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Abstract— This paper addresses the problem of grasping
unknown objects with a humanoid robot. Conventional ap-
proaches fail when the shape, dimension or pose of the objects
are missing. We propose a novel approach in which the
grasping problem is solved by modeling the object and the
volume graspable by the hand with superquadric functions.
The object model is computed in real-time using stereo vision.
Pose computation is formulated as a nonlinear constrained
optimization problem, which is solved in real-time using the
Ipopt software package. Notably, our method finds solutions in
which the fingers are located on portions of the object that are
occluded by vision. The performance of our approach has been
assessed on a real robotic system, the iCub humanoid robot. The
experiments show that the proposed method computes proper
poses, suitable for grasping even small objects, while avoiding
hitting the table with the fingers.

I. INTRODUCTION

Industrial robotics shows how high performance in
manipulation can be achieved in terms of speed, precision
and reliability, if a very accurate knowledge of the
environment and the objects to manipulate is provided.
However grasping of unknown objects or objects whose
pose is uncertain is still an open problem [1].

Our work aims at improving grasping when the shape or
pose of objects are uncertain. The first main contribution of
our approach consists of reconstructing in real-time a model
for the object under consideration and representing the robot
hand with proper and mathematically usable models, i.e.
superquadric functions. Our choice of models exploitation,
even if approximated, finds support in behavioral and
neurophysiologists studies, that demonstrate how 3D shape
information plays a fundamental role in human grasping
capabilities [2], [3]. The volume graspable by the hand is
represented by an ellipsoid and is defined a-priori, because
the shape of the hand and its pose are known in advance.
The superquadric representing the object is obtained in
real-time from partial vision information instead, e.g. one
stereo view of the object under consideration, and provides
an approximated 3D full model. Some grasping techniques
in literature exploit only 3D partial models for objects
[4], but the usage of full superquadric models has the
advatange of taking into account even occluded regions,
which may have better grasping properties. In addition, a
hand-modeling based approach provides useful information
for power grasp computations. In fact, a rough model of the
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hand volume can help to identify grasp candidates that are
compatible with the maximum opening of the hand and the
finger range of movements. The second main contribution of
our approach is the optimization problem we formulate for
the grasping pose computation, which can be solved online
by using the Ipopt software package [5] and, thus, does
not require off-line computation or learning. In practice,
our approach provides a real-time novel pipeline for object
modeling and grasping: given an object in the robot field of
view, a representative superquadric is computed and used
for grasping pose computation.

The paper is organized as follows. Section II reviews
the state-of-art on object grasping and object modeling
with superquadric functions. Then, Section III introduces
the maths behind the superquadrics and object model
reconstruction, together with the description of the method
we proposed for grasping pose computation. Section IV
validates our approach by showing a set of successful grasps
performed by the robot iCub [6] with different every-day
objects. Finally, Section V ends the paper with concluding
remarks and perspectives for future work.

II. RELATED WORKS

1) Grasping Approaches: Grasping of unknown objects
is an open problem in literature hence diverse methodologies
are still being explored. Moreover, different goals can be
included in the generic field of grasping. For instance, grasp
actions can be divided into power and precision grasps
[7]. Power grasp involves large areas of contact between
the hand and the object, without adjustment of the fingers
after contact [4]. On the contrary, precision grasp provides
sensitivity and dexterity, since in this case the object is held
with the tips of the fingers [8]. In precision grasp tasks, the
hand touches the object at small contact points, therefore
the study of grasp stability plays an important role. In this
work we consider only power grasp actions.

Yet another classification criterion considers how the
robot hand needs to approach the object to enable a
successful grasp. Especially in the past, the grasping
problem has been addressed using analytical techniques
[9]. Such methods formulate the grasping problem only
in terms of force-closure and form-closure, looking for
specific conditions on the contact wrenches that ensure
a certain hand configuration to firmly hold any object.
These approaches usually assumed that contact point
locations were given without explicitly relating the hand
configuration to the object geometry. Recent works attempt
to get around these limitations [10]–[19]; these methods are



called empirical and mimic human grasping in selecting
a grasp that best conforms to task requirements and the
target object geometry. Our method belongs to this category,
because the hand pose is computed by exploiting object
shape information.

