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Abstract— The development of reliable and robust visual
recognition systems is a main challenge towards the deployment
of autonomous robotic agents in unconstrained environments.
Learning to recognize objects requires image representations
that are discriminative to relevant information while being
invariant to nuisances, such as scaling, rotations, light and
background changes, and so forth. Deep Convolutional Neural
Networks can learn such representations from large web-
collected image datasets and a natural question is how these
systems can be best adapted to the robotics context where little
supervision is often available.

In this work, we investigate different training strategies for
deep architectures on a new dataset collected in a real-world
robotic setting. In particular we show how deep networks can be
tuned to improve invariance and discriminability properties and
perform object identification tasks with minimal supervision.

I. INTRODUCTION

Object recognition plays a fundamental role in many
robotics tasks, such as reaching for objects, grasping, ma-
nipulation, navigation, interaction with humans and many
others. Machine learning has driven recent advances in
computer vision and lead to remarkable results in a variety
of challenging problems [1], [2], [3], [4], [5]. While there
are already promising results, robotic vision context comes
with its own challenges [6], [7], [8], [9], [10]. State-of-the-art
vision systems are based on deep Convolutional Neural Net-
works (CNNs) trained on large web-data corpora to learn rich
discriminative representations invariant to nuisances such as
viewpoint changes. In the robotics context the emphasis is
not on web-scale image retrieval but rather on the effective
recognition of everyday objects in structured context, such
as a laboratory or an office. The objects to be learned might
not be known a priori and the collection of labeled data is
a costly operation. Indeed, learning from limited supervision
is a hallmark of human learning which is key for robotics.
It is then natural to ask how current deep learning systems
can be best adapted to this setting.

A simple yet useful idea is that of using the network
parameters obtained by training on large web-data corpora
collections to initialize the training of deep networks by
back-propagation on new potentially smaller datasets. This
approach, often referred to as fine-tuning [3], [4], [11],
seemingly allows to “transfer” representations learned on
larger datasets to smaller ones. Fine-tuning however is a
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tricky procedure and comes in different flavors. On the one
hand, it is possible to perform a light tuning, by updating
only the last few layers of the networks. On the other
hand, a more aggressive tuning can be performed to change
the network more “deeply” based on the new data. More
generally, fine-tuning requires finding the best architecture
setting, a question which is well-known to be a challenge
when using deep networks.

In this paper, we compare various strategies to fine-tune
and adapt a CNN architecture to perform typical object
recognition tasks faced by the iCub [12] humanoid robot
in its usual environment. In order to test the discrimination
and invariance properties of the obtained architectures, we
collect and make available for the community a new image
dataset, comprising multiple objects belonging to different
categories and undergoing isolated visual transformations.

Our main contributions are: 1) we investigate how dif-
ferent approaches to fine-tuning affect the overall recog-
nition capability of a network, specifically related to the
kind of transformations observed during training; 2) we
identify a strategy to achieve remarkable accuracies in a
robotic environment, for which we report performance on
a challenging 50-objects identification task; 3) we release a
new object recognition dataset for robotics comprising 150
instances evenly divided into 15 categories, where objects
visual transformations have been isolated in order to test the
invariance properties of recognition systems.

With respect to recent work [13] considering the exploita-
tion of deep CNNs in a problem setting similar to the one we
address here, we operate in a less constrained scenario, for
which we also provide a faithful benchmark. Moreover, by
isolating the different nuisances typically affecting the per-
formance of recognition systems in this kind of applications,
we are able to measure specific network invariances and
come up with a working approach for a real-world robotic
object identification application.

The rest of this work is organized as follows: Sec. II briefly
reviews recent work on deep CNNs and introduces the main
concepts related to these architectures. Sec. III-A describes
the dataset used for experiments and the acquisition protocol
adopted to collect it. Sec. III-B reports the technical details
of the models used in this paper. Finally, Sec. IV describes
our experimental analysis and empirical observations, while
Sec. V offers concluding remarks and direction for future
investigation.



Fig. 1. The two approaches that are commonly adopted to “adapt” deep CNNs trained on large-scale datasets to smaller-scale domains: feature extraction
in combination with statistical tools as RLS or SVMs (blue) and fine-tuning (red). In this work in particular we consider the architecture proposed in [1].

II. METHODS AND RELATED WORK

In this Section we introduce deep Convolutional Neural
Networks (CNNs) and discuss standard methods to adapt
pre-trained models on new tasks.

