
Markerless visual servoing on unknown objects

for humanoid robot platforms

Claudio Fantacci1, Giulia Vezzani1, Ugo Pattacini1, Vadim Tikhanoff1 and Lorenzo Natale1

Abstract — To precisely reach for an object with a humanoid

robot, it is of central importance to have good knowledge

of both end-effector, object pose and shape. In this work

we propose a framework for markerless visual servoing on

unknown objects, which is divided in four main parts: I) a least-

squares minimization problem is formulated to find the volume

of the object graspable by the robot’s hand using its stereo

vision; II) a recursive Bayesian filtering technique, based on

Sequential Monte Carlo (SMC) filtering, estimates the 6D pose

(position and orientation) of the robot’s end-effector without

the use of markers; III) a nonlinear constrained optimization

problem is formulated to compute the desired graspable pose

about the object; IV) an image-based visual servo control

commands the robot’s end-effector toward the desired pose. We

demonstrate effectiveness and robustness of our approach with

extensive experiments on the iCub humanoid robot platform,

achieving real-time computation, smooth trajectories and sub-

pixel precisions.

I. INTRODUCTION
Recent surge of interest in humanoid robots and their use

in private or public contexts has risen the need for robust
and resilient techniques for manipulation and interaction
tasks. These contexts present real-world challenges in that
the environment is unstructured, complex and time varying.
Precise and reliable manipulation and interaction tasks can
be achieved when accurate knowledge of both the object to
manipulate and the end-effector pose is available. This is
possible for industrial settings, where it is required to repeat
similar tasks over time, in a fine-calibrated setting and in
a well-known and structured environment. Humanoid robots
instead: I) are supposed to act in dynamic and unknown
environment wherein object poses and shapes are unknown
and II) have unreliable proprioception due to measurement
noises, sensor biases, mechanical elasticity of the links and
so forth.

In this paper, we propose a robust and reliable framework
to address I, II in the context of grasping tasks. In particular,
we use vision both for modeling objects and their grasping
poses, and compensating for the robot’s proprioception er-
rors. As a result, such a refined information allows designing
of a visual servoing control [1]–[6] for precise reaching and
grasping. Our approach is markerless and makes use of stereo
vision information and RGB images.

Specifically, this work integrates our previous results [7]
and [8] that respectively estimate the model and the grasping

1Claudio Fantacci, Giulia Vezzani, Ugo Pattacini, Vadim Tikhanoff and
Lorenzo Natale are with Istituto Italiano di Tecnologia, iCub Facility,
Humanoid Sensing and Perception, Via Morego 30, Genova, Italy
claudio.fantacci@iit.it, giulia.vezzani@iit.it,
ugo.pattacini@iit.it, vadim.tikhanoff@iit.it,
lorenzo.natale@iit.it

pose of an object with superquadric functions and the 6D
pose of the robot end-effector by means of a particle filter.
The combined exploitation of these approaches provide all
the required input for addressing visual servoing problems.

As main contribution, we propose an image-based visual
servoing approach with decoupled translation and orientation
controls. In particular, we formulate two different visual
servoing problems. In the first one we solve for the trans-
lation motion assuming the rotation is already completed.
Conversely, the latter computes the rotation motion under
the assumption that the translation part is achieved. Fur-
thermore, we present practical solutions to use the particle
filter estimates with visual servoing and a gain-scheduling
technique to prevent the end-effector overshooting and os-
cillating around the goal pose. Finally, we demonstrate the
effectiveness of the proposed framework via experimental
tests carried out in real-time on the iCub humanoid robot
platform [9].

The rest of the paper is organized as follows. Section II
reviews the state-of-art on visual servo control. Section IV
briefly introduces the superquadric modeling and grasping
pose computation, and the particle filter formulation. Section
V gives details of the proposed image-based visual servo
control. In Section VI we report on the experiments to vali-
date our approach. Finally, Section VII provides concluding
remarks and future work.

II. RELATED WORK
The use of computer vision to control a robot manipulator

motion toward an object, i.e. visual servoing or visual servo
control, has been a well known research topic in literature
for over two decades [1], [2], [4]–[6]. The recent interest and
development of humanoid robots have shifted the attention
toward the integration of such methodologies to different
humanoid robot platforms.

In [10], the authors introduce a position-based visual
servoing framework to overcome the problem of hand-eye
calibration with an Extended Kalman Filter tracking flashing
LEDs on the robot hand. This, however, poses the constraint
of using markers to track the end-effector and it requires
markers to be visible during the whole motion. The authors
further extend their work by endowing their robot with an
RGBD sensor [11]. Colour and depth information are used
to fit box models onto target objects and then to estimate a
graspable pose.

Another interesting technique to visual servoing is to use
machine learning to estimate either, or both, the forward
kinematics, relating the configuration of the arm joints with

the position of the hand, along with the image Jacobian [12]–
[15].

In [16], [17], a hybrid visual servoing is used to grasp
known objects on the humanoid robot ARMAR III. The pro-
posed methodology uses prior information about the shape
of the objects as well as a marker to track the robot’s hand,
which for generic contexts may be an unfeasible assumption.