Several empirical approaches have been proposed in
the last decades. Some of them attempt to create a direct
mapping between object shape and hand pose [10], [11].
Other techniques generate a certain number of grasp
hypotheses on the basis of specific heuristics, and then
evaluate them with machine learning algorithms such as
Artificiale Neural Networks [12], [13], simple maximum
likelihood algorithms [14], or kernel density estimation
methods [15]. Others simply consider a set of possible
grasp configurations and choose them according to some
shape properties [16]–[18]. An interesting approach [19]
identifies handle-like grasp affordances in 3-D point clouds.
Recently, data driven approaches have been investigated and
large datasets have been used for training a convolutional
neural network (CNN). Successful examples are provided
by [20] where hand-eye coordination for grasping is learned
from monocular images and [21], where the planning of a
manipulation task is formulated as a structured prediction
problem whose resulting strategy is transfered across
different objects by embedding point-cloud along with
trajectory data into a shared representation using a deep
neural network.

Despite the good performance and their growing
popularity, the drawback of learning approaches is that
they require time consuming data-gathering and off-line
training processes. In this regard, another possible grasping
problem formulation (even if less common in literature)
is the one-shot approach, in which the goal is to compute
good grasp poses, without learning preprocesses [22].

Our work can be then defined as a one-shot empirical
method for power grasp actions.

2) Superquadric Functions: The superquadric model [23],
[24] has been introduced in computer graphics by A.H. Barr
in 1981, as a generalization of quadrics and has been well
studied in graphics and computer vision [25]. Superquadrics
and extensions such as hyperquadrics [26] and deformable
superquadrics [24] are a convenient representation for a large
class of both convex and non-convex objects. The most pop-
ular method to determine superquadric parameters for fitting
3D points was proposed by Soline in 1990 [25]. Recently,
several works have focused on speeding up computation,
refining the model and extending it to approximate complex
shapes with a set of superquadrics [27], [28].

Despite their ability to represent a wide range of objects
with a small number of parameters, superquadrics have not
been widely used as an object representation for contact
tasks such as dynamic simulation or dextrous manipulation.
This is in part due to the lack of appropriate distance
functions and collision detection algorithms. In general, there
is no closed-form solution for the distance between two
superquadrics (and in fact no closed-form solution exists

Fig. 1. Superquadric functions can represent several simple objects, ranging
from boxes (on the right) to octaedruses (on the left).

even for the distance between a point and an ellipsoid) and
only approximated approaches have been proposed [29]. For
this reason, several works, such as [10], [30], [31], use
superquadrics merely for object modeling, whereas grasp
planning is computed using simulators (e.g, GraspIt! [32]).
It is worth mentioning the recent work in [33] in which
grasping exploits object model information obtained with su-
perquadrics and extrusions patterns. Our approach is different
in that it exploits superquadric functions not only for object
modeling (as in [10], [30], [31], [33]) and for grasping pose
computation, but also for representing the robot hand.

The advantage of our approach is that it allows solving the
grasping problem by means of optimization while taking ad-
ditional constraints into account, such as obstacle avoidance
and object penetration.

III. GRASPING POSE COMPUTATION

In this work, we propose a novel technique for computing
a suitable grasping pose, which is based on modeling the
object and the robot hand. For this purpose, we choose
superquadric functions, since they provide a mathematical
representation that uses a small number of parameters and,
thus, is suitable for near real-time computation. We briefly
describe the superquadric function and its properties in Sec-
tion III-A. Then, we show how we make use of superquadrics
for object modeling in Section III-B and, in the end, we
explain in detail in Section III-C our method for computing
the grasping pose.

A. Superquadrics

Superquadric functions are an extension of quadric sur-
faces and include supertoroids, superhyperboloids and su-
perellipsoids. Superellipsoids are most commonly used in
object modeling because they define closed surfaces. Ex-
amples of elementary objects that can be represented with
superellipsoids are depicted in Fig 1. The best way to define
a superellipsoid – which we will call simply superquadric
from now on – in an object-centered coordinate system is
the inside-outside function:

F (x, y, z,λ) =((
x

λ1

) 2
λ5

+

(
y

λ2

) 2
λ5

)λ5
λ4

+

(
z

λ3

) 2
λ4
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Equation (1) uses only five parameters, i.e. λ = [λ1, . . . , λ5],
and provides a simple test whether a given point lies inside or
outside the superquadric. If F < 1, the given point (x, y, z)
is inside the superquadric, if F = 1 the corresponding point



lies on the surface of the superquadric, and if F > 1 the
point lies outside the superquadric. Furthermore, the inside-
outside description can be expressed in a generic coordinate
system by adding six further variables, representing the
superquadric pose (three for translation and three Euler
angles for orientation), with a total of eleven independent
variables, i.e. λ = [λ1, . . . , λ11]. We choose the RPY (roll-
pitch-yaw) notation for the Euler angles.

