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Abstract

A substantial effort is underway to make robots useful outside controlled en-
vironments and without direct human supervision. In practice, this can hap-
pen only after a rigorous certification process which ensures that several re-
quirements, e.g., operation safety, are met. Automated verification of control
programs can be part of cost-effective methodologies to support certification,
but it is widely recognized as difficult to attain in robotics, because of several
traits that characterize robot design and implementation. One such trait is the
widespread usage of middleware to implement control programs in a distributed
fashion. In these cases, the challenge of verification is made steep mainly by the
fact that the correctness of control software depends on middleware components
whose structured models might not be available, or too difficult to obtain from
their documentation.

Our proposal is to ease the application of automated verification techniques
by identifying abstract middleware models in the form of finite-state automata.
The identification procedure is itself largely automated, and the only prerequi-
site is for the middleware to be available for controlled experimentation. Once
middleware models are computed, behaviors that would lead to unsafe operation
can be spotted automatically on a composition of identified middleware and con-
trol software models using model checking techniques. The approach is based on
our tool AIDE — Automata IDentification Engine — to identify abstract mid-
dleware models, and the model checker SPIN to verify control units. To validate
our approach, we consider four different case studies built on YARP publish-
subscribe middleware. Our results confirm that AIDE enables the extension of
precise engineering methods to distributed control software in robotics.
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1. Introduction

The domains of consumer and civil robotics are expanding markets that
are considered to have high potential growth in a near future. It is considered
that this growth will be propelled by new robots designed for manufacturing
and service applications produced in low-volumes by SMEs [1]. In these do-
mains robots will operate in close interaction with untrained human operators
in everyday environments. Due to ethical and legal implications, safety and
functional soundness need to be demonstrated for such robots to become vi-
able commercial products [2]. For instance, the standard ISO 13482:2014 for
robotic assistants posits several requirements, among which clause 5.10 concern-
ing “Incorrect autonomous actions” stands out as peculiar with respect to other
cybernetic systems. The clause recites:

A personal care robot that is designed to make autonomous deci-
sions and actions, shall be designed to ensure that wrong decisions
and incorrect actions do not cause an unacceptable risk of harm.

Compliance to this requirement can be obtained by enforcing limits for speed
and force according to interaction zones, along with physical separation between
robot and human. However, such limits can restrict the scope of the interac-
tions, ruling out some of the envisaged applications for collaborative robots. To
minimize the need for such restrictions, the control software running in these
robotic platforms must be subjected to rigorous verification processes. More
specifically, since traditional verification techniques like visual inspection and
unit testing can hardly spot ill behaviors in the context of autonomous actions,
computer-aided verification can be used to systematically explore the state space
in search of requirement violations.

Automated verification can be useful and cost effective, but its application
is widely recognized to be challenging in robotics, because of several traits that
characterize robot design and implementation. One such trait are distributed
control programs, which are pervasive in modern industrial and research robots.
Middleware is a fundamental enabler of such architectures, managing hardware
heterogeneity, improving software quality, simplifying design and reducing de-
velopment costs. Middleware for robotics is a rich and constantly evolving field:
a survey published in 2008 cites 15 different such systems [26], but more have
emerged since then. Different kinds of middleware are characterized by different
levels of support, ease of use and applicability to robotics. Generic middleware
like CORBA3, Ice4, ØMQ5 and DDS6 provide complete communication back-
bones, but are rarely employed in robotics because they lack specific compo-
nents and have steep learning curves that prevent adoption. Robotic-specific

3http://www.corba.org/
4http://www.zeroc.com/ice.html
5http://zeromq.org/
6http://portals.omg.org/dds/
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middleware — like OROCOS7, Player [27], YARP [12], Orca [28], ROS [29],
OpenRDK [30], Mira [31] and LCM [32], to mention just a few — provide com-
plete functionality for a subset of communication paradigms including RPC,
publish-subscribe, transparent inter-process and intra-process communication.
In this paper, we will be focusing on distributed control programs built on
robotic-specific middleware which simplifies many aspects tied to code devel-
opment and deployment in robotics, but introduces further issues. Examples
include misuse of middleware components leading to unpredicted behaviors, or
configuration mistakes leading to execution errors. Insofar all components of
control software could be assigned a precise semantics, e.g., in terms of finite-
state machines, computer-aided verification is made possible by techniques such
as model-based testing and model checking. However, developing a structured
model can be difficult for a “black-box” component, i.e., an overly-complex,
poorly-documented, or closed-source piece of software. This becomes critical
when such component is located in middleware APIs used, e.g., to orchestrate
uniform access to hardware resources.

A viable solution to the problem of obtaining compact models of middleware
components is automata-based learning — see, e.g., [3] for a comprehensive
list of references. The key idea is that the internal structure of a black-box
component can be inferred by analyzing its interactions with an embedding
context. Learning algorithms supply the component with suitable input test
patterns to populate a “conjecture” automaton by observing the corresponding
outputs; then, they check whether the conjecture is behaviorally equivalent to
the actual component. Once identification of different kinds of abstract models
of middleware is enabled by automata-identification techniques, the correctness
of the whole control software can be checked resorting to various techniques. In
this contribution we explore the pairing between automata-based identification
and model checking — see, e.g., [4] for an overview. In short, once the abstract
model of a middleware component is obtained, it is combined with the abstract
model of the code relying on the component, and the composition is checked
against some prescribed property. Model checking, when practically feasible,
ensures an exhaustive exploration of all possible behaviors, and thus returns a
formal correctness statement about the whole control software.

Our work is inspired by previous contributions, mainly in the field of automata-
based learning and verification. The pioneering work in this domain is Black-box
checking (BBC) [5] which challenges the problem of verifying black-box systems
trough model checking. Since a prerequisite for model checking is the provi-
sion of a model which is not available in black-box systems, BBC combines
well known automata learning algorithms — namely, Angluin’s L∗ [6] — and
model checking techniques together. Adaptive model checking (AMC) [7] is an
extension of BBC where it is assumed that some model of the system to be
verified exists, but it might be inaccurate or partially obsolete. AMC research
shows that initializing the learning algorithm with existing information can im-

7http://www.orocos.org/
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prove the performances of the whole verification process when compared to BBC
approach. Applications of automata-based learning in robotics exists, but are
widely different from ours in terms of scope and purpose. For instance, an ap-
proach to teaching by demonstration is about enabling a robot to learn and
refine representations of complex tasks [8]. Through generalization, the robot
can incorporate several demonstrations of the same task into a single graph-like
representation. Natural feedback cues provided by the teacher through speech
allow the robot to further refine this representation. Map learning is another
application where automata-based inference was applied [9].

Considering the current state of the art, our main contributions are the
following:

• The application and experimental evaluation of automata-based inference
and verification to distributed control programs — whereof some prelimi-
nary evaluations can be found in previous works of ours [10, 11].

• Relevant case studies about the identification of YARP [12] components,
and several examples to demonstrate how the identified models can sup-
port bug-finding in control programs.

• An extensive experimental analysis is carried out with our tool AIDE [15]
— Automata IDentification Engine, combined with the state-of-the-art
model checker SPIN [16]. AIDE was developed entirely in the context of
this research project, and SPIN is integrated in our verification work-flow
to support YARP developers with automated bug-finding.

