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Abstract— Future humanoid robots will be expected to carry
out a wide range of tasks for which they had not been
originally equipped by learning new skills and adapting to their
environment. A crucial requirement towards that goal is to be
able to take advantage of external elements as tools to perform
tasks for which their own manipulators are insufficient; the
ability to autonomously learn how to use tools will render
robots far more versatile and simpler to design. Motivated by
this prospect, this paper proposes and evaluates an approach
to allow robots to learn tool affordances based on their 3D
geometry.

To this end, we apply tool-pose descriptors to represent
tools combined with the way in which they are grasped, and
affordance vectors to represent the effect tool-poses achieve in
function of the action performed. This way, tool affordance
learning consists in determining the mapping between these 2
representations, which is achieved in 2 steps. First, the dimen-
sionality of both representations is reduced by unsupervisedly
mapping them onto respective Self-Organizing Maps (SOMs).
Then, the mapping between the neurons in the tool-pose SOM
and the neurons in the affordance SOM for pairs of tool-
poses and their corresponding affordance vectors, respectively,
is learned with a neural based regression model. This method
enables the robot to accurately predict the effect of its actions
using tools, and thus to select the best action for a given goal,
even with tools not seen on the learning phase.

I. INTRODUCTION

The concept of affordances was introduced by the cog-
nitive psychologist James J. Gibson in the late 70’s as the
“latent action possibilities available to the agent” that it can
perceive directly from the environment in order to interact
with. The first steps towards affordance learning robots were
taken by Fitzpatrick et al. in their pioneer work [1], which
showed that a robot can learn affordances by observing the
effect that its actions produce on objects. Tool affordances
on robotics were first studied in [2], where for each tool,
affordances were learned as a list containing the actions
performed and the probability of success in moving an
external object. The main drawback of these early studies
was that objects and tools were described by given labels,
so generalization to new ones outside the initial training set
was not feasible.

However, when considering tools whose affordances de-
pend solely on their geometry, it can be assumed that
in general, tools with similar geometry will offer similar
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affordances. Jain and Inamura applied this assumption to
define a set of functional features that were representative of
the tool’s functionality [3]. In their work, a set of predefined
geometric features (corners, bars, etc) were computed and
linked to the action and effect, by applying the Bayesian
Network (BN) framework proposed in [4]. Gonçalvez et al.
improved this model by using simple 2D geometrical features
extracted from vision to represent functional features, rather
than predefined ones [5]. On Dehban et al. [6], the BN was
substituted by a Denoising Auto-encoder, which allows for
real value input and online learning [6]. Tikhanoff et al. took
another approach in [7], by coupling the affordance models
with a geometric reasoner in order to determine the feasibility
of exploiting the learned affordances on a given scenario,
although not generalizable to new tools. This shortcoming
was tackled in [8], where a large set of 2D features from
the contour of the tool was applied to predict grasp dependent
tool affordances.

Recently, a few authors have proposed to adopt tool repre-
sentations based on 3D features, which are potentially more
robust to variability induced by occlusions and perspective
than 2D ones. Myers et al. collected an extensive dataset of
RGB-D images of tools with associated pixel-wise human
labeled affordances, and applied state-of-the-art supervised
classifiers to predict the affordances from the tool images
[9].Abelha et al. took a different approach by estimating the
suitability of a set of household objects as tools for a set of
given tasks by fitting the object’s superquadric model to the
one of the canonical tool for that task [10]. An important
drawback of these studies is that they focus only on vision,
not taking in account the robot capabilities or its action
repertoire.

On studies involving the robot interaction for affordance
learning, it is a common practice to apply a limited number
of possible outcomes. This is done either by automatically
clustering the perceived effect ([11], [12], [13], [8]), or
by previously defining a set of effect categories where
the results of the robot actions are assigned [14], [15].
Similarly, most studies which define objects or tools in
terms of features, apply clustering techniques to group them
for further processing [16], [17]. However, it is frequently
the case that these discretized outcome labels are imposed
on a data space (of measured effects, or object features)
which is relatively homogeneously distributed, often leading
to thresholds or boundaries separating similar data points.
Moreover, the within-cluster differences that may be present
in these measurements or features are subsumed into the
cluster label and ignored when learning the objects or tools



affordances.
In order to overcome these drawbacks, we propose a

learning architecture based on parallel SOM mapping and
SOM to SOM regression capable of learning tool affordances
while avoiding clustering or predefined categories. This way,
the system is able to keep a fine grain representation of all
the involved elements, namely tools and effects, and pro-
duce accurate predictions beyond typical cluster resolution.
Moreover, we further study the suitability of grasp-dependent
3D tool descriptors, by comparing 3 distinct variations of the
Oriented Multi-Scale Extended Gaussian (OMS-EGI) feature
vector introduced in [17].