B. Superquadric Modeling

1) Object Modeling: The superquadric O which best
represents the object to be grasped is reconstructed from a
single, partial 3D point cloud, acquired by a stereo vision
system. In particular, object modeling via superquadrics
consists of finding those values of the parameters vector
λ ∈ R11, so that most of the N 3-D points si = [xi, yi, zi]
for i = 1, . . . , N , acquired by means of the stereo vision
system, lie on or close to the superquadric surface. The
minimization of the algebraic distance from points to the
model can be solved by defining a least-squares minimization
problem:

min
λ

N∑
i=1

(√
λ1λ2λ3 (F (si,λ)− 1)

)2
, (2)

where (F (si,λ)− 1)
2 imposes the point-superquadric

distance minimization, whereas the term λ1λ2λ3, which is
proportional to the superquadric volume, compensates for
the fact that the previous equation is biased towards larger
superquadric.

The generic formulation of superquadrics allows for
object modeling by solving a single optimization problem
(Eq. (2)), without requiring a-priori information or making
assumptions about the object shape.

In the literature Eq. (2) is usually solved via Levenberg-
Marquardt. In this paper we propose to use the Ipopt
instead [5], a software package capable of solving large
scale, nonlinear constrained optimization problems.

2) Hand Modeling: A fictitious superquadric model is
exploited to represent the volume graspable by the hand.
The shape and pose of such superquadric are chosen by
considering the anthropomorphic shape of the robot hand and
its grasping capabilities. A suitable shape for this purpose
turns out to be the ellipsoid H attached to the hand palm, as
shown in Fig. 2.

C. Grasp Pose Computation

The solution of the grasping problem consists of a feasible
pose of the robot hand, which allows grabbing the object
under consideration. The hand pose can be represented with
a 6D vector x = [xh, yh, zh, φh, θh, ψh], where (xh, yh, zh)
are the coordinates of the origin of the hand frame and
(φh, θh, ψh) are the RPY Euler angles, accounting for ori-
entation.

The basic idea of our approach is to compute the solution
by looking for a pose x that makes the hand ellipsoid H

Fig. 2. The volume graspable by the hand is represented as the ellipsoid
H attached to the hand. The right hand of the robot iCub is represented by
the CAD model

overlap with the object superquadric O while meeting a set
of requirements that guarantee x is reachable by the robot
hand.

The general formulation we propose can be described by
the following nonlinear constrained optimization:

min
x

L∑
i=1

(√
λ1λ2λ3 (F (pxi ,λ)− 1)

)2
,

subject to:
hi(ai, f i(p

x
1 , . . . ,p

x
L)) > 0,

for i = 1, . . . ,M.

(3)

Hereafter, we report on the meaning of all the mathematical
quantities contained in Eq. (3).

1) Grasping avoiding Object Penetration: The cost
function in Eq. (3) imposes the minimization of the
distance between the object superquadric O, represented
by the inside-outside function (F (·,λ)− 1), and L points
pxi =