Our choice of YARP is dictated by several reasons, including a deep knowl-
edge of the platform, and a fairly large installed base due to the adoption of
YARP as the standard middleware of the humanoid iCub [13] and COMAN [14].
From a technical point of view, YARP provides a publish-subscribe framework
which offers the advantage of a relative simplicity, yet presents many of the
verification challenges that are intrinsic of middleware in distributed control
architectures. As mentioned above, while BBC and AMC works tackle prob-
lems similar to ours, their contribution is mainly theoretical and oriented to
computer-aided design of integrated circuits. On the other hand, previous ap-
plication of automata-based inference in robotics are not connected with the
problem of software verification. To the best of our knowledge, this is the first
contribution about automata-based identification from black-box middleware
that shows a potential to enable precise assessment of distributed control code
built on top of publish-subscribe middleware.

The remainder of this paper is organized as follows. In Section 2, a short
summary of background will be provided. Section 3 introduces and motivates
our YARP-based case studies by a working example. Section 4 presents our
experiments on identification, and Section 5 considers verification of identified
models plus software built on top of them. Finally, concluding remarks and
possible directions of future works are given in Section 6.
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2. Background

This section provides a short review and some background definitions related
to automata-based identification, model checking and middleware for robotics.
In the third subsection we also briefly introduce YARP, the middleware whereon
our case studies and experimental results are based.

2.1. Automata-based Identification

Broadly stated, the goal of model identification is to build a mathemati-
cal model of an unknown target system. Automata-based identification (also,
automata learning) amounts to learn a model of a system in terms of some
finite-state machine. We consider a setting in which the target system can be
experimented with, and experimental results are collected to learn a model —
also known as active learning. This field was pioneered by Gold [17], and later
refined by Angluin [6] with her L∗ algorithm to learn deterministic finite-state
automata (DFA). An adaptation of L∗ for identifying deterministic Mealy ma-
chines (DFMs) was first developed by Niese [18] and it was further extended by
Shahbaz [3], and by Irfan [19]. DFMs differ from DFAs because, besides making
state transitions on input symbols, they also emit some output symbol given the
current state and current input. For this reason, DFMs are more adequate than
DFAs to describe components that interact through input/output channels. In
the following, we consider yet another finite-state model known as interface au-
tomaton. Interface automata fit our context better than DFMs, because they
can model reactive systems that interact with their surrounding environment
in an asynchronous way. Formally, an Interface automaton (IA) as a quintuple
P = (I,O,Q, q0,→) where I is a set of input actions, O is a set of output actions,
Q is a set of states, q0 ∈ Q is the initial state of the system,→⊂ Q×(I∪O)×Q
is the transition relation. The sets O, I and Q are always finite, nonempty
and mutually disjoint. Provided that reasonable technical conditions are met,
algorithms to learn DFMs can also be adapted to learn IAs [20]. In order to
learn IAs corresponding to middleware components we use our open-source tool
AIDE — Automata IDentification Engine8. Currently, owing to its learning
algorithm for non-deterministic Mealy machines [15], AIDE is the only publicly
available automata-based identification tool which features learning algorithms
for behavior non-deterministic IAs. While we did not use such distinctive fea-
ture in this work, it could be useful for future extensions to deal with domain
abstractions that introduce non-deterministic behaviors — see [15] for relevant
examples.

2.2. Model Checking

A fundamental problem in most system engineering tasks is to check whether
a given design will satisfy all the intended requirements. Model checking [21, 22]

8AIDE is developed in C#; source code and documentation can be downloaded from
https://aide.codeplex.com/.
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is a computer-aided reasoning technique that checks requirements expressed in
temporal logic on systems modeled as finite state automata — for a review of
model checking and related techniques see [4]. In principle, model checking en-
tails the exploration of the whole space of behaviors generated by executing the
automaton starting from some initial conditions. If a violation of the property
is found among such behaviors, then a counterexample reproducing the offend-
ing behavior is returned. In practice, the space of possible behaviors can be
huge, even for relatively small models. For this reason, several techniques have
been introduced to make model checking feasible on designs of practical interest.
Among such techniques, one may distinguish among those which maintain an
explicit representation of explored states [16] — so called explicit state model
checking — and those which encode states as logical formulas and explorations
as operations on such formulas [23] — so called symbolic model checking. While
both formulations have their own pros and cons, they both succeeded in mak-
ing model checking a practical computer-aided technique to verify circuits and
protocols — see, e.g., [24].

In this work, we use model checking in order to assess properties of software
built on top of black-box middleware. The target model is obtained by com-
posing (i) IAs learned by AIDE from middleware with (ii) automata obtained
from software. In the latter case, it is important to notice that we assume that
software can always be modeled as a finite state machine, because the overall
model checking problem could be undecidable otherwise — see, e.g., [25]. Our
tool of choice is SPIN [16], an explicit-state model checker which inherently
supports a parallel computation model based on asynchronous composition and
shared memory. In SPIN, models are specified in a language called PROMELA
(Process Meta Language) and correctness claims are specified in the syntax of
standard linear temporal logic (LTL). As such, properties of interest that can be
checked with SPIN include absence of blocking synchronization, deadlock and
starvation, as well as mutual exclusion preservation. While not exhaustive of
the set of properties that might be desirable, they are by far the most common
causes of software malfunction in concurrent and distributed systems, so we
chose to focus on them in our investigation.

2.3. Publish-subscribe middleware

The publish-subscribe paradigm has become increasingly dominant in robotics
because it naturally supports the development of asynchronous and distributed
control applications. There are several variant of publish-subscribe architec-
tures each implementing different communication patterns. With reference to
the terminology introduced in [33] publish-subscribe offers three levels of de-
coupling mechanisms: space decoupling, time decoupling and synchronization
decoupling. Space decoupling is achieved when components produce messages
without being explicitly aware of the number and location of the receivers. Time
decoupling guarantees message delivery even if senders and receivers are not ac-
tive or connected at the same time. Finally, synchronization decoupling requires
that messages are sent and received asynchronously by the communicating en-
tities. When communication is asynchronous the issue is whether to guarantee
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that messages are correctly received by slow recipients. Persistence is therefore
another key property of publish-subscribers architectures [33]. Robotics appli-
cations are by nature driven by the need to implement real-time control loops:
for this reason robotic middleware often implements policies that attempt to
minimize latency at the cost of dropping messages.

Given its importance in robotics we focus our case studies on a publish-
subscribe architecture, in particular using the YARP library [12]. YARP is a
port-based middleware that provides a portable abstraction for the operating
system and implements a variant of the publish-subscribe paradigm, i.e. the
observer pattern [34], which is a type of distributed publish-subscribe providing
space and synchronization decoupling. YARP implements a port-based software
abstraction [35]. Objects of the Port class can deliver messages of any size and
type across a network, using a number of underlying protocols — including
shared memory. Ports can be configured to implement publish-subscribe with
different levels of decoupling and dynamically reconfiguration of connections
and protocols.