A. Deep Convolutional Neural Networks (CNNs)

Deep CNNs are hierarchical architectures concatenating
signal processing layers to map an input image into a
corresponding output representation in a feature-space (see
Fig. 1). The prototypical structure of a CNN repeats at each
layer, usually indicated as convolution layer, the following
set of operations:

Filtering with respect to a (learned) bank of filters
Spatial Downsampling e.g. via strided convolutions
Non Linearity such as a Sigmoid or ReLU
Spatial Pooling e.g., max-pooling on a local region
Normalization across feature channels

The details of these operations depend to each architecture,
but the general principle is that selectivity of the repre-
sentation is achieved by filtering the signal at each layer
with templates tuned to specific patterns (e.g. edges at lower
layers, object parts at deeper ones). Such templates can be
learned according to supervised or unsupervised strategies.
Through this hierarchical processing, the semantic content
of the image is progressively “distilled” into a vectorial
representation that is ideally robust to visual transformations.

A typical approach in image classification settings is then
to concatenate the convolution layers with a certain number
of fully connected layers (a multi-layer Neural Network),
acting as a classifier on top of the representation produced
by convolution layers. The output of the last fully-connected
layer comprises as many units as the number of classes to
be discriminated and, after a softmax normalization step can
be interpreted as a vector of class probabilities. The modular
structure of this model allows to perform end-to-end training
of all layers simultaneously by back-propagation [14].

B. Feature Extraction and Statistical Tools

The representation learned by a CNN on a large-scale
dataset, such as ImageNet [15], proved to be able to gen-
eralize well to other tasks and datasets by employing the
network as a “feature extractor”: Given a novel image,

its representation is obtained by taking the activations of
network units at intermediate layers rather than the final
classification scores. The intuition behind this strategy is that
such representation, learned on a rich variety of examples,
encodes the most relevant semantic information of the image,
while being robust to most visual nuisances.

This approach has been key to the recent popularity of
deep CNNs. Indeed, it has been observed that training a
standard classifier such as a Support Vector Machine (SVM)
or a Regularized Least Squares Classifier (RLS) [16] on
such features consistently outperforms more sophisticated
competitors on a variety of challenging datasets [17], [3],
[18], [19], [20], [10], [21]. In Fig. 1 we report a pictorial rep-
resentation of this strategy for the case of the CaffeNet [22]
network used in our experiments.

C. Fine-tuning

A previously learned representation can be “adapted” to
the new task. This process, known as fine-tuning, consists
in using the network parameters obtained by training on
the original dataset as a warm restart when training them
by back-propagation on the new one. Fine-tuning has been
successfully adopted in a variety of recent works [3], [4], also
adapting the representation of networks trained on ImageNet
to robotic contexts to predict grasp locations [8] or to jointly
process RGB and depth information [6] leading to significant
improvements on the state of the art on well-established
robotic benchmarks such as RGBD [23].

The structure of the network is typically updated by
substituting the output layer to account for the new task
(e.g. different classes). Hence, a crucial difference between
training a network from scratch and fine-tuning it is that in
the latter case the parameters of most layers can be initial-
ized with the result of the first optimization and may not
need to be changed dramatically during the second training
phase. Their learning rates (namely the step-size used by
the stochastic gradient descent during back-propagation) can
therefore be set to zero (no update is done) or to very
small values, while the learning rate of the output layer is
maintained to a higher value. In practice, this allows to train
the CNN on much smaller datasets in significantly shorter
training times.
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Fig. 2. Representation of the 15 × 10 objects present in the iCubWorld - Transformations dataset that we make available to the community. For each
instance, we acquired in two separate days different sequences containing specific transformations (2D Rotation, Scale, Background), extracts of which
are represented to the left

If, on the one hand, the fine-tuning approach is extremely
flexible, in that it allows adapting the network with respect to
a novel task, on the other hand it is also prone to overfitting,
eventually disrupting the visual representation learned by the
pre-trained CNN. In this sense, a relevant issue is whether
it can be in general more or less favorable to adapt the
intermediate layers of the network with respect to the new
training data (i.e. with higher learning rates) or keep a more
conservative approach. This question is addressed in Sec. IV-
A, where we investigate also the role of the dataset used for
fine-tuning with respect to learning invariances and overall
recognition performance.