II. MATERIALS AND METHODS

A. Robotic Platform

All the experiments presented in this paper were carried
out using the iCub humanoid robot simulator. The iCub is a
full body humanoid robot with 53 Degrees of Freedom [18].
In the current experiment we only made use of the upper
body, which comprises 41 DoF, including head, arms and
torso. The iCub simulator simulates rigid body dynamics and
collision detection by making use of ODE (Open Dynamic
Engine) [19].

The iCub software is structured as modules that commu-
nicate with each other using YARP middleware [20]. All the
tool 3D models used for the simulator and feature extraction
had been modeled using Trimble’s SketchUp software. For
feature extraction and visualization, they were processed with
the Point Cloud Library [21]. Experimental data analysis was
implemented in MATLAB, employing the third party SOM
toolbox for dimensionality reduction and data visualization
[22], and the built-in Neural Network library for learning
regression models from the data. In order to use the models
learned in MATLAB to guide the robot actions, the available
YARP bindings for MATLAB were applied.

All the code used in the present study is openly available
at www.github.com/robotology/affordances.

B. Experimental setup

In general, the effect that an action with a tool can achieve
depends not only on the tool itself, but also on the way in
which it is grasped. Thus, for convenience, we use the term
tool-pose to specify a particular tool in a particular pose,
following the nomenclature in [23]. That is, a tool in two
different poses correspond to two tool-poses, as well as two
different tools in the same pose. The experimental scenario in
the present study was devised so that with a relatively simple
repertoire of actions, different tool-poses achieved distinct
effects.

For that end, trials consisted of series of radial drag actions
upon a small target object. Specifically, on each trial a drag
action of 17 cm was executed upon the object 8 times, along
directions at intervals of 45 degrees (see Figure 1a). After
each execution, the iCub withdrew the arm and computed
the resulting effect, measured as the Euclidean distance that
the object had been displaced on the table’s plane. Thus, on
each trial, a vector consisting of the 8 displacement values

(a) Diagram of the drag ac-
tion. The tooltip is initially
placed slightly behind the
object, and then the tool is
displaced 17 cm along the
radial direction given by θ.

(b) Grasp parameter ϕ controls the
rotation around the tool’s handle
axis. Orientations right, front
and left correspond to angles
ϕ = −90, ϕ = 0 and ϕ = 90,
respectively.

Fig. 1: Parameters controlling action execution (a) and tool
pose (b).

measured was recorded, whose indices correspond to the
8 considered actions. This vector effectively represent how
well the tool-pose being held afforded dragging an object
in function on the angle of the drag. Therefore, we refer to
them as affordance vector.

The target object was a small cube of 5 cm in side, which
before each action execution was placed on a table at a spot
randomly chosen at 40 ± 4 cm in front of the iCub and 10
± 4 cm to its right (x ≈ −0.4, y ≈ 0.1, z ≈ −0.13 in
the iCub’s reference frame). The position of the object was
chosen so that the robot could perform the dragging action
in any direction without colliding with itself (when pulling)
or going out of reach limits (when dragging away).

50 different radial tools 1 , roughly divided in 5 categories,
were used in to perform the experiments (see Figure 2). Each
of them was hold by the iCub in 3 possible orientations
(right, front, left, see Figure 1b for details), therefore
making up a total of 150 tool-poses used for the experiments.
On each trial, the 3D model of the corresponding tool-pose
was simultaneously loaded on the simulator from memory
and read by the processing modules for subsequent feature
extraction. Also, it was used to determine the position of the
tooltip with respect to the hand’s reference frame, required
to extend the kinematics of the robot to incorporate the tip of
the tool as the new end-effector for further action execution.
An image of the set up ready for an action can be observed
in Figure 3.