In YARP ports can be configured for synchronous or asynchronous commu-
nication through read and write primitives. In asynchronous communication the
latter can be blocking or non-blocking. Using Port objects, a component which
performs a synchronous write waits until all receivers confirm reception of the
message. Similarly a component which performs a synchronous read waits until
a new message is received by the port. By default Port objects in YARP are
configured for both synchronous read and write because it guarantees correct
delivery of messages without extra code. To support synchronization decou-
pling YARP provides the BufferedPort class. This is a type of port configured
for asynchronous operations, i.e., BufferedPort objects are able to store and
handle messages internally — either for transmitting or receiving them — using
dedicated threads. In this case, different policies can be used to buffer messages:
First In First Out (FIFO) policy uses a queue that grows and guarantees that
no message is dropped; Oldest Packet Drop (OPD) policy uses fixed size buffers
in which new messages overwrite old ones to guarantee minimum latency. Read
operations in a BufferedPort object can be blocking in case we want execution
to wait for incoming packets or non-blocking for fully asynchronous operations.

To summarize, in this paper we will consider the following objects and con-
figurations:

• Port objects in which read and write are blocking and sender and receiver
strictly synchronized;

• BufferedPort objects in which read and write are asynchronous, read
operations are blocking, and buffering policy is FIFO or OPD;

• BufferedPort objects in which, in addition, read operations are non-
blocking and buffering policy is FIFO or OPD.

These different communication modalities can have a large impact on the
behavior of the components and, if not properly understood, can lead to un-
expected behavior and introduce subtle bugs. We will see that our approach
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1: procedure Writer
2: Input P1, P2, Q1: BufferedPort
3: !Initialize P1 and P2 as FIFO
4: Connect P1 to Q1

5: while true do
6: for i = 1 to N do
7: Write message m to P1

8: end for
9: Read message from P2

10: end while
11: end procedure

1: procedure Reader
2: Input Q1, Q2, P2: BufferedPort
3: Initialize Q1 and Q2 as FIFO
4: Connect Q2 to P2

5: while true do
6: for i = 1 to N do
7: Read message m from Q1

8: end for
9: Create a message m′

10: Write m′ to Q2

11: end while
12: end procedure

Figure 1: An example code client (left) and server (right). In the server it is easy to introduce
a subtle bug: if the buffered port is not configured to use FIFO buffering (line 3) the server
may loose a packet and wait forever.

enables learning models of different types of ports and testing user code that
relies on them.

3. An Explanatory Example

In order to understand how the techniques described in the previous section
are applied, we introduce a simple example, yet one that contains all the in-
gredients that we deem relevant.9 Let us assume that we have two components
Writer and Reader whose pseudo-code is presented in Figure 1. Writer
sends some constant number of packets, say N , and Reader waits for them,
processes them, and finally returns an acknowledgment to Writer. After the
acknowledgment packet is received, the procedure starts again. Inside a robotic
control architecture, Writer could be a component providing some service,
e.g., an Object Detector producing coordinates of the detected object in the 3D
space; Reader could be a component which relies on such service, e.g., a Gaze
Controller receiving object coordinates to control the head of the robot to gaze
at the target point.

Given the code in Figure 1, a problem may arise if BufferedPort objects are
not configured correctly. Since communication is asynchronous, packets must
be queued if Reader is not fast enough to match Writer. To do this, ports

9This example is already described as a case study in Section 3 of [11]. Notice that the
total run-time herein reported for identification of various models is at least one order of
magnitude larger than the one reported in [11]. This discrepancy is due to a different value
of Tmax which is set to 50 ms in [11] and to 500 ms in our current experiments. The reason
of the different choice is entirely due to the different interfacing mechanism used with YARP:
direct software connection in the case of [11] and network connection in this paper. While
more general, network connection forces us to consider a large enough observation time to be
sure that network delays do not cause mistakes in the identification process — see Section 4
for more details.
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Figure 2: Behavior of a Port with one writer w and one reader r (left), behavior of a
BufferedPort with OPD (center) and FIFO (right) policy. The input actions r.read and
w.write denote the receiver thread reading from a port and sender thread writing to a port.
The data refers to output action of delivering data to the receiver. By convention, we append
to the name of a transition the symbol ? (resp. !) to denote that it is an input (resp. output)
transition and the initial state is represented with double circle.

must be configured for FIFO buffering policy explicitly because asynchronous
operations in buffered ports adopt the default OPD policy to comply with real-
time constraints. Unfortunately, the code in Figure 1 relies on the fact that all
N packets sent by Writer must be received by Reader lest the two process
deadlock. In order to detect misconfiguration of YARP in such settings, a model
checker requires the automata corresponding to Reader, Writer and also a
model of the underlying communication services provided by YARP.

To infer a model of read/write services through YARP, we consider the be-
havior of one port with just one writer w and one reader r. In particular we
identify the port model in three different configurations: standard Port ob-
jects and asynchronous BufferedPort objects with FIFO and OPD policy. The
resulting models are depicted in Figure 2. In the case of a standard port —
Figure 2 (left) — identification requires 600 CPU seconds overall.10. Here, the
type of communication is of a ”send/reply” type, wherein the writer and the
reader are tightly coupled. In the case of a BufferedPort object — Figure 2
(center, right) — the writer and the reader enjoy more decoupling, in the sense
that YARP takes care of the lifetime of the objects being transmitted through
the ports by pooling them, and handling the pool in accordance with the de-
cided policy. By default, a BufferedPort will follow a OPD policy, i.e., it will
keep the newest message received only — Figure 2 (center). This is because in
the implementation of control loops, it is often preferable to reduce the com-
munication latency at the cost of dropping (late) packets. If FIFO mode is
enabled — Figure 2 (right) — YARP keeps all received messages. Since in this
mode the resulting model would be infinite-state, we limit the system to send

10All the experiments have been carried out on a Core2Duo 2.26GHz PC with 4GB of RAM
on Ubuntu 12.04.
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proc stmt cur act next
Writer: Write m1 to P1 0 ?w.write 2
Writer: Write m2 to P1 2 ?w.write 2
Reader: Read from Q1 2 ?r.read 3
Reader: (receives m2) 3 !data 0
Reader: Read from Q1 0 ?r.read 1

Figure 3: Trace leading to a deadlock in the example shown in Figure 1. The trace shows
which process is running (proc), which statement is executed (stmt) and what happens in
the YARP IA model: cur is the current state, act is the (input/output) action, and next is
the next state.

N packets at most, so that the buffer will never exceed the maximum size of N
messages. In Figure 2 (right), we can see the model of a BufferedPort (FIFO)
with N = 2, whose identification required 3900 CPU seconds. It is important
to notice that in all these cases, most of the time to infer the model is spent
on network communication between the learner and a system wrapper, system
resets, and other bookkeeping tasks. Overall, less than 1% of the total time is
spent inside the core learning algorithm.

Both Writer and Reader can be translated into an interface automaton
and they can be composed with one of the identified automata of the port
component shown in Figure 2, considering a specific number of packets N .
For N = 2, the trace shown in Figure 3 leads to a deadlock if BufferedPort

is configured in OPD mode as in Figure 2 (center). As it can be seen, two
consecutive writes on BufferedPort (with OPD policy) will take the IA into
state 3 (here, packet m1 is dropped); one read followed by data transmission
will bring the IA back in the initial state. Finally, the second read will bring
the IA into state 1. Unless there is a further write, the IA will not exit state
1. However, Writer is waiting for an acknowledgment from Reader and thus
will not perform any further write. On the other side, Reader stalls waiting for
another packet — which was dropped. If the port were operating in FIFO mode
as in Figure 2 (bottom), then the trace above would not result in a deadlock,
because both messages will be queued and received in due course.

