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Abstract— Grasp stability is a challenging problem in
robotics. It needs to be robust to external perturbations
and adapt to unknown objects. While performing a stable
grasp, grip strength control can be a desirable property
for many applications. We present an approach for stable
object grasping and simultaneous grip strength control
using tactile feedback, which is able to deal with un-
known objects of different shape, size and material. We
develop a generic method that exploits the structure of
an anthropomorphic hand to be simple and effective. Our
approach uses techniques from classical control theory to
develop a controller in charge of coordinating the fingers
for achieving grasp stabilization and grip strength control.
Then, we applied a machine learning method based on
Gaussian mixture model regression, with the aim of further
improving stability and increasing robustness to external
perturbations. The method has been validated on the iCub
robot. Experimental results show the effectiveness of our
approach.

I. INTRODUCTION

Grasp stability is a fundamental topic in robotics.
A stable grasp is needed in order to prevent objects
from slipping and is the basis for manipulation. In order
to achieve this objective, many works adopt analytical
solutions (see [1] for a review). Indeed, when the hand
kinematics and the contacts between the hand and the
object are known, it is possible to determine if the
grasp is in force or form closure [2], which is sufficient
for stability. However, many difficulties arise when the
object model is unavailable or partially known. As a
result, grasps cannot be pre-planned, and the typical
strategy is to make extensive use of sensors in order
to deal in real-time with environmental uncertainties.

In this context, tactile feedback can reveal object prop-
erties which could be hardly detected by other sensors
(e.g., object softness and shape at the points of contact)
and perform proper reactive strategies. Different works
pointed out the importance of exploiting such a rich set
of sensory information while manipulating objects [3]
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Fig. 1: Schema of our hierarchical approach. Arrows
represent information flow.

[4]. As a result, in order to deal with grasp stability
many tactile-based methods have been developed.

One way to approach the problem is by focusing
on the selection of feasible points of contact to avoid
unstable grasps. Typically, these methods rely, at least
partially, on vision [5] or make assumptions about the
object model [6]. Other works still aim at evaluating the
grasp stability [7], but do not provide active strategies
to improve the grasp. Another approach – considered
in this work – is to adjust an initial unstable grasp to
a stable one. In this respect, Sauser et al. [8] use a
model representing stable grasps in order to infer the
hand configuration and pressure at the fingertips given
the estimated normals of contact between the hand and
the object. Li et al. [9] use a similar model to regulate
the stiffness at the fingertips depending on the tactile
readings and on the relative positions of the points of
contact. In both works, stable grasps are learned with
the help of a human demonstrator. Indeed, learning by
demonstration proves to be helpful in order to reduce the
complexity of tasks where many variables are involved
[10] [11]. Dang et al. [12] build a database of stable
grasps using a simulator. When an object is grasped they
search for the nearest stable grasp in the database.

Usually grasp stability approaches implicitly define
the grip strength to be applied to the object. This is suf-
ficient if the only objective is to achieve a stable grasp,
however, it strongly limits any further grip strength
control on the object. An independent control of the grip



strength is beneficial for several tasks, like slip control or
object exploration (e.g., to explore object properties like
softness and type of material). However, the problem of
controlling the grip strength while maintaining a stable
grasp is hard. Indeed, due to several nonlinearities in
the system, a simple proportional variation of the forces
applied to the object does not guarantee that stability
is maintained. Jalani et al. [13] use a model reference
approach where a virtual mass-spring damper system
is used to design a robust active compliant control.
However, the model parameters need to be tuned for
every different object class.

In this work we combine techniques from control
theory and machine learning in a hierarchical control.
The novelty of our method is that it decouples the
problem of grip strength control and grasp stability,
providing an effective framework where both objectives
are achieved at the same time. Our solution can be
applied to unknown objects of different size, shape and
material, without the need for object specific tuning. We
deal with precision grasps [14], where only the fingertips
are in contact with the object.

We validated our method on the humanoid robot iCub
[15], performing experiments to demonstrate reliable
control of grip strength and improvement of grasp sta-
bility.

In the next section we present the methodology used
to solve the problem. In section III we describe the
platform, the experiments carried out to validate our
method and the related results. Finally, in section IV
we draw the conclusions of this work.