III. EXPERIMENTAL SETUP

In this section we describe the setup that we used for
the experimental analysis reported in Sec. IV. We begin
by presenting the dataset we collected to investigate our
questions regarding invariance and then discuss the technical
details of the CNN used for our experiments.

A. iCubWorld - Transformations

A major focus of this work is to characterize and quantify
the ability of a network to learn representations that are
invariant to visual transformations of an object. To investigate

these aspects of CNNs, we collected a dataset where different
object transformations are isolated and tested separately.
Since we are interested in solving object recognition within
a real robotic scenario, we performed our data acquisition
on an actual robot, the iCub [12].

The procedure employed for data acquisition was proposed
in [24] and then adopted to collect the first and second
releases of the iCubWorld dataset (shortened to iCW for sim-
plicity in the following), a benchmark for object recognition
methods in robotics [25], [26]. The acquisition protocol is
summarized in the following (for more details we refer the
reader to the original work): a human “teacher” shows a set
of objects to the robot, which uses a tracking routine [21],
[27], [28] to follow them with its gaze and extract an
approximate bounding box around them. Supervision, in
form of the object’s label, is provided verbally by the human.

In this work we adopted this strategy to acquire a novel
dataset which is remarkably larger than the initial iCubWorld
(in terms of both number of images and object classes) and is
organized in order to isolate specific visual transformations
of the observed objects. The dataset, that we call iCubWorld -
Transformations, comprises 150 objects evenly divided into
15 categories, which are shown in Fig. 2. For each object



TABLE I
SUMMARY OF THE iCubWorld - Transformations DATASET

# Cat. # Obj. per Transformations # Days # Frames per
Category Acq. Session

15 10 Rotation, Scale 2 ∼ 150
Background

Globally ∼ 140K images in 900 acquisitions

we had the human apply three transformations, starting the
acquisition from the same view of the object for each session.
We report examples of such process in Fig. 2:

Rotation The human rotated the object in front of the
camera, parallel to the image plane while keeping the
object at the same scale and position
Scale The human moved the hand holding the object back
and forth, thus changing the object’s scale with respect to
the cameras
Background The human moved in a semi-circle around
the iCub, keeping approximately the same distance and
pose of the object in the hand with respect to the cameras.
Therefore only the background changes dramatically while
the object appearance remains approximately the same

For each acquisition session we collected 150− 200 images
at 8 frames per second. A square 256× 256 crop around the
object of interest is extracted from each image, originally at
640× 480 resolution, using the procedure described in [21].
For each object, we performed data acquisition during 2
separate days in order to consider the effect of possible
biases (such as lighting). Table I summarizes the details of
the dataset, which was made publicly available1). Figure 2
illustrates the 150 objects present in the dataset, organized
by category. Three video excerpts show examples of object
transformations.

B. Network Setup

Here we review the details of the network models consid-
ered for our analysis.
Reference Network. As a reference model we adopt the
architecture proposed in [1] and trained on ImageNet
(depicted in Fig. 1). Such network has been extensively
applied to a variety of tasks [6], [13] and we use its publicly
available implementation within Caffe deep learning
framework [22], namely the BVLC Reference CaffeNet
model.

Fine-tuning Strategies. We consider the two most used
approaches for fine-tuning (see Sec. II-C), which differ one
from the other with respect to the learning rates used for
the layers of the CNN. We refer to them as the conservative
and adaptive fine-tuning strategies: both adopt a learning
rate of 10−2 for the weights of the output layer (fc8)
of the network. However, the adaptive strategy applies a
learning rate of 10−3 to the remaining layers from fc7 and
below, while the conservative one does not adapt these

1https://robotology.github.io/iCubWorld/

layers to the new dataset (i.e. the learning rate of the layers
below fc8 is set to zero). These two settings are the two
representative extremes between adapting or not the network
representation to the new domain, indeed using learning
rates above 10−3 for internal layers prevents the fine-tuning
from converging. Other parameters are left to their original
value (e.g. momentum is 0.9, weight decay is 0.0005,
dropout ratio is 0.5 for all layers from fc7 and below).

Preprocessing, Training and Prediction. Regarding im-
age pre-processing, we kept the same protocol adopted for
training CaffeNet on ImageNet within Caffe [22]: incoming
images are resized to be 256× 256 and the mean image of
the training set is removed.