4. Identification of YARP Components

In this section, we present the results of our experiments to identify some
components in YARP middleware with our tool AIDE. To this end, we made
some assumptions outlined in the following.

Active and passive states are separated. In all our experiments, it is assumed
that active and passive states are separated in our target, i.e., any single state
cannot have both input and output actions enabled at the same time. From a
practical point of view, when learning a system we wait for some output only
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Table 1: Identification of different YARP ports. We consider synchronous Port objects as
well as asynchronous BufferedPort objects including non-blocking reading for both FIFO
and OPD mode. The reported measures include number of states |Q| and transitions |T |
of the identified model, number of output (“#MM”) and equivalence (“#EQ”) queries in
the learning algorithm, number of experiments on the SUL (“#Exp”), number of cache hits
(“%hit”) and total time spent on learning.

Model |Q| |T | #MM #EQ #Exp %hit Time (×1000s)
Port 4 5 18 1 218 81% 0.6
BufferedPort, OPD 4 6 42 2 243 61% 1.8
BufferedPort, FIFO 8 11 144 5 280 51% 3.9
BufferedPort, OPD, non-blocking read 4 8 45 2 246 36% 3.4
BufferedPort, FIFO, non-blocking read 8 16 160 4 414 32% 3.3

within a predefined Tmax interval. If there is no output in such interval, then
we conclude that the current state is passive and some input should be given
to the system. Technically, we say that quiescence of the system is observable
by the learning algorithm [20, 36]. Whenever the system is not quiescent, the
current state is considered as active and no input is tried in that state. In
our experiments, we consider Tmax as 500ms since this value is large enough to
observe all the responses from the System Under Learning (SUL), even those
that are severely delayed. Clearly, choosing an even larger Tmax would not
hurt the correctness of the identified model, but it would degrade performances
substantially. On the other hand, while a smaller value for Tmax would increase
the performances of identification in terms of total run-time, it may also cause
delayed responses from the SUL to be assigned as outputs to states that do not
exist in the real system.

System is deterministic. We assume that our system is output deterministic,
meaning that there is only one observable event in any active state. If the system
were not output deterministic, then the — deterministic — learning algorithm
would fail. While AIDE incorporates an algorithm to learn non-deterministic
models [15], all the case studies that we present in this paper do not require
such extension.

Queries are cached. Since the system is assumed to be deterministic, the
result of the experiments — also called queries — performed on the SUL can
be cached. AIDE implements this mechanism in a way which is transparent for
the core learning algorithm. In practice, the cache maintained by AIDE is a
tree of execution traces which is traversed each time an experiment is to be run
on the SUL, so that calls to the real systems are deferred as much as possible.
Caching queries, also helps in determining if a state is active or passive, based
on the history of traces executed on the SUL.

Equivalence is Conformance Testing. Once the learning algorithm has enough
information about the traces of the SUL, a conjecture about the corresponding
IA can be extracted from those traces. At this point, AIDE must establish
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Table 2: Scalability analysis for learning BufferedPort with FIFO buffering and different
maximum buffer size (N). Legend as in Table 1.

N |Q| |T | #MM #EQ #Exp %hit Time (×1000s)
1 4 5 18 1 218 86% 0.6
2 6 8 72 3 279 52% 3.1
3 8 11 144 5 280 51% 3.9
4 10 14 255 6 395 55% 6.8
5 12 17 504 7 689 64% 10.7
6 14 20 1218 8 1476 72% 22.0
7 16 23 1440 8 1841 69% 35.0

whether the conjecture is equivalent to the SUL or not, but there is no exact
way to do so in practice. AIDE approximates equivalence checks with random
walk testing: the SUL is experimented with random input sequences, and it is
checked whether those sequences are simulated by the conjecture automaton.
If a trace cannot be simulated, then the learning algorithm restarts from that
trace to build an extended conjecture. In our implementation, the maximum
number of tests is a user-defined parameter ζ. The length of tests is randomly
selected between |Q| an K∗|Q|, where |Q| is cardinality of the set of states in the
conjecture automaton, and K is also a user-defined parameter. In this way, as
the size of the conjecture automaton grows, the length of the tests also grows. In
our experiments we set ζ = 200 and K = 3, which are always sufficient to learn
an accurate model of the SUL. These settings resulted from some preliminary
experiments wherein we tried increasing the values of ζ and K until we could
make sure that the learned model was accurate, at least for the case studies we
consider. Increasing ζ and K even further would not bring any benefit to the
accuracy of the learned model, but it could degrade learning performances. On
the other hand, combination of ζ and K such that either ζ < 200 or K < 3 do
not guarantee an accurate learning process in all cases.

Overall, the trade-off between accuracy and performances in the learning
process is regulated by the three parameters Tmax, ζ and K. While the choices
we made are adequate for all the case studies we consider, it should be noticed
that their setting depends on the SUL and on the learning environment. From
the point of view of sheer performances, these parameters should be always
set to the least possible value which does not compromise on accuracy. Since
verification of software built on top of SULs is our ultimate target, we have
chosen to compromise on performances while ensuring that the learned model
is accurate. In the end, the learned model is going to be used to check several
pieces of software, and therefore the price we pay in learning can be amortized
over several verification sessions.

4.1. Identification of YARP ports

We have already showed an example of identification in Section 3 for three
conditions: Port, BufferedPort with OPD and BufferedPort with FIFO. In
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Table 3: Learning an emulated BufferedPort component based on previously identified con-
jectures in three different scenarios.

N S1 (ms) S2 (ms) S3 (s)
1 33 70 185
2 44 160 1015
3 49 251 2030
4 55 499 3318
5 99 770 4815
6 120 1095 6854

the following, we consider further elements related to YARP port abstractions.
In particular we consider the case in which the read primitive is non-blocking.
Complete identification results for all configurations are presented in Table 1.
Considering the learned automata, we see that the behavior of Port is similar
to BufferePort with OPD. In a Port object, both read and write are blocking,
whereas in a BufferedPort with OPD, write is not a blocking primitive: if
the output buffer is not empty, the next call to write will overwrite the previous
message. In BufferedPort with FIFO policy enabled, writing to the port is still
non-blocking, but the new message is queued in the buffer and older packets are
not dropped — in Table 1 the size of the buffer is N = 2.

In case of BufferedPort, the size of the buffer clearly matters, because
we must ensure that the model inferred can support verification of the code
relying on top of it. If such code requires a buffer whose size cannot be bounded
at compile-time, then learning and verification with finite-state models are not
feasible. On the other hand, if the buffer size can be bounded, our approach can
still be used to validate the code. To see the effects of buffer size on identification,
we have also considered the effects of increasing the maximum buffer size (N) in
a BufferedPort when buffering policy is set to FIFO. These results are shown
in Table 2. For N = 1, the observed model is the same as normal Port objects,
and by increasing the size, the size of the model grows gradually. Notice that,
if e(N) denotes the number of experiments as a function of buffer size N , then
e(N) grows more than proportionally with N .