II. METHODOLOGY

We propose a hierarchical method made of three main
components (Fig. 1):
• A low-level controller framework, composed of a

force controller for each finger.
• A high-level controller, which determines the force

reference values for each finger in order to stabilize
the grasp while maintaining a given grip strength.
At this stage, the controller is simplified by taking
advantage of the anthropomorphic structure of the
hand.

• A Gaussian mixture regression model, which ex-
ploits the high-level controller to further improve
stability by changing the hand configuration. We
made use of learning by demonstration in order to
describe the space of stable grasps.

The data required for the Gaussian mixture model
(GMM) training process are significantly reduced in
quantity with respect to other methods considering that

Fig. 2: When the grasp is stable the force directions are
assumed to be parallel.

the relationship between the forces at the fingertips do
not need to be learned, since the underlying high level
controller takes care of that.

In this work we only focus on three-finger precision
grasps. We make extensive use of tactile feedback, and
we define the vector f ≡ [fth find fmid] ∈ R3

containing the tactile reading at each fingertip. Since
we deal with precision grasps, the palm is not taken
into consideration.

In the following subsections we first give our defini-
tion of grip strength for anthropomorphic hands, then
we detail our strategy.

A. Grip strength

Inspired by work on humans [16], we define the grip
strength as the measure of force exerted on the object
by the thumb (on one side) and the index and middle
fingers (on the other side). Ideally, the tactile readings fi
at each fingertip are proportional to the magnitude, Fi,
of the real forces. However, tactile sensors are subject to
calibration errors, noise, hysteresis, and they may detect
only normal forces. Therefore, we model fi as:

fi = k · Fi + e, (1)

where k is a proportional value converting the tactile
sensors output (in our case capacitance) into forces
(newtons), while e represents a random variable having a
normal distribution and equal variance on each fingertip,
i.e., e v N (0, σ), fi v N (k ·Fi, σ). In addition, we set
fIM = find + fmid v N (k · FIM , 2σ).

We further assume that when the grasp is stable, the
directions of all applied forces are parallel (Fig. 2).
Under this assumption we define the tactile measure of
the actual grip strength as g = k · Fth = k · FIM , and
its estimate ĝ(f) as the most probable value of g given
the observations fth and fIM :



PID FINGER
PLANT

f r f e   v f a

Fig. 3: Force control schema: fr represents the tactile
reference, while fa is the tactile readings at the fingertip.

ĝ(f) = argmax
g

p(g|fth, fIM ), (2)

where for sake of simplicity we omit random variables
in the notation. Using Bayes’ rule, and assuming p(g) to
be uniformly distributed, we can equivalently maximize
the likelihood function:

ĝ(f) = argmax
g

p(fth, fIM |g). (3)

According to our error model, we can rewrite ĝ(f) as
follows:

ĝ(f) = argmax
g

(p(fth, fIM |g))

= argmax
g

(p(fth|g) · p(fIM |g))

= argmax
g

(
k(σ) · e−(fth−g)

2/2σ2

· e−(fIM−g)
2/4σ2

)
= argmin

g

(
(fth − g)2

2σ2
+

(fIM − g)2

4σ2

)
=

2

3
· fth +

1

3
· (find + fmid),

(4)

where k(σ) is a quantity unrelated to g. This result
points out how the estimate fth is more reliable than
fIM . This is because fIM sums up noise affecting both
the index and the middle fingertips.

B. System components: force controllers

As first step we developed a framework made of a PID
force controller for each finger (Fig. 3). The input to the
plant is the voltage v to the motor actuating the proximal
joints, while the feedback is the tactile readings at the
fingertip. The other joints (i.e. those actuating the distal
and abduction movements) are controlled independently
in position. Using this approach we identified the system
parameters under different conditions (material property,
initial force value) and apply techniques from control
theory to identify the gains of a controller that is stable
in all working conditions.
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Fig. 4: Plant validation. The actual responses of the
system (in green) and the simulated response (in red) to
three step-up (left) and step-down (right) input signals.

We identified the system by placing the index fingertip
in constant contact with an object and by applying
step-wise input voltage while measuring the profile
of tactile feedback. We executed several experimental
sessions varying the initial tactile values, the height of
the voltage step and the object used. The main goal was
to better characterize the plant for different materials (in
particular different degrees of softness) and in diverse
working zones, where the presence of non-linearities
affect differently the overall performance. The results of
these experiments demonstrate that the response of the
system is repeatable, given the same initial conditions.