For training, a random 227 × 227 crop is extracted
from each image (randomly mirrored horizontally) before
passing it to the learning algorithm. The batch size for
back-propagation iterations was set to 256. Note that the
training set was shuffled before starting the fine-tuning
process since we observed that similarity of images within a
batch negatively affects convergence of the back-propagation
algorithm. When fine-tuning a network, we evaluated the
model’s performance on a validation set every epoch and
we finally chose the epoch achieving highest validation
accuracy. We repeated this process multiple times to account
for statistical variability and chose the model providing the
highest validation accuracy.

Following [22], at test phase the prediction over one image
was taken as the average prediction score over 10 crops
extracted from the center and the corners if the image,
together with their mirrored versions.

IV. EXPERIMENTAL ANALYSIS

In this section we report our experimental analysis on the
problem of learning from few examples using a pre-trained
CNN. Due to the close connection between generalization
and invariance, we first investigate the effect of fine-tuning
on the generalization properties of a network (Sec. IV-A),
then, based on our findings, we proceed to assess the ability
of tuned architectures to provide invariant representations
within the problem of object identification (Sec. IV-B and IV-
C). In particular, we approach the problem of generalizing
the visual appearance of several objects undergoing different
transformations from only a few example images.

Our analysis allows, on the one hand, to better understand
how different choices of fine-tuning strategies affect the
overall recognition capabilities of a CNN, and, on the other
hand, evaluates a protocol to build invariant representations
for learning from few examples.

All our experiments are performed on the iCubWorld
(iCW) dataset.

A. Fine-tuning and Invariance

We begin by evaluating how the choice of the dataset
used for fine-tuning can impact the overall generalization
capabilities of a network.



Fig. 3. Classification accuracy of conservative and adaptive architectures on Background (BKG, blue) and all transformations (ALL, red). Results are
reported separately for the Background, Rotation and Scale transformations on Day 1 and Day 2. Bars report average accuracy on 10 trials.

To this end, we compare the classification accuracy of Caf-
feNet fine-tuned over two different datasets: one comprising
only the Background (BKG) transformation and another one
comprising Background, Rotation and Scale (ALL) transfor-
mations. In order to fairly compare the two, we randomly
sub-sampled this latter dataset to maintain the same size as
the first one. Moreover, we fine-tuned the network on each
dataset according to the adaptive or conservative strategies
described in Sec. III-B.

For this preliminary analysis we focused on the classical
application scenario of deep CNNs, object categorization,
postponing our study on object identification to the following
sections. Specifically, we consider the problem of discrim-
inating between the 15 categories contained in the dataset
introduced in Sec. III-A. Regarding model-selection: from
the set of 10 object instances available per category, we
used 7 objects per category for training, 2 for validation, and
tested classification prediction on the remaining object. To
account for possible biases across days (e.g. similar lighting,
background, etc.) we performed fine-tuning and validation
on Day 1 while tested on both Day 1 and 2. We repeated
this experiment 10 times to allow for every object instance
per category to be tested on at least once.

Fig. 3 reports the classification accuracy of the four net-
works fine-tuned according to the adaptive or conservative
strategy on the BKG or ALL transformations.

A first general observation is that, regardless of the in-
variance learned on ImageNet, both fine-tuning strategies
on both datasets exhibit a remarkable performance drop on
Day 2. More precisely, the adaptive strategy (light blue/red)
provides the largest gap between the two days, achieving
comparable performance to the conservative strategy (dark
blue/red) on Day 1, but being constantly worse on Day 2.

A second observation is that both fine-tuning strategies
seem to clearly benefit from having access to a richer set of
visual transformations. Indeed, networks fine-tuned on the
mixed dataset (ALL, red) outperform by more than ∼ 10%
of accuracy, on Scale and Rotation, networks trained only on

the BKG dataset (blue). Moreover, they exhibit comparable
performance to those trained on BKG also when tested
on this transformation itself, suggesting that reducing the
number of examples undergoing this specific transformation
(as it happens in the mixed dataset, since the two have same
size) does not have a disruptive effect on performance.

We repeated the experiment by training only on Rotation
or Scale and observed similar patterns. These results overall
warn about fine-tuning deep networks in robotics settings
on specific conditions, considering the risk of observing
degraded performance when these slightly change. Since this
issue is particularly relevant to the robotics context, in the
following we further investigate the effect of adapting the
network internal representation to the visual transformations
characterizing the new domain. To this end, we compare
network representations, tuned or not on the iCW dataset,
for solving object identification tasks.

