter would put the object to
be learned/recognized in the hand. Using the variation of
the F/T measurement as a contact detection cue, the robot
would proceed with the Grasp EP, enclosing the object in
its hand, then subsequently with the Weigh EP and finally
the Rotate EP. We performed the above procedure between
29 − 32 times per object. We split the data collected in a
test set containing 9 sessions for each object and a training
set containing the remaining sessions. We will make this
dataset available online for the community with the plan of
increasing it further the current 11 classes.
Unstructured/uncontrolled object pose: We care to point
out that a further challenge of our dataset is that, during
grasping, objects were not always positioned with the same
pose in the hand. This simulates a realistic scenario in which
the robot grasps the objects autonomously and, therefore,
introduce a certain degree of variability in the acquired data.

IV. DATA ANALYSIS TOOLS

In Sec. V we will detail our experimental analysis on
the 11-objects dataset collected in this work. Our goal is to
evaluate the relevance of the sensory modalities available on
the iCub, with respect to the task of haptic object recognition.
To this end, in this section we review the machine learning
techniques we adopted to perform object classification from
the haptic features described in Sec. III-D, following the
pipeline represented on Fig. 1.

A. Kernel methods

A wide range of powerful classification methods are avail-
able from the machine learning literature. In this work we
focused on the family of non-parametric kernel methods [16],
which do not assume any specific model for the classifica-
tion function to be learned, but are completely data-driven.
Typically, a machine learning problem can be formulated as
the problem of finding the function f : X → Y from an
input space X to an output space Y that best approximates
the unknown functional relation between a finite set of
observations or training pairs {(xi, yi)}ni=1. In our setting,
the input examples xi are the feature vectors (snapshot or
fourier) described in Sec. III-D, while the corresponding

Fig. 2. The 11 objects selected for our dataset. From left to right and
going down: a cylindrical wooden toy, a sponge, a plastic cup, an empty
water bottle, a turtle-shaped soft toy, a green bottle made of hard plastic, a
tennis ball, a rectangular tea box, a blue ball made of soft foam, a bottle of
water filled with paper and a round food box.

output would be the label yi ∈ {1, . . . , 11} associated to
one of the 11 objects in our dataset.

The learning problem is then formulated as the optimiza-
tion

minimize
f∈H

1

n

n∑
i=1

V (yi, f(xi)) + λR(f) (1)

where V : Y × Y → R is the so-called loss function,
penalizing prediction errors according to the task, H is a
space of candidate functions where we aim to find our
classifier and R : H → R is a regularizer, controlling the
“complexity” of f and avoiding overfitting of the data points.
We refer the reader interested to an in-depth introduction to
machine learning to the excellent book on the subject [16].

In classification settings, a loss function often adopted is
the least-squares loss V (y, f(x)) = ‖y − f(x)‖2, and class
labels y are coded as binary vectors of length equal to the
number of classes T (in our case T = 11), containing all −1
in their entries except for a +1 on the entry corresponding
to the true class. Therefore, in these settings, the learned
predictor is a vector-valued function f : X → RT where
each output can be interpreted as the confidence score that
a point x belongs to a specific class. Indeed, the actual
predicted class ĉ(x) of an example x is typically obtained
by taking

ĉ(x) = argmaxc=1,...,T f(x)
(c) (2)

with f(x)(c) denoting the c-th element of the vector f(x).
For our experiments we used the GURLS library [18],

which implements different algorithms within the field of
kernel methods implemented both in MATLAB and C++,
allowing on one hand for flexible prototyping and on the
other for real-time efficiency. Moreover, the GURLS library
offers automatic parameter tuning, namely the choice of
spaceH and regularization parameter λ from Eq. (1), making
it a general “black-box” tool for data analysis.



B. Combining Sensory Modalities

One of the main interests of this work is to understand how
multiple sensory modalities can be combined to discriminate
grasped objects. Therefore, a natural question is how to adapt
the machine learning tools introduced above to make the best
use of the multiple channels available during both learning
and prediction stages. In the following we describe different
approaches considered in this work to perform sensory data
combination:

Concatenation ([1], [14]). Sensory information can be
combined by concatenating different feature vectors as de-
scribed in Sec. III-D. One of the main limitations of this
approach is that the scale and range of the values within
different feature vectors cannot be compared, often leading
to inconsistent results. A typical approach is to standardize
the feature vectors independently so that they all have 0 mean
and 1 standard deviation. However, standardization could
remove relevant information from the signal.