In order to measure how much of the learning time is due to interaction
with the SUL, as opposed to the time spent in core learning tasks, we consider
learning in three different scenarios. In each scenario, an emulator is used to
interact with the learner in place of the real black-box system. The emulator
is “programmed” using a previously-identified model of YARP. In our case,
the model is BufferedPort with different buffer sizes. In the first scenario,
denoted as “S1”, the emulator is connected to the learner directly, via native
method calls; in the second scenario, denoted as “S2”, the emulator is connected
remotely via TCP/IP, but the learner can investigate about existence of an
event, i.e., quiescence can be queried about; finally, in scenario “S3”, quiescence
is still observable, but this time the learner must wait a prescribed amount
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Figure 4: Port with two reader and one writer, in the case in which reader 1 gets connected
to the port before reader 2. This is an extension of the model presented in Figure 2 which
was with one reader and one writer.

of time to assess whether the state is quiescent or not. Table 3 presents the
learning time for scenarios S1, S2, S3. Comparing these results to Table 2, one
can see that a tiny fraction of the time spent to learn the real system is required
to identify an emulated model. Still, the main portion of learning time is the
waiting time required for each action, as witnessed by the fact that in S1 and
S2 times are millisecond whereas in S3 learning is measured in seconds.

All the experiments above are carried out considering a configuration with a
single writer and a single reader to-from a YARP port, as in Section 3. However,
we would like to remark that this is not because of any intrinsic limitation of
AIDE. For example, in Figure 4, a model of port communication with two
readers and one writer is presented — identification of this model required 342
membership queries and 4 equivalence queries which took about 3.5 CPU hours
overall. This specific example also contributes to show that learning abstract
models with AIDE is useful to uncover specific and/or undocumented features
which affect YARP abstractions. In the case of Figure 4, the unintuitive aspect
is that when two readers connect to the same port, the order of connection
matters. In particular, after the writer sends a packet to the port, the reader
which connected later (reader 2) has to wait for the the first reader (reader 1)
to get the packet from the port. Failing to recognize such behavior in code
implemented in the readers, might easily cause deadlocks.

4.2. Identification of YARP semaphores

Besides ports, another widely used YARP component is the semaphore ab-
straction. In YARP a semaphore is implemented according to the POSIX stan-
dard [37]. In particular, a semaphore has an internal counter which can be
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Figure 5: Identified model of YARP semaphore with maximum value 3.

safely incremented or decremented by multiple threads. Indeed, the two basic
operations on semaphores are wait — for counter decrement — and post — for
counter increment. The behavior of wait is different according to the internal
state of the semaphore. If a thread calls wait on a semaphore with initial value
greater than one, then the semaphore is decremented and the calling thread
resumes immediately; if the initial value of the semaphore is 0, then the calling
thread must wait until the semaphore is restored to a value greater than 0.
An additional reset operation can be used to initialize the semaphore. Unless
specified otherwise, we assume a default initial value of one, i.e., the semaphore
marshals exactly one shared resource. Notice that, since the internal counter of
the semaphore can increase, the state space of a semaphore is not bounded at
compile time. Like for asynchronous ports with FIFO policy, if we are to learn
semaphores using finite-state models, we have to limit the difference between
the number of executed wait and post, i.e., the maximum value of the internal
counter, to a constant integer N .

In Table 4, we present the results related to the size of identified models and
the time required to learn them. Our identification experiment considers syn-
chronization between two threads for different maximum values of the internal
counter. As shown in Figure 5 for N = 3 and two threads, we assume that
the input alphabet consists of the primitives wait and post executed by the two
threads — a total of four input actions. In the initial state q = 0, the counter
value is one. From this state it is possible to either decrement or increment the
counter, consistently with the POSIX standard definition [37]. States q = 2 and
q = 6 correspond to one and two consecutive post actions, respectively. Since
we do not allow the internal counter to have a value higher than N = 3, iden-
tification does not generate further states. On the other hand, if a wait action
is executed in q = 0, then we know that the next call will be blocking. Once in
q = 1, if thread t1 executes wait the semaphore blocks in q = 3 until the other
thread executes post; symmetrically, if t2 executes wait the semaphore blocks
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Table 4: Scalability analysis for learning semaphore of different maximum count N . Legend
as in Table 1.

N |Q| |T | #MM #EQ #Exp %hit Time (×1000s)
1 7 12 65 1 265 38% 0.93
2 10 18 152 3 367 32% 1.90
3 13 24 300 5 533 42% 2.78
4 16 29 620 7 883 54% 4.15
5 19 37 1406 9 1704 61% 7.07
6 22 42 2451 7 3210 64% 11.5

in q = 4. In such states, a further wait request by the thread which is still not
blocked — either t2 in q = 3 or t1 in q = 4 — causes a deadlock represented
by state q = 5. Notice that the model identified by AIDE suffers from a po-
tential deadlock if state q = 5 is reached (Figure 5). Indeed, if the real system
uses the semaphore in a wrong way, i.e., if a user tries to acquire two times the
semaphore without freeing it, this is exactly the behavior that will occur.

5. Case Studies

In this section, we consider verification of some case studies building on the
models identified in the previous one. These cover practical examples in which
mistakes in the code can result in unsafe robot behavior. We verify the fol-
lowing properties: correct access to critical sections and absence of deadlocks,
starvation and missing messages (packets drop). In the first case study a plan-
ner sends via points to a controller using shared memory. Incorrect handling
of critical sections may results in corrupted position commands received by the
controller. The controller may even skip via points if messages are dropped.
Both situations lead to unpredictable behavior and, potentially, to collisions
and consequent damages. A deadlock in this case is not immediately dangerous
for the robot. However resetting the system to resume execution may require
expensive operations, especially in the context of manufacturing. In the second
case study the robot tracks a target. Here, a deadlock may have dangerous ef-
fects on the tracking performances, requiring the intervention of safety measures
like watchdogs or limit checks and consequent need to restart the system. The
third case study investigates smooth termination of a software component. In
this case incorrect software behavior may prevent proper execution of parking
routines leaving the system in an undefined, possibly dangerous, state. Finally,
the last example considers a distributed system for resource management. Be-
sides problems due to deadlock and starvation already illustrated, the resource
manager (arbiter) may incorrectly assign the same resource multiple times. If
the manager is regulating how software components have access to, e.g., the
motors, this can result again in unpredictable robot behavior.

In all such cases, YARP components are considered as black-box, whereas
the overall application to be verified is white-box, i.e., the source code is used
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1: procedure Planner
2: Input S1 . . . Sn : Semaphore
3: Input B1 . . . Bn : Queue
4: while true do
5: Produce message m1 . . .mn

6: for i ← 1 to n do
7: if Bi is not full then
8: Wait(Si)
9: Enqueue mi in Bi

10: Post(Si)
11: end if
12: end for
13: end while
14: end procedure

1: procedure Controller
2: Input Si: Semaphore
3: Input Bi : Queue
4: while true do
5: if Bi is not empty then
6: Wait(Si)
7: Dequeue m from Bi

8: Post(Si)
9: end if

10: Process m
11: end while
12: end procedure

Figure 6: Planner - Controller(s) example using YARP semaphore/mutex.

to build a model for verification. To verify applications that rely on YARP, we
have to “compose” them with the identified models. This can be done in two
steps. The first one is code abstraction, i.e., the code of applications which use
YARP — usually C++ — is translated into PROMELA code for SPIN. Here,
the translation is manual, but in principle, it can be done in an automated fash-
ion. The second one is translation of identified models, i.e., conversion of inferred
IAs into a PROMELA models. Every model is translated into a process which
communicates with two unbuffered channels to simulate synchronous communi-
cation. The task of the channels is to receive input actions from environment,
and emit output events correspondingly. To make the composition flexible, the
input and output channels are the parameters of the process. At any time, the
next state is determined by the received input action or the emitted event, and
all the transitions are performed as atomic actions. In addition to PROMELA,
learned automata can be exported as DOT graphs — for visualization purposes
— and C++ — to be used, e.g., as a stub for testing. Once both the applica-
tion code and the YARP components are translated into PROMELA, it is SPIN
which takes care of their composition.