[
pxx,i, p

x
y,i, p

x
z,i

]
for i = 1, . . . , L, sampled on the

surface of the hand ellipsoid H, whose pose is given by
vector x. More precisely, the L points lie on the closest
half of the ellipsoid H to the hand (Fig. 3(b)). This design
choice hinders the robot hand from penetrating the object. In
fact, if the points were uniformly sampled on the entire H
surface, the point-superquadric distance minimization could
place the ellipsoid H in the center of the object superquadric
O and, consequently, lead to the object penetration by the
hand, in case O is bigger than H (Fig. 4(a)). By contrast,
our choice avoids this scenario. The asymmetric distribution
of the L points makes the distance minimization possible
only if the portion of the H surface under consideration lies
closer to the O surface, thus avoiding object penetration
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Fig. 3. In Fig. (a), the reference frame (xh,yh,zh) attached to the robot
hand in RGB convention (xh is coloured in red, yh in green, zh in blue).
In Fig (b): the L points sampled on the closest half of the hand ellipsoid
H. The RGB frame represents the hand pose, showing how the ellipsoid H
is attached to the hand.
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Fig. 4. If the points are uniformly sampled on the ellipsoid H (i.e. the
smallest ellipsoid in the plot), the minimum distance between the points and
the object surface can be achieved by placingH in the centroid of the object
superquadricO. In case (a)O is bigger thanH, leading to object penetration
(the frame attached to the robot palm is inside the object superquadric O).
On the other hand, if the points are sampled only on a portion of H surface
as shown in case (b), the distance minimization is achieved only by placing
the H surface (and then the hand frame) near the surface of O.

with the robot hand (Fig. 4(b)).
The cost function we introduce is similar to the one

exploited for object model reconstruction in Equation (2),
although the optimization variable in Eq. (3) is given by the
hand pose x (in the coordinates of the L points pxi ), instead
of the vector of superquadric parameters λ, that is given by
the object model.

2) Obstacle Avoidance: The use of superquadrics and im-
plicit functions helps us define avoidance tasks. If the implicit
functions modeling M obstacles under consideration are
given, obstacle avoidance can be taken into account by im-
posing M constraints in the form of (3). Each term hi(ai, ·),
for i = 1, . . . ,M , is the implicit function representing the
i-th obstacle, such as a support on which the object stands.
Each vector ai consists of the parameters of the i-th implicit
function and each f i(p

x
1 , . . . ,p

x
L) accounts for a generic

dependency on the L points pxi . The formulation displayed
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Fig. 5. The frame in RGB convention represents the plane frame
(xp,yp,zp). The zp axis is parallel to the plane normal and it is positive
in the space region where the object stands.

in Eq. (3) is general and can be modified according to the
problem we aim to address.

In our case, the only obstacle is the table on which the
object is located, hence M = 1 in Eq. (3). For the sake of
simplicity, we refer to h1(a1, f1(·)) as h(a, f(·)). The table
is modeled as a plane, whose implicit function is thus linear
and given by:

h(a, x, y, z) = a1 x+ a2 y + a3 z + a4, (4)

with (x, y, z) a generic point.
We then define the function f(px1 , . . . ,p

x
L) as follows. Let

(xp,yp, zp) be the reference system anchored to the plane
to be avoided. Let zp be aligned with the plane normal and
positive in the space region where the object lies (Fig. 5).
We call pxi,p = [pxxp,i, p

x
yp,i

, pxzp,i] for i = 1, . . . , L the points
expressed in the plane reference system (xp,yp, zp). Table
avoidance can be achieved by forcing p̄xp , the point with the
smallest zp-coordinate in the plane frame, to lie in the region
above the plane representing the table.

Thus, the constraint of Eq. (3) can be expressed as follows:

a p̄xxp + b p̄xyp + c p̄xzp + d > 0,

with (p̄xxp , p̄
x
yp , p̄

x
zp) = arg min

px
zp,i

pxi,p.
(5)

An additional advantage of our formulation is the
possibility of imposing specifications on the robot pose,
by adding further constraints to the optimization problem.
For instance, additional K constraints could be formulated
in order to handle preferences on the final pose, by
defining suitable hi(ai, ·) and fi(px1 , . . . ,p

x
L) functions and

increasing the total number of constraints up to M +K.

3) Lifting Objects: The theoretical formulation we
presented thus far does not take into account dynamic
constraints to let the robot actually lift the object. As an
initial approximation, the robot can physically lift an object
if it places its hand in proximity of the object geometric
centroid (the object is assumed to have a uniform density).
In fact, in case the hand is located on an extremity of the
object, as in the examples illustrated in Fig. 6(c) and 6(d),
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Fig. 6. Stretching the ellipsoid H so as to amount the longest dimension of
the object superquadric O leads to a grasping pose that eventually enables
lifting the object, case (a), without imposing additional constraints in Eq.
(3). If a smaller H was exploited, more solutions were acceptable for the
optimization problem, including some poses that do not allow the robot to
lift the object properly, such as case (c) and (d).