We approximate the response of the system in the
different conditions with a set of 32 first order Gi(s)
systems spanned by pairs of stable poles τp,i and DC
gains Ki. In formula:

Gi(s) =
Ki

τp,i · s+ 1
(5)

Each transfer function, characterized by the parameters
(Ki, τp,i), was successfully validated using further rep-
etitions of the related experiment, as shown in Fig. 4.

We then used the Robust Control Toolbox of
MATLAB, to compute, using all the pairs (K, τp) as
input, the optimal PID gains for the controller. These
allowed us to obtain gains that perform better (in terms
of system stability and step response) in all the working
conditions.



Fig. 5: The object center, Co, is defined as the centroid of
the triangle identified by the three points of contact (left).
The object position, αo, is defined as the angle between
the vectors ~OCo and ~OA (right). A and B are set at the
base of the middle finger and the thumb, respectively,
while O lies at midpoint between A and B.

C. System components: high-level controller

This layer coordinates the fingers by sending proper
tactile references to the low-level controllers, with the
aim of stabilizing the grasp while maintaining a given
grip strength. The controller enforces the constraint in
(4) and modulates the forces to control the position
of the object with respect to a frame attached to the
hand. We define the object center, Co, as the centroid
of the triangle identified by the three points of contact
between the fingertips and the object (Fig. 5). Instead
of controlling Co in the three-dimensional space, we
simplify the problem by considering that:
• at this stage, only proximal joints are free to move;
• in an anthropomorphic hand the rotational axis of

the proximal joints are nearly parallel to each other.
As a result, Co ends up moving along a curve path
when the object is controlled by our system, which is, in
turn, responsible for regulating the final position of the
fingers in contact. In order to locate Co along this path,
we define the object position, αo, as the angle shown
in Fig. 5. For our purposes, we are not interested in
controlling any possible rotation of the object around
Co. For this reason we always set the tactile references
of the index and the middle fingers equal.

The controller objective is to compensate the error
between the reference object position, αro, and the actual
object position, αao . In order to overcome such an
error we use a further PID controller dealing with the
following quantity:

u(f) = find + fmid − fth. (6)

The quantity u(f) represents our estimate of the resultant
force applied to the object by the fingers. Ideally, for u >

0, the object will move towards the thumb (i.e. α̇o > 0),
whereas for u < 0 the object will move towards the
index and the middle fingers (i.e. α̇o < 0); in practice,
the equilibrium will be satisfied for u = ueq 6= 0. As
depicted in Fig. 6, the high level PID controller takes
the object position error αeo = αro − αao as input signal
and yields suitable values of the control signal u to be
partitioned among the three fingers force controllers with
the goal of driving αeo to zero. Such a control partition
is found as follows: once a specific equilibrium index
u∗ is requested, and given a desired grip strength g∗,
the set of tactile references to be sent to the underlying
low level controllers can be calculated by solving the
following system of equations:

u(f) = u∗

g(f) = g∗

find = fmid

. (7)

This leads to:

find = fmid =
g∗

2
+
u∗

3
, fth = g∗ − u∗

3
. (8)

The resulting control schema is shown in Fig. 6.

D. System components: stable pose learning

At the top layer in the hierarchy a GMM provides
the values of α∗o and the remaining joints of the hand,
Θ∗np, that lead to the best grasp in terms of stability.
The GMM learns a probabilistic model of a set of stable
grasp poses. This model is trained by demonstration, i.e.,
a human operator marks stable grasps, avoiding grasp
configurations that are likely to cause object instability,
such as a nonzero momentum applied by the fingers or
unstable contacts between the object and the fingertips.
In addition, to facilitate consequent manipulation tasks,
we considered preferable grasp configurations that are
far from joint limits and in which the contact points
were as close as possible to the center of the fingertips.

The features that we chose as variables of the GMM
are the set Θnp, the object position αo and the set L
of lengths of the edges of the triangle defined by the
points of contact (Fig. 5). We indicate this set of features
used to train the model as G ≡< Θnp, αo,L >. The
likelihood of a given grasp configuration G∗ under a
GMM Ω with m components is calculated as follows:

p(G∗|Ω) =

m∑
i=1

πiN (G∗|µi,Σi) (9)
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Fig. 6: Final control schema including all the compo-
nents of our method. The cyan boxes represent the force
controllers, while the red dashed line identifies the high
level controller.

where πi is the prior of the ith Gaussian component and
µi and Σi are its related mean and variance; p(G∗|Ω)
can be considered as a measure of likelihood of stability.