5.1. Planner - Controller(s)

In this case we assume that data coming from a single (high-level) Planner
module must be dispatched to one or more (low-level) Controller modules. For
instance, when a complex movement is requested, the planner converts it to a
number of task to be sent to joint controllers for execution. We assume that
tasks are put in FIFO buffers by the planner for the controllers to read and
execute. YARP semaphores can be used to synchronize access to the queues; we
are implicitly assuming that the planner and the controllers communicate using
a shared-memory model, so that YARP ports are not needed — see Section 5.4
for a more complex scenario involving both semaphores and ports. In Figure 6
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we show the pseudo-code for one planner and n controller modules. According
to the code, the planner enqueues messages in n different queues. A message
for controller i is enqueued only if the queue Bi is not full, with semaphore Si

ensuring synchronized access. Controllers extract message from the queues as
long as there is one. Also extraction from the buffer is considered a critical
section and it is guarded by a pair of Post and Wait primitives.

Examples of properties that we would like to check in this case, include
mutual exclusion guarantee, absence of starvation, deadlock, non-blocking syn-
chronization and absence of packet loss. Considering one planner and two con-
trollers as in Figure 6, SPIN can verify that all such properties hold within 10ms
of CPU time. This requires the specification of additional fairness constraints,
i.e., a set of directives which forces SPIN to consider only execution traces in
which all threads get a fair chance of execution. If we drop this assumption, the
example in Figure 6 still guarantees mutual exclusion in the access to buffers,
but it could be subject to other fallacies. For instance, starvation may occur
because there is nothing in the code that prevents one of the two controllers
to be never called. If one of the two controllers is starving, then also packet
loss will occur, because the planner will keep producing messages which will be
dropped as soon as the buffer associated to the starving thread becomes full.
Packet loss may occur also in the absence of starvation, if the planner gets much
more processing time than the controllers: in this case the buffers might become
full while the planner keeps generating (and discarding) messages. Deadlock, on
the other hand, will not happen even under unfair scheduling, unless we change
the code to ensure that no packet is loss. In this case, the planner should wait
until each controller gets the message before exiting the critical section, but if
a controller is starving, then it will never allow the planner to do so, resulting
in a deadlock. We checked all these scenarios in SPIN by removing fairness
assumptions. Notice that, if the semaphore is used incorrectly, i.e., two consec-
utive calls by the same user without a release in the middle, than a deadlock
arises. The example presented in Figure 6 uses the semaphore correctly and the
deadlock never happens. However, also an incorrect use of the semaphore can
be spotted by SPIN.

5.2. Tracker - Sensor - Controller

In control programs organized on publish-subscribe middleware, it is com-
mon to send sensory information and commands on distinct channels. If this is
the case, components may receive information from multiple sources and must
synchronize their activities on data received from such connections. In the
context of a grasping application, a practical example are the modules whose
pseudo-code is shown in Figure 7. Here a Tracker identifies the position of
the object in the workspace — for example, using stereo vision in the form of
three-dimensional coordinates. Through the connection between ports Q1 and
Q′1, this information reaches a Controller which in turn computes the torque
commands for the motors. Another component, a Sensor, reads sensory data
from a Force/Torque sensor placed in the kinematic chain, and publishes it on
a separate channel. The controller relies on this information to detect collisions
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1: procedure Tracker
2: Input Q1, Q′1: BufferedPort
3: Input N1: Natural
4: Set buffering policy for Q1 to OPD
5: Connect Q1 to Q′1
6: for i = 1 to N1 do
7: Track object coordinates
8: Pack object coordinates in m
9: Send message m to Q1

10: end for
11: end procedure

1: procedure Sensor
2: Input Q2, Q′2: BufferedPort
3: Input N2: Natural
4: Initialize BufferdPort Q2 for OPD
5: Set buffering policy for Q2 to OPD
6: Connect Q2 to Q′2
7: for i = 1 to N2 do
8: Read torque
9: Pack torque in m

10: Send message m to Q2

11: end for
12: end procedure

1: procedure Controller
2: Input Q′1, Q′2 : BufferedPort
3: Input N3: Natural
4: Set buffering policy for Q′1 and Q′2 to FIFO
5: for i = 1 to N3 do
6: Read message m1 from Q′1
7: Read message m2 from Q′2
8: Control joints on the basis of m1 and m2

9: end for
10: end procedure

Figure 7: Tracker - Sensor - Controller example, using YARP BufferedPort for communica-
tion.

Table 5: Results of verification in the Tracker - sensor - Controller example. Ni is the number
of iterations performed in the processes of Figure 7: “N1” in Tracker, “N2” in Sensor, and
“N3” in Controller; “N” is the maximum size of the buffer in the port; “#States” is the size
of the state space explored (combined YARP model + code model); “Time” is the amount
of CPU time consumed (in seconds); “Memory” is the amount of memory consumed (in
Megabytes); “Conclusion” is the final verdict of SPIN.

N1 N2 N3 N #States Time(s) Memory(MB) Conclusion

∞ ∞ ∞ 1 85 <0.01 128 OK
100 ∞ ∞ 1 1915 0.01 128 blocking
∞ ∞ ∞ 6 1268 0.01 235 OK
100 ∞ ∞ 6 1939 0.01 235 blocking
1000 ∞ ∞ 6 19039 0.07 236 blocking
100∗ ∞ ∞ 6 117463 0.16 244 OK
1000∗ ∞ ∞ 6 1196563 1.56 335 OK

and control the force exerted at the end-effector — connection between Q2 and
Q′2. The programmer of the controller must decide how to read data from both
connections. The crucial point is that these connections can become inactive,
e.g., when no valid target is detected by the Tracker, or in a situation where the
Tracker was closed by the user or died unexpectedly. To reduce latencies, the
default behavior of YARP is to have readers wait for data on a port (blocking
behavior). In this case, attempting to read data from both channels using the
default mode introduces an unexpected blocking synchronization when Tracker
does not produce any data.
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1: procedure Consumer
2: Input Q′1: BufferedPort
3: Input done: Bool
4: Set done=false
5: while !done do
6: Read a message m from Q′1
7: Decode m and do something
8: end while
9: Cleanup code

10: end procedure

1: procedure Producer
2: Input Q1, Q2, Q′1: BufferedPort
3: Input N : Natural
4: Connect Q1 to Q′1
5: for i = 1 to N do
6: Do something
7: Prepare message m
8: Send message m to Q1

9: end for
10: Send message quit to Q2

11: end procedure

1: procedure Monitor
2: Input Q′1, Q2, Q′2: BufferedPort
3: Input done: Bool
4: Connect Q2 to Q′2
5: Read message quit from Q′2
6: Set done = true
7: Call interrupt method on Q′1 (only in scenario S2)
8: end procedure

Figure 8: Producer-Consumer case study with a Monitor using the interrupt method.