the probability that the object may fall while it is lifted is
large. A possible solution could be adding a constraint to
Eq. (3) to require the minimization of the distance between
the centroid of O and the ellipsoid H. However, instead of
a further constraint that might cause the overall execution
time to eventually increase, we can alternatively vary the
dimensions of H. Specifically, when the largest dimension
of the object superquadric O (say λ3) is greater than the
corresponding dimension of the ellipsoid H, (say λh,3,
thus λ3 > λh,3), then we resize H, so that λh,3 = λ3. In
this way, the dimensions of H and O implicitly impose
a constraint on the reciprocal position of the centroids of
the two entities. A practical proof of the effectiveness of
this approach is provided in Fig. 6. If the ellipsoid H is
stretched so as to amount the longest dimension of the
object superquadric O (Fig. 6(a)), the centroid of H in the
computed pose is close to the centroid of O.

The optimization problem we propose for the computation
of proper grasping pose is solved by the Ipopt package
efficiently and with execution times compatible with
the requirements of real-time applications (see Table III
of Section IV). Even if the global solution of a non-
linear constrained optimization problem is not generally
guaranteed, Ipopt package ensures that a local minimizer is
provided to the user, avoiding maximizers and saddle points
[34].

Fig. 7. The iCub humanoid robot has been used as testing platform for
testing the proposed approach.

Fig. 8. Object modeling and grasping: complete pipeline. We assume that
the object to be grasped is detected using an object recognition system and
fixated by the robot. The first two steps of the pipeline involve segmenting
the object and constructing a partial 3D point cloud using stereo vision
(at this aim we use the cameras monted on the head of the robot, after
calibration). The remaining steps use Eq. (2) to compute the superquadric
that better fit the 3D points. The superquadric is finally exploited to compute
a reachable pose, by solving the problem in Eq. (3).

Finally, the Cartesian controller available on the iCub [35]
is responsible for providing suitable joint trajectories to reach
for the grasping pose found by our method.

IV. EXPERIMENTS

In order to validate our approach in a real scenario, we im-
plemented on the iCub humanoid robot (Fig. 7) the pipeline
shown in Fig. 8. We assume that the object is identified using
an object recognition system. Using stereo vision the object
is segmented and a partial 3D point cloud is constructed. Our
implementation of superquadric modeling1 so as grasp pose
computation2 is publicly available on GitHub.

The dimensions of the ellipsoid we used for representing
the volume graspable by the iCub hand are related to the
fingers lengths and the palm dimensions. The ellipsoid pose
in the hand frame is instead determined by considering the
fingers workspace.

We conducted our experiments using a set of 6 objects,
shown in Fig. 9. The objects were deliberately selected so
as to be different in shape and dimensions (Table I). The
number of points L sampled on the ellipsoid H is chosen to

1https://github.com/robotology/superquadric-model,
DOI:10.5281/zenodo.262995.
2https://github.com/giuliavezzani/superquadric-grasping,
DOI:10.5281/zenodo.263015.



TABLE I
OBJECT DIMENSIONS

Object Volume [m3] Object Volume [m3]

Cylinder 0.06× 0.06× 0.20 Ladybug 0.16× 0.08× 0.08
Cat 0.10× 0.10× 0.10 Lettuce 0.07× 0.07× 0.07
Bear 0.09× 0.09× 0.12 Turtle 0.16× 0.10× 0.06

Table I shows the dimensions of the object used in the experiments.

TABLE II
EXECUTION TIME FOR MODEL RECONSTRUCTION

Object Average time [s] Object Average time [s]

Cylinder 1.97 Ladybug 2.39
Cat 1.82 Lettuce 2.22
Bear 2.40 Turtle 2.75

Table II indicates the average execution time across 10 trials for model
reconstruction process of each object.

be 46, being this value a good trade-off between algorithm’s
performance and speed.

We perform 10 trials for each object (i.e. we ask the
robot to grasp each object 10 times by computing a new
pose for each trial), in order to evaluate the reliability of
our pipeline and the effectiveness of the poses provided
by our method. The poses computed in each trial differ
because the superquadrics that model the objects vary as
a result of variations in the object segmentation and point
cloud. In order to reduce such a influence, we implemented
the following expedients. First, the least square formulation
itself of Eq. (2) makes the model reconstruction approach
immune to white noise. Second, we reduce outliers effect
on object modeling by pre-filtering the point clouds in
order discard points regions with low density. Of course,
the use of single-view point clouds leads to rough models
whose quality highly depends on the view angle during
data acquisition. Fig. 9 shows an example of extracted point
clouds and the respective superquadric models O. Table II
indicates the average execution time across 10 trials for
model reconstruction. In Table III, we show the percentage
of successful grasps, together with statistical information of
the execution time required for computing a proper grasp.