C. 3D features for tool-pose representation in interactive
scenarios

The way tools are represented determines how well knowl-
edge about them can be generalized. Therefore, we applied
the Oriented Multi-Scale Extended Gaussian Images (OMS-
EGI) descriptor, proposed in [17]. In a nutshell, the OMS-
EGI descriptor of a tool is an ordered concatenation of

1Radial tool refers to tools which are typically grasped in a way such that
the index and middle fingers curl around the tool with the thumb beginning
to oppose and press it, and the tool effector extends along the radial side
of the hand.



Fig. 2: Set of tool models used in this study.

Fig. 3: Experimental setup ready for action execution. The
lower right image shows the pointcloud representation of the
tool, oriented w.r.t the hand reference frame, as well as the
determined location of the tooltip (the blue dot). On the upper
right, the iCub vision camera is shown, with the kinematic
extension to the tooltip superimposed.

surface normal histograms computed from voxels obtained
from iterative octree divisions of the tool’s bounding box
aligned with respect to the robot’s hand reference frame.
The resolution of these voxel-wise histograms in terms of
the number of bins per dimension is given by the parameter
N , while the depth of the octree, i.e. how many times the
bounding box is iteratively divided into octants to form
increasingly smaller voxels, is given by the depth parameter
D. A detailed description of how the OMS-EGI feature
vector is computed can be found in [17].

The fact that the OMS-EGI descriptor is computed from
the bounding box of the tool aligned to the robot’s hand
reference frame, implies that it encapsulates not only infor-
mation about the tool’s 3D geometry, but also about how it
is being grasped. In doing so, it provides a description of
tools relative to the robot, and thus particularly appropriate
for interaction scenarios.

At the same time, the OMS-EGI descriptor combines

information about the surface of the object, given by its
normal histograms, with spatial information about where
these surfaces are present, thanks to the voxel-wise analysis
of surface normals. The relevance of each one is determined
in function of the parameters N and D. Therefore, by setting
different pairs of parameters, the OMS-EGI descriptor allows
us to study whether affordances are better learned based on
the tool-pose’s spatial information, its surface information,
or a balanced combination of both. We conducted such an
evaluation by comparing the predictive performance of the
following 3 parameter settings:

• Balanced information (BALAN): Setting N = 2 and
D = 2, the feature vector corresponds to a balanced
OMS-EGI, as applied in [17], where both surface and
spatial information are represented.

• Spatial information (OCCUP): If N = 1, all normals
in each voxel are assigned to the same bin irrespective
of their orientation, and therefore each voxel-wise his-
togram can be subsumed in a single value. On voxels
where any portion of the surface is present, this value
is 1, while on empty voxels the value is 0. Therefore,
setting N = 1 transforms the OMS-EGI into a axis
aligned space occupancy grid. In the present study, D
is set to 3 so that the total length of the feature vector
is similar to the OMS-EGI setting.

• Surface information (EGI): When D = 0, the
only voxel considered is actually the tool-pose aligned
bounding box, without further subdivisions. In this case,
which is equivalent to the original formulation of the
EGI descriptor [24], the OMS-EGI represents a normal
histogram of the tool-pose, provided a certain histogram
resolution function of N . In this study, N is set to 6 so
that the length of the vector is in a similar range to the
other settings.

D. Parallel SOM mapping from tool-pose features to affor-
dances

In the proposed learning architecture, which can be ob-
served in Figure 4, tool affordances are learned as the
mapping between tool-pose OMS-EGI features X ∈ RL,
and their corresponding affordance vectors, Y ∈ RK . L is
the length of the tool-pose feature vector and K is given by
the number of directions of action application considered.
Formally, affordance learning is thus implemented as finding
the mapping f : RL → RK .

Yet, performing such mapping directly is prone to numer-
ical errors because of the high-dimensionality of the tool-
pose feature and affordance vector spaces and the relatively
small number of available samples. Therefore, instead of
attempting at learning directly the regression between both
spaces, we mapped them onto respective 2-dimensional Self-
Organized Maps, referred henceforth as tool-pose SOM and
affordance SOM. SOMs provide efficient dimensionality
reduction while maintaining to a great extent the topology
of the data in the original high-dimensional space [25], and
a fine grained representation when compared to clustering