Averaging ([2], [17]). An alternative approach is to com-
bine the confidence scores produced by classifiers trained on
each modality independently. Indeed, as observed in Eq. (2),
a predictor trained independently on a single modality would
produce as output a vector of fixed length T = 11 whose
elements represents the confidence score that the observed
feature vector belongs to the corresponding classes. When
each modality provides complementary information about
the physical properties of the object, the combination of
the confidence scores could lead to a more robust and
reliable classifier. The averaging strategy therefore consists
in taking the argmax of the sum F (x) =

∑M
m=1 fm(x) of

the predictors fm trained individually on each modality m.
A related approach was considered in [17], where instead
of the T -dimensional multiclass classfiers fm, the authors
useed T (T − 1)/2 binary classifiers for each modality, each
trained to discriminate between a single pair of objects.
The scores of these binary classifiers were first recombined
through pairwise coupling [5] to obtain modality and EP
specific predictions, before averaging was performed on the
probabilities obtained this way.

Hierarchical. Here we propose a novel method to com-
bine sensory data, by learning how to combine the modality-
specific classifiers fm rather than simply averaging them. We
do so by concatenating the scores predicted by each fm, each
consisting of a T -dimensional vector reporting the likelihood
of a signal to be associated to one of the T classes and then
use these MT dimensional vector as the new input to train a
“unifying” classifier F . More precisely, when provided with
a new observation x ∈ X , such a classifier will take as input
the scores produced by the individual predictors, namely
F (x) = F (f1(x), . . . , fM (x)). F (x) will be again a T
dimensional vector containing the likelihood of x belonging
to a specific object class. We can interpret this strategy as
“hierarchical” since we have the first layer of predictors fm
which are classifiers tuned to a specific modality, while the
second layer is in charge of combining modality-specific
response into the final prediction F (x). Following [17], we
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Fig. 3. Accuracy (percentage of good recognition) achieved by the
condition-specific classifiers, using the Grasp EP. For each modality, two
features (snapshot and fourier) are compared. The accuracy with random
guesses is represented by the red line.

also consider the possibility two use as first layer the outputs
of binary classifiers trained to distinguish between only two
classes out of the T available for the problem.

V. EXPERIMENTAL ANALYSIS

In this section we report the experimental analysis on
haptic object recognition. Results are reported on the dataset
described in Sec. III-E. We begin by investigating the role
of each sensory modality independently and then proceed
to analyze the effect of combining them together according
to the strategies discussed in Sec. IV-B. We also take
into account the effect of performing multiple, subsequent
explorations of the objects in order to reduce uncertainty
and achieve higher recognition accuracy.

A. Haptic Recognition by Grasping EP

In this section we focus on the single Grasping EP.
Indeed, in the application scenario considered in this work,
the robot starts to interact with other objects by first holding
them in its hand. As a consequence, the Grasping EP is
preliminary to both Rotate and Weigh EPs, and a natural
question is therefore to ask what classification accuracy can
be achieved by using this information alone.

1) Individual Sensory Modalities
We first assess the quality of each sensory modality

independently. On one hand, this allows getting a better
understanding of the role of each modality within the task
of object recognition and on the other hand, it offers useful
insights on possible ways to combine them in order to
improve the classification accuracy.

Fig. 3 reports the average accuracy per class obtained by
RLS classifiers trained individually on the different modali-
ties available during grasp. 99 examples (9 per object) where
put aside for testing while training was performed on the
remaining 233 examples (∼ 20 per object). A first observa-
tion is that results, although on average significantly higher
than chance, are relatively low for a 11-class classification
problem, with the highest accuracy slightly less than 50%.
This is to be expected, since objects in our dataset where
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Fig. 5. Percentage of binary classifiers achieving highest accuracy across
all modalities. The ratio is taken across all possible object pairs.

intentionally chosen to be “easily” confused and the grasping
strategy results in high variability in the measurements.

From this experiment we further observe that adding
prior information about the physical model of the robot
can be extremely informative. While raw measurements
from the F/T sensor exhibit the lowest performance among
all modalities, it is possible to increase performance by
projecting the F/T sensor measurements onto appropriate
reference frames (i.e. the wrist and the root reference
frame). This strategy leads to a remarkable boost of ∼ 20%
accuracy. This observation is particularly encouraging since
it suggests that, while in this work we are focusing on
(almost only) the raw signal acquired through the different
sensors available, by using further information from the
robot it could be possible to further improve the recognition
capabilities of the system.