B. Invariance of the Network Internal Representation

To better understand the effect of fine-tuning on the
internal layers of a CNN, we start visualizing them by
applying dimensionality reduction techniques. We focus on
the models trained on all transformations in Sec. IV-A,
since we observed that tuning on a specific transformation
strongly degrades performance on the others. In particular,
we want to investigate to which extent fine-tuning can be
beneficial to improve the network representation invariance
to the experienced visual transformations.

We used the t-SNE approach [29], to qualitatively and
quantitatively compare representations extracted from a net-
work fine-tuned according to the adaptive strategy on the
categorization task of Sec. IV-A and from CaffeNet original
model. We consider the fc7 layer (see Sec. III-B), i.e., the
last one before the output layer (fc8). Indeed, we remark that
the conservative tuning strategy does not change layers up
to fc7. For the fine-tuned model we chose one random trial
among the 10 performed in the previous experiment.

With t-SNE we computed the 2-dimensional embedding
of extracted representations of the 15 objects belonging to



Fig. 4. 2-dimensional embedding of fc7 representations of 15 objects, extracted from one network tuned on iCW (Sec. IV-B) and from original CaffeNet.
We report regions predicted by a kNN classifier trained only on the dot markers (Background transformation) to discriminate the objects when undergoing
Scale (square markers) or Rotation (circles) transformations. Black markers denote misclassifications.

the test set of the previous experiment. We then performed
a k-Nearest Neighbor (kNN) object identification experiment
on the 2D projections of these 15 objects, considering only
points from the Background set of Day 1 for training and
testing on Scale and Rotation sets of Day 1 and 2. Fig. 4
represents the t-SNE embedding for the representations com-
ing from the tuned network and CaffeNet original model. In
particular, we report the regions learned by the kNN classifier
from the training points (dot markers) and the test points of
Day 1 (square markers for Scale and circles for Rotation).
Black markers denote the misclassified points.

The classification accuracy associated to this proof-of-
concept experiment confirms what is visually evident, i.e.,
adapted features outperform by more than 10% off-the-shelf
features, achieving a recognition accuracy of 80% vs 68%.
We conclude that fine-tuning is indeed able to produce a
more invariant representation with respect to the experienced
transformations. This wasn’t evident from Fig. 3.

C. Object Identification from Few Example Images

The results observed in Sec. IV-B seem to indicate that
the internal representation of the tuned CaffeNet is more
robust to the nuisances affecting the iCW dataset. In order to
quantify such invariance, in this section we perform extensive
tests, considering challenging object identification scenarios
where very few example images are provided during training.

We compare again the representations from the original
CaffeNet model and from models fine-tuned according to the
adaptive strategy on all transformations of the iCW dataset.
Analogously to Sec. IV-B, we extract image representations
from the fc7 feature layer. We then train an RLS classifier (as
described in Sec. II-B) to the task of object identification on
the Background dataset of Day 1, testing on the remaining
two transformations on both days. For the RLS classifier we
employed the GURLS library [30], which we used to train
a kernel regularized least squares classifier with Gaussian
kernel. In the following, we refer to ImageNet+RLS and
iCW+RLS to denote classifiers trained respectively on
features produced by a CaffeNet trained on ImageNet or

fine-tuned on iCW. We also considered replacing the RLS
classifier with another stage of fine-tuning. We tried either
the conservative or adaptive strategy, starting either from
the original CaffeNet or the model previously tuned on a
subset of iCW.

Small-scale Object Identification. In this first experiment
we carry out a small-scale instance recognition problem,
where, similarly to Sec. IV-B, the system is asked to dis-
criminate among 15 objects each belonging to a different
category of the iCW dataset.

Fig. 5 reports the classification accuracy of the considered
methods compared on this task. To evaluate the dependency
of different architectures with respect to the dataset size, we
used for training respectively 10, 50 or all available frames
per object from the Background transformation of Day 1
(around 150 frames per object). We report the classification
accuracy averaged over the Scale and Rotation transforma-
tions separately for the two days; we averaged performance
over 10 trials, each one considering the 15 objects that are
not used for fine-tuning (see Sec. IV-A).

A first observation is that iCW + RLS consistently
outperforms all competitors when the number of examples
is low. This can be explained noting that, overall, approaches
using tuned representations achieve higher accuracies than
the ones using off-the-shelf representations, suggesting that
the representation produced CaffeNet fine-tuned on iCW is
actually able to adapt to the transformations occurring in
the dataset. A second observation is that, while fine-tuning
achieves comparable or slightly superior performance to
kernel methods when more frames are provided, kernel
methods are more stable when the training set is small.
This suggest that kernel methods are generally more suited
to operate in settings where new objects must be learned
on-the-fly from few example images.