Fig. 4: Diagram of the proposed approach to discover, learn and predict tool-pose affordances. On the training phase (black
arrows), a set of tool-pose features [1], and their corresponding affordance vectors [2] are available to the system. Keeping
the correspondence, tool-pose features and affordance vectors are mapped into respective SOMs for dimensionality reduction
[3a] and [3b]. Finally, a GRNN regressor model is trained to learn the mapping between the coordinates of the tool features in
the tool-pose SOM, and those of the corresponding affordance vector on the affordance SOM [4]. On the prediction phase
(red arrows), affordance SOM coordinates are estimated by the regressor from the tool-pose SOM coordinates of the given
tool-pose [5]. The prototype vector of the closest neuron to the estimated coordinates is considered the predicted affordance
vector for that given tool-pose [6]. For easier interpretation, each color corresponds to data generated by a particular tool
type (hoe, rake, etc) in a particular pose (right, front, left), assigned following the affordance vector graphs
on the right of the diagram. Tool type information, however, is only used for visualization purposes, and was never available
to the system.

techniques. Indeed, similar methods involving 2 parallel
SOMs have been used in [13], [26] for object affordance
learning, but applying very different data modalities and
learning and prediction methods.

In this particular scenario, using SOMs for dimensionality
reduction has further advantages. Primarily, whereas training
the regressor requires matching pairs of tool-pose features
and affordance vectors, SOMs can be trained with data which
does not necessarily has a corresponding pair, due to the
unsupervised nature of their training. Thus, tool-pose features
can be “imagined” by extracting them from slight rotations of
the tool-pose pointclouds used in the experiment. We applied
this data augmentation technique to generate more tool-
pose feature samples with which to train the tool-pose SOM
topology than the number for which we have corresponding
affordance vectors. Another important advantage is that the
prototype vectors associated to each of the SOM neurons
provide a mechanism to invert the dimensionality reduction
and yield a prediction for the affordance vectors in the
original space.

Once the SOMs are trained to provide a reduced di-
mensionality representation of the original vector spaces,
affordance learning can be implemented as a regression prob-
lem, where the input consists in the tool-pose SOM neuron
coordinates, and the target is given by the affordance SOM
neuron coordinates of the corresponding affordance vectors.
In order to learn this regression, we compute first the best
matching units (BMUs) for all the train tool-pose features
and affordance vectors on their corresponding SOMs. We
refer to the BMUs corresponding to the tool-pose features
as XSOM ,∈ R2, and to those corresponding the affordance

vectors as YSOM ,∈ R2. The desired regression function
f(XSOM ) → YSOM is implemented using Generalized
Regression Neural Networks (GRNN), a modification of
radial basis networks which is able to approximate arbitrary
functions and avoid local minima in 1-pass training [27].
These networks depend on the regularization parameter σ,
which controls the spread of the radial basis functions. The
best value of σ for each model was found by performing
recursive line search2.

On the prediction phase, the first step is to extract the
tool-pose feature vector x ∈ X that represents the tool-
pose being held, as described in Section II-C. The obtained
vector is then mapped to the trained tool-pose SOM to obtain
the coordinates xSOM of its BMU. These coordinates are
subsequently fed to the trained GRNN model, which in
turn returns the estimated coordinates ŷSOM of the BMU
of the corresponding affordance vector for that tool-pose.
Finally, the predicted affordance vector ŷ was determined as
the prototype vector of the closest neuron to the predicted
coordinates, and compared to the real affordance vector
y ∈ Y to assess the accuracy of the prediction.

E. Prediction based action selection

The methods described above allow the iCub to predict the
effect of performing a drag action in any of the considered
directions for any radial tool, having also in account the way

2Recursive linesearch was conducted by evaluating the accuracy of the
regressor at equally spaced values of σ with 5-fold cross validation on the
training data, and iteratively exploring values at smaller distances centered
around the value with the best accuracy on the previous iteration, until the
accuracy improvement among consecutive iterations was under a certain
threshold.



in which it is grasping the tool. Thereby, the robot is able
to exploit its acquired knowledge of tool-pose affordances
to select the action direction that provides the best expected
effect for any given task.