Classification of Objects Pairs. To better characterize the
efficacy of each sensor with respect to the recognition task,
we also performed a set of binary classification experiments
where we evaluated the information provided by individual
modalities in discriminating solely between two objects. This
was done to confirm that the low performances observed
in Fig. 3 are due to the fact that, for each modality, there
exists some objects that cannot be distinguished one from
the other. This can be observed in Fig. 4, where we have
reported, for each object pair, the highest classification
accuracy achieved with respect to any individual modality.
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For these experiments we tested the binary classifiers on 18
examples (9 per class) after training them on the remaining
examples (∼ 40 examples overall or ∼ 20 per class).

As can be noticed, for most objects pairs a single modal-
ity is sufficient to achieve 100% accuracy, suggesting that
carefully combining them in a single classifier should lead
to a remarkable overall improvement for the 11-class classi-
fication scenario. To obtain a better understanding of which
modalities are more significant for the classification task, in
Fig. 5 we report, for each sensory modality, the percentage
of object pairs for which such modality allows for the
best possible accuracy. Note that in most cases, more than
one modality achieves best accuracy and that, as previously
observed in the multiclass setting, joint positions and F/T
measurements seem to be the most relevant features.

From this experiment it is clear that the multiple signals
provided by the sensors available on the robot indeed
provide a very powerful cue to discriminate between
objects. Therefore, in the following we investigate how to
combine such multiple modalities to improve the overall
recognition capabilities of our system.

2) Combining Sensory Modalities
We proceed by investigating the impact of combining mul-

tisensory information according to the methods introduced
in Sec. IV. In particular, we considered two variants of the
“hierarchical classifier” introduced in Sec. IV: one using
as first “layer” the predictions of the multi-class classifiers
trained independently on each modality while the other
uses the binary predictors trained for each modality and
each pair of objects in our dataset separately. We refer to
these two models as respectively hierarchical multi-class and
hierarchical binary. For the binary case, we also make the
distinction between taking the predictors at the first layer as
producing a score (binary) or just a ±1 signal (binary-sign).

For comparison purposes, we also replicated the method-
ology used by Sinapov et al. in [17], which use a setting
that is really close to ours. In that work, condition-specific
pairwise classifiers (similar to our binary classifiers) are
first grouped for each modality and EP separately through
pairwise coupling [5]. Predictions from different modalities
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Fig. 7. Accuracy achieved with the hierarchical binary-sign approach by
combining the information from a specific EP and all modalities (5 first
columns) or from all data together (last column). Three classifiers have
been trained for the grasping, one with snapshot feature, one with fourier
and one with both.

and/or EPs are then combined using averaging.
Fig. 6 reports the classification accuracy achieved by the

averaging, concatenation, hierarchical (multi-class, binary
or binary-sign), as well as the methodology from [17]. As
a reference with respect to classifying using the sensory
modalities individually, we also report the performance of the
predictor trained exclusively on the joint position (snapshot),
which is the best performing one in the previous experiments
(Fig. 3). Experiments were performed by our systems on
the same training set of 233 examples and tested on the
remaining 99 as described in Sec. V-A.

It is interesting to notice that combining multiple sensory
channels can lead to an overall improvement of ∼ 30% in ac-
curacy. However, it is quite surprising that the sole approach
that seems to make correct use of the different modalities
is the hierarchical binary (signed or not). In particular,
we observe that averaging the responses of the individual
predictors can be even more detrimental than considering
each modality separately (the averaging approach exhibits
lower performance than the one using the joints state alone).

The observation above suggests that in order to discrim-
inate between the objects in our dataset it is fundamental
to learn how the measurements provided by the sensors
are correlated one to the other. In principle, this could be
done by training a classifier on the concatenation of all
feature vectors obtained from multiple modalities. Indeed,
as shown in Fig. 6, the concatenation method appears to be
promising, with higher accuracy than the hierarchical multi-
class method. Arguably, as already mentioned in Sec. IV,
the main challenge when training a classifier directly on the
concatenation of all features, is that the measurements from
different channels need to be preprocessed in order to be
comparable one to the other. The way this is done affects
dramatically the overall classification performance. While in
this work we only standardized each feature before concate-
nating them, a much better approach could be available.

It should also be noted that, even though it performs
better than averaging and hierarchical multiclass methods,
the methodology from [17] doesn’t reach the performances
of hierarchical binary technique, staying slightly behind the
concatenation one.
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Fig. 8. Evolution of the mean accuracy achieved by combining predictions
from 1 to 9 session for each modality separately, with the Grasp EP and
the snapshot feature.