The 10 poses computed for each object are compared
in Fig. 10, where for the sake of clarity we show only

TABLE III
PERCENTAGE OF SUCCESSFUL GRASPS

Object No. Trials Success on Trails [%] Average Time [s]

Cylinder 10 100% 2.71
Cat 10 85% 1.15
Bear 10 100% 1.70
Ladybug 10 90% 1.89
Lettuce 10 90% 1.72
Turtle 10 85% 1.50

Table III shows the percentage of successful grasps, together with the
average execution time required for computing a proper grasp for each
object.

Fig. 9. Top: the objects used in the experiments. Bottom: reconstructed
point clouds with superimposed superquadric models.

one reconstructed superquadric O for each object, without
showing the (overlapping) ellipsoid H that represents the
hand.

Fig. 10 demonstrates that the desired poses computed
with different models of the same object are affected by a
small variability, thus guaranteeing a high grade of similarity
and therefore underpinning the robustness of our method.
For instance, the poses computed for object (a) are all very
similar, representing the best grasp for a cylinder shape,
that is located on the side at the middle of its height (Fig.
10(a)).

The exploitation of 3D object models in pose computation
allows considering even those portions of the object occluded
by vision, as illustrated in Fig 10 (a) and (c), where the
computed poses bring the hand to touch the objects on
the side and thus to place the fingers on the back. This
is a remarkable advantage, because using only the visible
portion of the object may lead to hand poses that appear not
natural from the standpoint of human-like reaching or even
not easily attainable for a humanoid robot, whose dexterity
is often limited compared with that of humans.

Another advantage of our method is that we model the
base on which the object is placed (e.g. the table), and
impose constraints to avoid it in the optimization problem
(the constraint in Eq. (3)). This feature allows the robot
to grasp even small objects, without hitting the table
with the fingers, as it is the case of the objects in Fig.
10(e) and 10(f) (these objects are approximately 6 [cm] tall).

V. CONCLUSIONS

In this paper, we proposed a novel approach for solving the
grasping problem of unknown objects. In short, the idea of
our approach is to use superquadrics to model the graspable
volume of the hand and the objects from vision. These
models are then used to compute a proper grasping pose
solving a nonlinear constrained optimization problem. We
showed how to add constraints so that the set of possible
poses is limited to those that do not cause collisions with
obstacles (e.g. the base on which the object stands) and do
not lead to object penetration. Our approach is sufficiently
generic to deal with objects and obstacles of different shape
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Fig. 10. For each object 10 poses are shown. The letters identifying the
different plots ((a) - (f)) correspond to different objects, according to the
notation of Fig. 9.

and size, and enables specifying further requirements on the
robot pose by adding new constraints.

We evaluated our method experimentally with the iCub
humanoid robot, showing that it is reliable, providing a
percentage average on 6 objects greater than 90%. In addition
our tests demonstrate that the robot can grasp even small
objects, without hitting the supporting table with the fingers.
Finally, an interesting advantage of our algorithm is that it
can compute poses in which fingers are located on object
portions that are occluded from vision, if they have better
grasping properties.

The work in this paper can be extended in several ways.
First of all, it is possible to deal with a larger number
of objects with more complex shapes by introducing more
accurate models. For this reason we will perform an ex-
tensive evaluation of our method on the YCB Object &
Model Set [36] and compare the reconstructed superquadric
models with the 3D models provided by the dataset. In

this paper we used a single superquadric which provides a
rough approximation of the object shape. However, the object
model can be refined by using a set of superquadrics [27],
[28]. Similarly, the hand model can be improved, for example
by taking into account finger shape and position. A viable
approach is to approximate them with a set of superquadrics
and impose object avoidance constraints for each finger.
Finally, the problem formulation could be also extended to
compute, in addition to the grasping pose, an appropriate
approach trajectory that satisfies additional optimality criteria
(such as length of the trajectory, obstacle avoidance).
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