We further characterize G as G = Q∪R, that is, the
union of two subsets. The first, denoted by Q = {L},
contains features that encode the structure of the object
and barely change while manipulation takes place. As a
result, they cannot be controlled. The second, denoted
by R = {Θnp, αo}, contains all features that can be
controlled.

The main idea is that, given a grasp on an object
and its corresponding set of features, Q∗, the model can
be exploited in order to infer a set of features R∗ that
maximizes p(G|Ω), and, consequently, makes the grasp
as stable as possible. The features R∗ can be easily
retrieved by taking the expectation over the conditional
distribution p(R|Q∗,Ω), which can be expressed in
closed form [8] [9]. Once R∗ is given, we know where to
steer the proximal joints of the hand using the high level
controller, whereas the remaining joints are controlled
in position to reach their set-point Θ∗np. In Fig. 6 is
reported the final control schema which includes the
GMM regression.

III. EXPERIMENTS

To validate our work we used the humanoid robot
iCub. The hands of the iCub are endowed with 9 joints.
Each of the 5 fingers has 12 capacitive tactile sensors on
the tip [17]. We estimate the force at each fingertip by
taking the magnitude of the vector obtained by summing
up all the normals at the sensor locations weighted by
the sensors response.

For training the GMM we used a set of 10 objects

Fig. 7: The objects used to train the GMM.

of different size, shape and material (Fig. 7). For each
object we carried out 6 different grasps, each starting
from a different hand pose. The object position, αo, and
all the joint values in Θnp were chosen manually in
order to find a pose that was visually determined to
be stable under the action of the high level controller.
After each grasp we stored the model features G. The
60 feature vectors were used to train the GMM.

During the training process we explored as much as
possible the space L of the distances between the points
of contact. In this way, the GMM regression becomes
reliable and robust with respect to the query point Q. In
our experiments, the number of Gaussian components,
m, is set to 2 using the Bayesian information criterion.
Before the training process, data was normalized to zero
mean with range [-1, 1].

We run several experiments in order to show the
effectiveness of our method. We evaluated the tracking
performance of the high-level controller in terms of
object position and grip strength control and the per-
formance of the grasping adaptation in terms of grasp
stability and pose quality.

In each experiment we used the four objects shown
in Fig. 8. These objects were chosen because they have
different size, shape and are made of different material.
In addition they are different from the ones used for the
PID force controller tuning and from the ones used for
the GMM training. During the experiments the encoders
and the tactile data were sampled at 50 Hz.

A. Object position tracking

For each object we used the high level controller
to control the object position by tracking sine wave
reference signals. Since the GMM regression is not used
in this experiment, only proximal joints are controlled
while the other joints are maintained fixed at a constant
position. During the experiments both the target and the
actual object position were collected.



Fig. 8: The objects used for the experiments.

Fig. 9: Object position tracking performance. For each
setting, the target object position (in red) and the mean
and the confidence interval at 95% over the different
objects of the actual object position are shown. We run
different trials where we varied the sine wave amplitude
(top), period (middle) and the grip strength (bottom)
starting from a reference sine wave with amplitude 10◦,
period 4 sec. and grip strength 80.

Fig. 9 shows the results for all the wave signals
considered. In each experiment the controller was able
to track the reference reliably and with low error.

B. Grip strength control

We evaluate the performance of the controller to main-
tain a desired grip strength on the object. We compare
our approach against a baseline, simpler strategy in
which the fingers move towards the object at constant
speed and stop as soon as contact is detected on the
fingertips. The grip strength on the object is measured
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Fig. 10: Grip strength control. The mean and the confi-
dence interval at 95% over the different trials are shown.
Notice that our approach allows controlling the grip
strength with higher realiability and accuracy than the
baseline.

using the tactile sensors and compared against the grip
strength obtained with our controller.

To evaluate our approach for each object, we tried to
reach two grip strength references, namely 40 and 80.
For the baseline, in order to achieve a given grip strength
x, we simply set the force thresholds to the fingers, that
is x to the thumb, and x

2 to both the index and the middle
fingers. For each combination of object and grip strength
reference we run 5 trials of the experiment, starting from
a different hand pose.