In Table 5, the result of verification is presented. We consider scenarios
where all three modules are executed indefinitely (N1 = N2 = N3 = ∞), or
where the tracker stops after generating some packets, e.g., N1 = 100. This is
to simulate an unexpected termination of one “producer” while the other “pro-
ducer” and the “consumer” keep running. In all scenarios, YARP ports feature
FIFO buffered mode with buffer limit set to either 1 or 6. As shown in the table,
when the tracker stops after some packets are sent, a blocking synchronization
will occur. Increasing (i) the size of the buffer and/or (ii) the number of steps
before the tracker stops makes the verification problem more difficult. In the
last two rows of Table 5 we consider non-blocking read configuration for ports.
In this case, even if Tracker stops, blocking synchronization does not happen.
As a final remark, we report that the presence of a blocking synchronization
can be always verified by SPIN in less than 2 CPU seconds.

5.3. Handling smooth termination: Producer Consumer with a Monitor

In our experience, a typical example that confuses users is how to manage
proper termination of components that use YARP ports. In control programs,
components are most often driving hardware devices directly or holding han-
dles to device drivers. It is therefore fundamental that all components are able
to perform smooth cleanup of resources on exit. Cleanup in this case involves
operations that are critical for the safety of the system and include, e.g., relin-
quishing ownership of a device driver, or execution of parking routines to leave
the robot in a safe configuration. Failure to do so may leave the system in a cor-
rupt state, e.g., a device driver that remains locked or crashes, and even cause
physical damages, e.g., motors are powered down while the robot is still moving
or it is in a statically unstable configuration. Proper shutdown is something
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that people rarely take seriously because when dealing with pure software it is
safe — although a bad practice — to rely on the fact that the operating system
can kill a process and free all the resources it uses.

To handle process termination properly, YARP ports have a special primi-
tive called interrupt which enables stopping all pending read operations on the
ports, as well as any future read operation. This primitive is usually called
inside a signal handler or upon reception of a specific message on a port before
requesting termination of a component. Avoiding this primitive, or misusing it,
is most often causing ill behaviors on the controlled robot. As a slightly simpli-
fied case study of incorrect process termination, we consider again a producer-
consumer scenario. We suppose that we do not know in advance the number
of packets produced by Producer and we would like to control termination of
the components independently using a third component called Monitor. In a
real application, Monitor would be a graphical interface dedicated to monitor
and manage execution of components. Requests to start or terminate compo-
nents would be initiated by a human operator and delivered to the individual
components via dedicated YARP messages. In our case study, Producer signals
termination to the monitor after sending N packets.

The pseudo-code is reported in Fig 8. Producer terminates spontaneously
after a given amount of iterations N and, before closing, it notifies Monitor by
sending the message quit. Consumer cycles through a while loop to read mes-
sages from Producer. It terminates when the flag done is set to true, executing,
after the last iteration, a cleanup routine. Monitor is a procedure executed
by a thread that shares the same address space of Consumer. Its job is to 1)
wait for the quit message from Producer, and 2) ask Consumer to terminate
by setting the flag done=true. In addition, it invokes the interrupt primitive of
port Q′1 thus unblocking on-going and future calls to read on that port (line 6
in Monitor). This is in fact the crucial point: simply forgetting this line of code
results in a race condition that may lead to a deadlock. To see this, assume
that Consumer has parsed all the messages, then checks the value of done, finds
it to be still false, and therefore keeps waiting for new messages on line 6. At
the same time, Producer has finished sending N messages and sends quit to the
Monitor (line 10). Even if Monitor can now set the shared variable done to
true (line 6), Consumer is blocked waiting messages from Producer and has lost
forever its chance to exit the while loop and execute the cleanup routine, i.e.,
a deadlock condition.

The result of verification is presented in Table 6, for the two scenarios. In
Scenario 1 (S1) Monitor only sets the variable done=true and it skips invocation
of the interrupt primitive on Q′1. In Scenario 2 (S2) Monitor correctly invokes
the interrupt on Q′1. We ran the verification on SPIN for different model sizes
and different numbers of packets sent to the consumer. In all cases, the model
checker correctly identified the deadlock condition in Scenario 1, and correct
execution of the cleanup routine in Scenario 2.
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Table 6: Result of verification of Producer-Consumer with Monitor and invocation of interrupt.
N is the number of iterations performed by Producer, the Size of the buffered ports is 2.

Scenario N #States Time(s) Memory(MB) Conclusion

1 50 565 0.01 130 Deadlock
1 100 1115 0.01 130 Deadlock
1 150 1665 0.01 130 Deadlock
2 50 6618 0.01 130 OK
2 100 12818 0.01 131 OK
2 100 19018 0.02 132 OK

5.4. Centralized arbiter

When executing a complex task, it is often the case that a lot of modules
participate and their access to shared resources must be synchronized. If the
modules are spread across different machines, a shared-memory model like the
one used in the Planner - Controller(s) case study is not applicable, and some
kind of arbitration mechanism is required instead. YARP by itself does not
offer such facility, but it is possible to extend YARP using basic functionalities
provided by ports and semaphores. The simplest setting is that of a centralized
arbiter: modules that ought to share a pool of resources communicate with the
arbiter which disciplines access to the pool through a semaphore. Clearly, some
kind of resource-sharing protocol must be implemented, and this is a potential
source of bugs if the interaction with YARP components is not handled properly.

A simple but realistic example of synchronization relying on a centralized
arbiter is presented in Figure 9. Here, the arbiter is implemented as two threads,
namely ArbiterW and ArbiterP. We assume that there are n clients with
n known a priori and fixed, so that each of the clients is assigned a unique
identifier from 1 to n. A fixed number of resources m are assigned unique
identifiers from 1 to m and are marshaled by the arbiter — of course assuming
that m < n. To synchronize the clients, ArbiterW and ArbiterP share a
semaphore for resource counting. Since all the resources are assumed to be
available at the beginning, the semaphore is initialized to m. ArbiterW and
ArbiterP also share an object of type Table to keep track of resource allocation.
In particular, we assume that a Table object has three (thread-safe) primitives:
Assign retrieves the identifier of a free resource to be allocated to a given client;
isAssigned queries the table to check whether a given resource is assigned to
a given client; and release frees the resources allocated to a given client.
Communication between the arbiter and the clients is carried out through 2n
bidirectional ports. Ports W1, . . . ,Wn are dedicated to resource allocations,
and ports P1, . . . , Pn to resource deallocations. The arbiter works by polling
the client connections in a round-robin fashion in the ArbiterW thread. If a
request is found waiting in some port Wi, then there are two cases. If there is
still at least one resource available, the call to Wait returns and the resource
returned by Assign is allocated to client i, which is also acknowledged. If
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1: procedure ArbiterW
2: Input W1 . . .Wn: Port (BufferedPort)
3: Input S : Semaphore
4: Input T : Table
5: while true do
6: for all i ∈ {1, . . . , n} do
7: if there is a message on Wi then
8: Read assignment request from Wi

9: Wait(S)
10: r ← Assign(T , i)
11: Write r to port Wi

12: end if
13: end for
14: end while
15: end procedure

1: procedure ArbiterP
2: Input P1 . . . Pn: Port (BufferedPort)
3: Input S : Semaphore
4: Input T : Table
5: while true do
6: for all i ∈ {1, . . . , n} do
7: if there is a message on Pi then
8: Read release request r from Pi

9: if isAssigned(T , i, r) then
10: Release(T , i)
11: Post(S)
12: Write acknowledgment to Pi

13: end if
14: end if
15: end for
16: end while
17: end procedure

1: procedure Client
2: Input W , P : Port
3: Input i : Natural
4: Connect port W to Wi

5: Connect port P to Pi

6: while true do
7: Write a request to W
8: Read assigned resource r from W
9: ... Perform some task with r ...