Medium-scale Object identification. We extend our analy-
sis to a 50-classes identification scenario, over all (10) object
instances from 5 categories in the iCW dataset (namely the



Fig. 5. Comparison of different approaches to object identification. We trained on 10, 50, or all available frames per object, using only the Background
transformation in Day 1, and tested on the remaining two transformations on both days. Bar plots report average accuracy averaged over 10 trials.

book, flower, glass, hairbrush and hair clip). We first fine-
tuned CAFFENET for categorization on the remaining 10
categories, according to the same protocol as in Sec. IV-A (7
objects per category for training, 2 for validation, repeating
for 10 trials). Then, we used the tuned networks to provide
fc7 features for the 50-classes identification task. In this last
test we are focused on extending our approach to identify
objects from few examples, therefore we provide only 10
frames per object at training time (from the Background set)
and consider only kernel methods over network representa-
tions. We note that in this case, the considered 5 categories
are neither part of ImageNet, nor part of the iCW subset used
for fine-tuning, hence the networks never experienced them
before the identification task.

Table II reports the average classification accuracy over
Scale and Rotation for the two days separately. The first and
second rows report respectively performance of RLS applied
to off-the-shelf or tuned features according to the protocol
described above. The other two rows report two alternatives
that we tried when fine-tuning CaffeNet on the 10 categories.
With iCW day12 + RLS we included both days in the fine-
tuning training set. With iCW id day12 + RLS we changed
the task according to which perform fine-tuning: instead of
categorization, we fine-tuned to perform object identification
over all 100 object instances (considering all transformations,
both days, and leaving out a random 20% for validation).

We note that also in this setting fine-tuned features out-
perform ImageNet + RLS by a large margin. Moreover, fine-
tuning on both days increases performance on Day 2, and
fine-tuning to the identification task (iCW id day12 + RLS)
seems to be the best approach. These results supports the
previous observation that, by performing fine-tuning over
some objects undergoing visual transformations, the network
is indeed adapting previously learned invariances to the novel
nuisances and that RLS is a sufficiently robust method to
learn to exploit such invariances even from few examples.

The classification accuracy achieved by our approach is
remarkable considering that Background, Scale and Rotation
sets across days depict the object in very different condi-
tions,as can be observed in Fig. 2, and that only 10 example

TABLE II
50-OBJECTS IDENTIFICATION ACCURACY WHEN TRAINING RLS ON 10

IMAGES/OBJECT, WHOSE REPRESENTATIONS ARE PROVIDED BY MODELS

TUNED ON A SUBSET OF iCW ACCORDING TO DIFFERENT STRATEGIES.

Architecture Day 1 Day 2

ImageNet + RLS 0.68 0.61
iCW + RLS 0.82 0.72

iCW day12 + RLS 0.82 0.77
iCW id day12 + RLS 0.86 0.81

images per object were provided.

V. CONCLUSIONS AND ONGOING WORK

We addressed the problem of learning to recognize a
wide range of objects from minimal amounts of data. Given
the recent success of deep CNNs, we assessed the efficacy
of different approaches to fine-tune and adapt pre-trained
networks to novel tasks.

We considered a challenging scenario where a human su-
pervisor provides only few glimpses of the objects of interest
to the robot. In this context we collected and made available
a dataset comprising images of 150 objects divided according
to changes in 2D orientation, scale and background.

Our analysis shows that fine-tuning the internal layers of
a network, adapts the invariance of the representation to the
nuisances of the new dataset. By leveraging upon this effect,
we tuned a deep CNN over multiple visual transformations
to obtain a robust representation for object identification.
Moreover, we observed that when only few training examples
are provided per class, it is beneficial to combine such
adapted representation with more robust learning approaches
such as Regularized Least Squares classification or Support
Vector Machines, using the fine-tuned network as a feature
extractor.

Future work will focus on studying invariance to more
challenging transformations such as 3D rotations for identifi-
cation or intra-class variability for categorization, potentially
exploiting more recent CNNs such as GoogleNet [2] or
ResNets [31]. Moreover, we plan to investigate the role of



fine-tuning in a lifelong learning scenario, in order to deter-
mine whether such incremental process could be leveraged
upon in order to further improve the representation learned
by the network.
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