In Fig. 10 are shown the results of the experiment.
Notice that the grip strength achieved by the baseline is
generally higher than the target and quite unpredictable
(i.e. it is affected by high variance). Overshooting is
probably due to a delay in the tactile response, showing
that a proper force control is needed. By contrast, our
method is able to maintain the desired grip strength with
accuracy, independently from the object and from the
target reference.

C. Grasp stability

To measure the grasp stability we perturbed the hand
after the grasp adaptation obtained using the GMM
regression model. In particular, we carried out 5 ex-
periments per object and then compared the results
with the same baseline controller used for the previous
experiment. The perturbation consisted in shaking the
hand by means of a sine wave signal sent as position
reference to one of the wrist joints. The sine wave had
a period of 0.5 seconds, an amplitude of 5 degrees



Success rate Octopus Tennis ball Bottle Sponge

Our method 5/5 4/5 5/5 5/5
Baseline 4/5 1/5 2/5 4/5

TABLE I: Results of the stability performance experi-
ment. For each object the table shows the number of
times that the object did not fall after the perturbation.

and a total duration of 1 second. In order to make the
comparison fair, the same series of hand starting poses
was used for both methods under analysis. As measure
of stability we counted the number of times in which
the object did not fall as a result of the perturbation.

Table I shows that grasps obtained with our method
were robust to perturbations, even when dealing with
slippery objects, like the tennis ball and the bottle. In
contrast, the baseline method was unreliable with these
objects, meaning that the re-grasp strategy was effective.
On the other hand, the performance of both methods on
soft objects is similar, since these objects hardly slip
independently of the hand configuration.

D. Hand pose quality

With this experiment we demonstrate that the re-grasp
strategy provided by the GMM leads to hand config-
urations that are preferable for manipulation purposes.
Indeed, when an object is randomly grasped, the finger
might end up in a configuration that is close to the joint
bounds, or in which contact between the object and the
fingertips is close to the borders of the fingertip. In such
cases, any consequent manipulation would be limited. In
order to quantitatively describe this limiting condition,
we introduced the following indexes:
• The bounds penalty index:

ηB =
∑
i∈Θ

1

Θi −Θmini

+
1

Θmaxi −Θi
, (10)

where Θ is the set of hand’s joints, while Θmini

and Θmaxi represent lower and upper bounds of
the joint Θi;

• the contact penalty index:

ηC =
√
d2th + d2ind + d2mid, (11)

where di is the distance in length between the point
of contact on the fingertip i and its center.

For each object of the set, we carried out 5 grasps,
changing each time the starting hand pose.

Fig. 11 shows for each object the evolution of the
penalty indexes while grasping adaptation is applied.
The plot proves that the GMM regression actually man-
ages to move the joints far from their bounds and the

Time [s]

Fig. 11: Hand configuration penalties. The Figure shows,
for each object, the mean and the confidence interval at
95% over the 5 grasps of the penalty indexes.

points of contact close to the center of the fingertips.
In the case of the sponge, ηC does not decrease con-
siderably; this happens because the initial hand poses
had already a good configuration. The variance related
to ηB strongly reduces over time for all the objects. This
makes the method robust with respect to the initial hand
pose. In the case of ηC , such effect is much lower, since
the points of contact configuration is strongly dependent
on the shape of the object and can be hard to control.

IV. CONCLUSION

In this paper we dealt with active grasping adaption
to unknown objects in order to improve stability. Our
method is composed of three components: a low level
force controllers framework, a high level controller that
coordinates the fingers to achieve grasp stabilization and
grip strength control, and a machine learning approach
based on GMM regression aimed at further improving
the grasp stability. The method is made simple and
effective by taking advantage of the anthropomorphic
structure of the hand. Furthermore, since forces are
regulated by the high level controller, the amount of data
needed for the GMM training is strongly reduced.

We tested our method on the iCub robot to demon-
strate that our approach allows to reliably control the
position of the object in the hand, while controlling
the grip strength. Finally, we validated the re-grasp
strategy provided by the GMM to demonstrate that it
allows achieving grasp poses that are preferable for



manipulation purposes and robust to perturbations.
The novelty of our work is that it performs grasp

adaptation while allowing explicit control on the grip
strength on the object using tactile feedback. Although
not investigated in this paper, such feature can be useful
in many applications. For example, it allows to adapt the
grip-strengh to avoid slip while handling fragile objects
or to squeeze the object to extract material properties for
object recognition or subsequent in-hand manipulation.
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