10: Write a release request about r to P
11: Read an acknowledgment from P
12: end while
13: end procedure

Figure 9: A simple centralized arbiter implemented on top of YARP port and semaphore
abstractions.

resources are exhausted, then ArbiterW blocks until at least one is freed, and
so does the client waiting for the acknowledgment. ArbiterP works also by
polling client connections cyclically to detect requests for resource deallocation.
Notice that, even if ArbiterW is blocked on some request, ArbiterP can
still answer to the clients and free resources. As an additional sanity check,
ArbiterP releases a resource only if it was allocated to the client sending the
release request.

In this case study, to ensure that the centralized arbitration mechanism
works properly, we are interested to investigate about robust execution, boil-
ing down to deadlock freeness, mutual exclusion preservation, and starvation
freeness. In our experimental setup we consider two different scenarios. In the
first scenario (S1), the arbiter threads use standard Port objects to connect
the clients. As a consequence, read operations on ports are blocking and the
order by which components are polled has an effect on the behavior of the sys-
tem. This is a scenario wherein deadlock may occur and, as a result, clients can
get blocked. In the second scenario (S2), the arbiter uses non-blocking FIFO
BufferedPort objects which guarantee robust execution. In each scenario, we
also consider different kind of models, i.e., systems having n ∈ {3, 4, 5, 6} clients
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Table 7: Result of verification for the centralized arbiter. For each scenario (S1, S2), n is
the number of clients and m is the number of resources. “R” is the result of verification:
“OK”, if the property holds, “NO”, if the property does not hold, “—” if SPIN exhausts
available memory. “D” is the search space depth reached by SPIN, and “T” (“M”) is the
time (memory) used by SPIN for the verification.

System Deadlock Starvation Mutual Exclusion
n m R D(×106) T (×103s) M(GB) R D(×106) T (×103s) M(GB) R D(×106) T (×103s) M(GB)

S1

3 2 NO < 103 < 10s 2.798 OK 0.20 < 10s 2.86 OK 0.12 < 10s 2.29
4 2 NO < 103 < 10s 2.798 OK 2.75 0.08 4.02 OK 1.66 0.02 3.36
5 2 NO < 103 < 10s 2.798 OK 30.14 1.58 22.40 OK 18.41 0.30 12.24
6 2 NO < 103 < 10s 2.798 — 29.81 5.48 30.72 — 65.72 2.91 30.72
4 3 NO < 103 < 10s 2.798 OK 5.20 0.15 4.91 OK 3.14 0.03 3.78
5 3 NO < 103 < 10s 2.798 OK 80.42 5.23 25.34 OK 47.29 1.07 15.43
6 3 NO < 103 < 10s 2.798 — 32.65 3.08 30.72 — 66.47 2.28 30.72

S2

3 2 OK 0.09 < 10s 2.83 OK 0.15 0.01 7.421 OK 0.09 < 10s 2.83
4 2 OK 1.21 0.01 3.28 OK 2.06 0.13 7.896 OK 1.21 0.01 3.28
5 2 OK 12.56 0.25 10.25 OK 20.87 2.11 14.00 OK 12.56 0.25 10.15
6 2 — 100.00 3.21 30.72 — 20.21 6.03 30.72 — 100.00 3.19 30.72
4 3 OK 2.57 0.03 3.79 OK 4.55 0.25 8.41 OK 2.57 0.03 3.79
5 3 OK 36.87 0.55 20.38 OK 64.19 5.11 23.69 OK 36.87 0.55 20.38
6 3 — 100.00 2.53 30.72 — 59.28 6.75 30.72 — 100.00 2.54 30.72

and m = {2, 3} resources.
The results of verification for all the properties of interest on both scenarios

are presented in Table 7. The table is divided horizontally in two sections,
corresponding to scenarios S1 and S2, respectively. The results about deadlock
freeness, starvation freeness and mutual exclusion preservation, are reported into
three different groups of columns where, for each property, we report verification
results as well as data related to SPIN performances. In Table 7, we can observe
that SPIN correctly reports that verification failed when the system may exhibit
a deadlock configuration. As we mentioned before, this is always true in S1, and
it can be checked with negligible time and effort: SPIN takes less than 10s CPU
time to find a system trace that leads to deadlock. As we can see, all the other
properties in S1 hold, but the effort to verify them can become substantial.
For instance, with n = 6 clients it is not possible to verify starvation freeness
and mutual exclusion preservation neither with m = 2 nor m = 3 resources,
because SPIN exhausts the available memory — 32GB minus the space to run
the operating system and SPIN. In these cases, the search space depth reached
by SPIN, i.e., the maximum number of steps that SPIN explored along any trace
before exhausting resources, is always in the order of hundreds of thousands of
states. Therefore, even if SPIN did not reach a definite answer, the range of
exploration is wide enough to increase the confidence of the developer that the
system upholds the property for “typical” configurations. Scenario S2 results are
similar in terms of CPU and memory usage to those of scenario S1 when it comes
to starvation freeness and mutual exclusion preservation. In case of deadlock
freeness, checking that the property is satisfied turns to be more expensive than
finding violations as in S1. This is because, in principle, the state space of
the system must be explored exhaustively in order to ensure that there are no
“offending” behaviors, whereas a single trace is sufficient to witness one such
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behavior.

6. Conclusions and Future Works

Enabling cost-effective verification of control programs for autonomous robots
is one of the key steps towards turning robots from prototypes to products. In
this paper, the main question that we seek to answer is whether the difficulties of
certifying control software developed on black-box middleware can be overcome,
and to what extent. In particular, we focus on distributed control software built
on top of publish-subscribe middleware for which no structured models are avail-
able. We try to make verification of such software cost-effective in two steps:
(i) automatizing the induction of middleware models through automata-based
identification and our tool AIDE; (ii) verifying combined models through model
checking and the state-of-the-art tool SPIN.

Considering a full-fledged middleware like YARP and several concrete case
studies useful for robotics, the results are favorable. The combination of AIDE
and SPIN would help to avoid many pitfalls that even experienced program-
mers tend to fall into once confronted with distributed resource management
of the level of complexity required in modern robotics. Our approach could be
also complementary to other techniques proposed in the literature to improve
confidence in proper robot operation. For instance, the framework introduced
in [38] could be used as a basis to integrate our work and produce model-driven
development tools for robust autonomous robots.

As we claim success for the experiments we conducted, we are also aware that
many limitations still exist that need to be overcome in the near future to make
our approach within the grasp of robot developers. Our research agenda includes
the problem of inducing data-intensive components, i.e., black-box modules in
which data elements and control structure are intertwined, as well as easing the
access to automated verification tecnology like model checking by “hiding” it
underneath a model-driven development cycle.
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