B. Combining Multiple EPs

In this section we investigate how multiple EPs can be
combined, leading to a further improvement in classification
accuracy. While we have already observed that the Grasping
EP achieves remarkable performance, such exploration strat-
egy provides mainly information about static qualities of the
object (e.g. weight, shape, hardness). In contrast, the Weigh
and Rotate EPs offer the possibility to gather data about the
inertial/dynamical properties of the object, which could be
extremely useful for recognition.

We report the accuracy per individual EP in Fig. 7,
together with the performance of a classifier trained on all
measurements obtained during all three EPs together. To
make these observations clear, we report only the results
obtained with the hierarchical binary-sign approach, which
exhibited significantly better results than its competitors.
Interestingly, the Weigh and Rotate EPs achieve remarkably
lower results than Grasping, suggesting that this modality
allows capturing more accurately the properties of the object.
In particular we care to point out that the Grasp action
records how the finger closes around the object and this could
provide information about the hardness of the material, which
Weigh and Rotate EP cannot capture. However, it is also clear
that such EPs are not redundant with respect to Grasping,
since by combining them together (concatenating the output
of binary classifiers from all modalities and EPs) we achieve
a remarkable 81% of accuracy, around 5% improvement over
using Grasp information alone.

C. Multiple Grasps (Weighs, Rotations)

In this section we investigate the impact of performing
actions multiple times in order to gather a richer character-
ization of the object. One of the challenging aspects of our
haptic dataset is that we provided the objects to the robot in
a somewhat uncontrolled way. This was done to reproduce
a realistic setting, in which the robot, in distinct trials, may
grasp the objects in different ways. Clearly, very different
grasp poses would cause a dramatic change in the haptic
measurements, leading to lower recognition performance.
However, a viable strategy to mitigate this effect is to
have the robot perform each action multiple times, varying
each time how the object is grasped. In this way it should
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Fig. 9. Evolution of the mean accuracy achieved by combining predictions
from 1 to 9 session for each EP separately or all together.

be possible to improve the confidence of the classification
system that was previously trained on individual actions.

Here we quantify the improvement in performance when
combining up to 9 subsequent actions. This analysis was
done by averaging the confidence scores of the predictors
trained on individual grasps according to the protocol de-
scribed in Sec. V-A and Sec. V-B. In particular, Fig. 8
reports the improvement in average classification accuracy
of multiclass classifiers trained on each modality indepen-
dently (see Sec. V-A). We averaged across multiple runs
(i.e. different combinations of individual grasps), in order
to account for statistical variability. It can be noticed that
for inertial measurement, multiple grasps do not appear to
provide meaningful insight on the object identity. This is
expected since the object weight does not change according
to how it is held in the robot hand. On the opposite, for
the fingers’ joints sensory channel, multiple grasps lead to a
dramatic improvement of ∼ 10% for just 1 additional grasp
to an overall improvement of ∼ 25% of average classification
accuracy when all 9 grasps were combined together.

Finally, we report in Fig. 9 the benefit of performing mul-
tiple actions, for binary classifiers combining all modalities
during each EP. In particular, it can be noticed that, similarly
to what is observed for the joints sensory channel in Fig. 8,
even a single additional trial improves the accuracy by ∼ 5−
10% for each EP, and an overall improvement of ∼ 20−25%
is obtained when all grasps are considered. Furthermore,
using this strategy together with the combination of all EPs,
we managed to achieve perfect recognition (with 7 grasps
or more). These results are really encouraging and clearly
show the efficacy of the technique to compensate for the
uncertainty in the pose imposed on our setup.

VI. CONCLUSIONS

In this paper we studied object recognition with hap-
tic information and proposed a novel method to combine
sensory information. Our approach departs from previous
literature in that it learns how to combine different input
sources by exploiting a hierarchical model. We assessed our
approach on a novel dataset for haptic object recognition
collected with the iCub robot. Experiments showed that our
method achieves higher recognition rate than previous work.
In particular, when applied to data gathered from different

modalities, our approach outperformed previous methods by
> 25% in classification accuracy.

We observed encouraging results when combining mul-
tiple grasps actions. These results suggest that a promising
direction for research is the active selection of EPs. In future
work, we would also like to investigate additional EPs and
explore how each can prove useful to discriminate along
different dimensions (shape, weight, temperature or softness
among others).
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