In the present study, we tested this claim by making
the iCub select the best action for the task of maximizing
displacement of the target object. To ensure fairness on
the test, we applied leave-one-out data separation scheme,
which meant that every time a tool was tested, it had not
been used at any step of the training process, in any of
its poses. So, in order to test any tool in any given grasp,
the first step was to compute the OMS-EGI feature vector
of the resulting tool-pose. Then, the methods described in
the previous section were applied to obtain its predicted
affordance vector. Based on the predicted affordance vector,
the action direction with the maximum predicted effect was
selected, and its parameters sent to the robot to be performed.
After the iCub executed the action in the selected direction,
the actual achieved effect was measured in order to evaluate
the success on the given task.

III. RESULTS

A. Experimental data collection and separation

All experiments in the present study were carried out with
the iCub simulator. As described in Section II-B, trials were
performed with 150 different tool-poses, corresponding to
50 radial tools in 3 different poses each. For each tool-
pose, 4 exploration trials were performed in order to take
in account the possible variation between executions due
to the slightly different location of the target object. As a
result, a total of 600 trials were carried out, corresponding
to 4800 action executions. On each of these trials, the data
recorded consisted on the affordance vector representing the
recorded effects for the 8 action directions, and the tool-
pose OMS-EGI feature vector corresponding to the tool-pose
being used to perform those actions. Additionally, for each
tool-pose used in to perform the experiment, 30 extra OMS-
EGI feature vectors without an associated affordance vector
were gathered by means of the data augmentation method
described in II-D. This number was selected in order to have
a number of OMS-EGI samples considerably larger than its
dimension L to perform the unsupervised training of the tool-
pose SOM.

Each OMS-EGI feature vector, whether “natural” or “aug-
mented”, was computed and recorded in the 3 variants
described in section II-C, that is, OCCUP to represent
only spatial information as an axis aligned occupancy grid,
EGI to consider only the surface as a single-voxel normal
histogram, and BALAN for a balanced compromise between
the previous 2.

In each case, the data gathered was divided into training
and testing sets to evaluate the presented methods. How-
ever, in order to provide a more complete assessment of
their performance, we applied two different data separation
schemes. The first separation scheme serves to evaluate the
general predictive performance of the proposed method, and
is achieved by randomly selecting the data corresponding to

(a) Trained tool-pose SOM.

(b) Trained affordance SOM.

Fig. 5: Trained SOMs. In order to understand better how the
high-dimensional data is mapped onto the SOMs, samples of
the training data (tool-pose models (a) and affordance vectors
(b)) are plotted onto their corresponding BMUs (represented
by colored dots). To avoid clutter, only 1 tool-pose model
has been plotted for every 15 samples used to train the SOM.
Uncolored dots represent neurons which were not the BMU
of any of their respective data samples. Colors, as in Figure
4, represent the tool type and poses that generated the data,
and are used solely for visualization.

25% of the trials for testing, and keeping the rest for training.
We refer to this separation scheme as RAND. The second
separation scheme assesses the capability of the method to
generalize the learned affordances to tools that have not been
seen by the system during training. For that end, we perform
tool-wise leave-one-out separation where on each run, the
data from all the trials corresponding to a given tool (in all
its poses) is kept for testing, while data from the rest of the
tools used for training. This scheme is referred to as 1OUT.

B. SOM-based unsupervised dimensionality reduction

As described in Section II-D, the first step in the proposed
method for affordance learning is to map the spaces of tool-
pose features and affordance vectors into their respective



SOMs. In the current study, both SOMs were chosen to
have a hexagonal lattice of 15 x 20 units, which provided
a good compromise between representation resolution and
training time required. The tool-pose SOM was trained using
all the vectors not used for testing the affordance prediction,
including the ones provided by the data augmentation tech-
nique. The results of this mapping process can be observed
on Figure 5a. The affordance SOM, on the other hand, was
trained with affordance vectors from the training set, all
of which had corresponding tool-pose vectors. Results are
displayed in figure 5b.

C. Prediction of tool-pose affordances

In order to evaluate the performance of the method for
affordance prediction described in Section II-D, we com-
pared the affordance vectors predicted for the test trials
with the corresponding real affordance vectors previously
recorded, for the different data separation schemes and OMS-
EGI features parameter settings. In each case, a baseline
performance was also computed by randomly shuffling all
the vector indices before training the GRNN, effectively
removing all correlation information between tool-pose fea-
ture and affordance vectors. This allows the comparison
of the prediction results for the trained system against the
results obtained in the absence of learning. The absolute
performance of the system was measured in terms of the
Mean Absolute Error (MAE), which represents the average
absolute distance between the predicted affordance vectors
Ŷ and the recorded ones Y . Additionally, the improvement
of the performance over the baseline MAE, denoted by
MAEBL, due to the learning process, was quantified by the
percentage of improvement (PI), so that if error was not
improved after learning, PI would be 0% while if error was
reduced to 0, PI would be 100%. Formally:

MAE =
1

N

N∑
abs(Y − Ŷ ) (1)

where N is the number of test trials, and

PI =
MAEBL −MAE

MAEBL
(2)

Table I displays the prediction error in each of the evalua-
tion scenarios, expressed in terms of the MAE computed
as the average from 50 runs in RAND and 1OUT data
separation modes, where in the latter each run corresponded
to one left-out tool. In Figure 6 the comparison between
prediction and recorded data can be observed graphically.

D. Action Selection

In the last evaluation step, we employed the learned
models to select, given a tool-pose not observed during
training, the best action direction for the task of achieving
maximum displacement of the target object, as explained in
Section II-E. This test was run 2 times for all the tool-poses.
In order to ensure fair evaluation, we applied the 1OUT
separation schema for this test, so that the data corresponding
to the tested tools had never been used to train the models
used to predict its affordances.

Fig. 6: Predicted effect (red) against recorded effect (blue)
with variance (red vertical lines), using the 1-OUT data
separation scheme. Each graph row corresponds to the ag-
gregated data of all tools in a tool category (hoe, rake,
etc), separated by pose (on columns). In all graphs, X axis
corresponds to the angle of the drag action, from θ = 0◦

to 315◦, and the Y axis to the displacement (predicted or
measured) in meters.

In this test, the baseline was defined for each tool-pose
as the median among the effects achieved for all action ex-
ecutions recorded previously for that tool-pose. In principle,
if actions had been selected at random, the achieved effect
would be over this baseline 50% of the times. Figure 7
shows the displacement that the robot achieved using the
predicted best action direction for each of the tested tool-
poses, alongside the corresponding baseline. The overall
degree of task success was measured in 2 ways, similar to
[15], in order to allow for comparison. On the one hand, we
measure the success rate S as the percentage of times that
the effect achieved by the selected action was higher than
the baseline. On the other hand, we measured the gambling
score G, which is computed by subtracting the number
of unsuccessful trials UT times the number of possible
unsuccessful options UO (in this case one, effect below the
baseline) to the number of successful trials ST , divided by
the total number of trials T , so that a random action selector
would lead to G = 0%, and a perfect one to G = 100%,
that is:

G = (ST − (UT · UO))/T (3)

The results of this test can be observed in Table II, where
they are separated by tool type.

IV. DISCUSSION

The prediction results, displayed in Figure 6 and Table
I, evince that even in the presence of tools with unknown
affordances, the proposed methods are able to successfully
generalize the knowledge learned for similar tool-poses, and
apply it to correctly predict the effect the tool will generate
for any action in the repertoire. This approach drastically
improves the performance our previous method [17] in terms



BALAN EGI OCCUP
MAE MAEBL PI(%) MAE MAEBL PI(%) MAE MAEBL PI(%)

RAND 2.77 5.00 44.6 2.85 4.99 42.9 2.66 5.02 47.0
1OUT 3.28 5.12 31.4 3.28 5.09 35.6 3.26 5.09 35.9

TABLE I: Mean Absolute Error (MAE, in cm), Baseline (MAEBL, in cm), and Percentage of Improvement (PI , in %)
average for each evaluation scenario.

Fig. 7: Results of the Action Selection experiment by tool-pose. The effect measured from execution of best action for each
test tool-pose (orange) is displayed against the baseline for that tool-pose (red), and its maximum (dark-blue).

hoes hooks rakes sticks shovels Total

S(%) 100 90 96.7 50 66.7 80.67
G 100 63.3 86.7 0 40 56.7

TABLE II: Action selection performance results.

of the PI achieved on the MAE over the baseline, which
soars from 29.7% in [17] to 47% in the present study.

Also, during this study we compared 3 variations of the
OMSEGI descriptor; EGI, OMSEGI and OCCUP, described
in Section II-C. Interestingly, the best results have been
consistently obtained with the OCCUP parameter setting,
which is equivalent to a binary occupancy grid cell, while
the traditional EGI yielded the lower performance also in
all scenarios. Our presumption is that the coarse spatial
information of the tool’s extension and position with respect
to the hand provided by the occupancy grid directly matters
for interaction. The surface normals, on the other hand,
would be better at describing curvature and smaller detail,
less relevant for the performance in the current scenario.

On the action selection results displayed in Figure 7 and
Table II it can be observed that the accurate affordance
prediction achieved enables the iCub to select the best action
direction to accomplish the displacement task with a high rate
of success. Yet, in some cases the selected action produces
a displacement much smaller than expected. We believe that
these errors are generated when certain tool-poses generate
different effects for the same action, which prevents proper
learning of these tool-pose affordances.

By observing the experiment, we noticed that this hap-
pened mostly because during action execution, due to errors
in collision calculations, when a tool pushed the target
object down against the table there were some cases where
the object would “jump” a few centimeters away in an
unpredictable direction. This situation happened with tool-
poses where the tooltip was situated in the same vertical

axis as the handle, namely sticks, hooks oriented to the
front, and some shovels. As a result, the mapping between
actions and effects for these tool-poses has a large amount
of variance, which renders the prediction of their affordances
a much more error prone task, and thus explains the poor
results obtained with these tool-poses.

On the other hand, for those tool-poses which offered
consistent affordances, such as hoes, rakes, hooks ori-
ented to the side and most shovels, the selected actions led
to successful effects with a high degree of accuracy (up
to 100% in the case of rakes). This suggest that in this
scenario, results in the real robot would actually be more
robust, since physics glitches do not occur in real life. In fact,
this seems to be the case in some preliminary experiments
already performed.

In order to assess the achieved results in the context of
the state-of-the-art, we compared our results with the ones
by Gonçalvez et al. [15], as it is the only study, to the best
of our knowledge, performed in a similar setup and with
comparable actions and effects. In our study, the Gambling
score G gets seriously penalized by the inaccuracies on
the prediction of the sticks affordances, and therefore is on
average lower than on their study. On the other hand, the
overall accuracy is nevertheless around 6.5% higher in our
study. An important factor to take in account, however, is
that in our study we consider 8 possible directions and 150
different tool-poses, while in [15], only 4 tools and 4 push
directions are considered.

However, our focus on the tools came at the expense of
simplicity in the representation of all the other elements
present in the interaction which influence the affordance.
Namely, the action repertoire, as well as target object and
effect representations have been kept purposefully simple in
order to limit the search space of all possible combinations,
which otherwise would render its exploration unfeasible in
a reasonable amount of time.



Concerning the target object, we have only considered its
location, disregarding any properties such as geometry or
material. We acknowledge that these properties do influence
the effect of actions on the object, but as in the previous
literature [7], we assume that it can or has been learned in
previous stages of the robot development.

We also acknowledge that the action repertoire and possi-
ble grasp orientations, as well as the way in which the effect
is measured, are quite limited. While the presented learning
methods could cope with higher dimensionality in inputs
and outputs, increasing the complexity of these elements,
specially the action repertoire, would easily lead to search
spaces impossible to explore sufficiently on a robotic setup,
even in simulation, unless other constraints are in place.

Yet, we recognize that the available actions, as well as the
representation of the effect, directly determine the kind of
affordances that can be discovered, and therefore, learned.
For example, the applied effect representation is unable
to measure, and thus identify, actions such as hammering,
pouring, or cutting. Figuring out a representation that could
encompass all these possibilities, and moreover, be automat-
ically computed, is a complex task out of the scope of this
study, but nevertheless worth tackling in the future.

V. CONCLUSIONS

In this paper, we presented set of methods to learn and
generalize tool affordances based on their geometry and the
way in which they are grasped, implemented and validated
in the iCub robot simulator on a large dataset of tools. The
presented method learns affordances as a regression between
tool-pose and action-effect representations on a SOM, which
allows the system to keep a fine grain representation of both
elements. Moreover, we further studied the suitability of 3D
tool descriptors for interaction learning, revealing that coarse
spatial information seems to be more relevant than detailed
surface one to describe tools in affordance learning scenarios.
Results show that the combination of the proposed features
and learning architecture enables the system to produce
accurate predictions, which can be used to select the best
action for a given task with a high degree of accuracy.
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