In [18] the authors describe a visual servoing framework
for grasping that is divided in several parts, two of which
are for constructing the scene model and to estimate the
pose of the end-effector. Point clouds are used for scene
reconstruction, while the Virtual Visual Servoing (VVS) [19],
[20] approach is used to estimate the pose of the robot’s hand.
In particular, VVS uses a 3D rendering engine to virtually
create 3D CAD models of the robot’s end-effector as if it had
been seen by the robot’s camera. Then, a classical visual
servoing approach is used to move the virtual camera to
overlap the rendered model of the end-effector with the real
one in the image. The features used during visual servoing
are provided by the Chamfer distance transform [21].

In [22], a Sequential Monte Carlo (SMC) algorithm es-
timates the offset present in the robot’s encoders to correct
the errors in the forward kinematics. A simulator is used
to generate predictions about hand appearance in the robot
camera image plane. These images are used to evaluate the
likelihood by comparing RGB images using the Chamfer
distance transform.

In the context of the present work, our framework uses
stereo vision information to estimate the 3D shape and grasp-
ing poses of unknown objects. The robot’s proprioception is
refined using SMC filtering, which is robust and accounts
for multimodal distributions. HOG descriptors are used to
extract information about the end-effector shape from images
without the use of markers.

III. PROPOSED FRAMEWORK

The framework we propose for markerless visual servoing
on unknown objects consists of the following steps (cfr. Fig.
1):

S1. The modeling approach described in [7] reconstructs
a superquadric representing the object by using a 3D
partial point cloud acquired from stereo vision.

S2. The estimated model is exploited by the pose compu-
tation method of [7] for providing a grasping pose.

S3. An open loop phase brings the robot’s end-effector in
the proximity of the object and in the cameras field-of-
views.

S4. The 3D model-aided particle filter of [8] estimates the
end-effector pose using RGB images.

S5. Visual servoing uses the particle filter output of S4. in
order to reach for the pose computed in S2..

S6. Reaching completes and the robot grasps the object.

For the sake of completeness Section IV reports S1-S4,
whereas Section V details the design of the visual servo
control.

S1 S2 S3

S4 S5 S6

Fig. 1. Block representation of the proposed markerless visual servoing
framework on unknown objects.

IV. BACKGROUND

In this Section, we provide the background on the grasping
pose computation of [7] and on 3D model-aided particle
filtering of [8].

A. Grasping approach

The grasping approach used in this work is based on
modeling the object and the volume graspable by the robot
hand with superquadric functions.

Superquadrics are a generalization of quadric surfaces and
includes supertoroids, superhyperboloids and superellipsoids.
In this work, we focus on superellipsoids – that we will
call simply superquadrics from now on – since they identify
closed surfaces and, thus, are suitable for object modeling.

A superquadric can be represented in an object-centered
system with the inside-outside function:

F (x, y, z,�) =

✓

x

�1

◆

2
�5

+

✓

y

�2

◆

2
�5

!

�5
�4

+

✓

z

�3

◆

2
�4

,

(1)
where the five parameters � = [�1, . . . ,�5] defines the
superquadric dimensions and shape. Equation (1) provides
a simple test whether a given point lies (F = 1) or not
(F > 1 or F < 1) on the superquadric surface.

In the next paragraphs, we briefly recall the superquadric
modeling and the grasping pose computation proposed in [7].

1) Superquadric modeling: Object modeling with su-
perquadrics consists of finding that superquadric O which
best represents the object by using a single and partial 3D
point cloud, acquired by stereo vision. In particular, we need
to estimate those values of the parameters vector � 2 R11,
so that most of the N 3D points mo

i

= [x
i

, y

i

, z

i

] for
i = 1, . . . , N , collected from the object surface, lie on or
close to the superquadric. The minimization of the algebraic
distance from points to the model can be solved by defining
a least-squares minimization problem

min
�

N

X

i=1

⇣

p

�1�2�3 (F (mo

i

,�)� 1)
⌘2

, (2)

where (F (mo

i

,�)� 1)2 imposes the point-superquadric dis-
tance minimization and the term �1�2�3, which is pro-
portional to the superquadric volume, compensates for the
fact that the previous equation is biased towards larger
superquadric.

The optimization problem of Equation (2) is solved in
real-time by Ipopt [23], a software package for large scale
nonlinear constrained optimization problem.

We use a superquadric function for representing also the
volume graspable by the robot’s hand. In this case, the shape
and pose of such superquadric are known a-priori, as they
depend on the hand shape and its grasping capabilities. A
suitable shape for this purpose turns out to be the ellipsoid
H attached to the hand palm shown in Fig. 2.

2) Grasping pose computation: The approach described
in [7] provides a feasible grasping pose for the robot hand
by using the object superquadric O and the ellipsoid H
modeling the volume graspable by the hand. The hand pose is
represented with a 6D vector xg = [xg

, y

g

, z

g

,�

g

, ✓

g

,

g]>,
where (xg

, y

g

, z

g) are the coordinates of the origin of the
hand frame and (�g, ✓g, g) are the RPY Euler angles,
accounting for orientation.

The basic concept of this grasping approach is to compute
the solution by looking for a pose xg that makes the hand
ellipsoid H overlap with the object superquadric O while
meeting a set of requirements that guarantee xg is reachable
by the robot’s hand.

The general formulation of the problem can be described
by the following nonlinear constrained optimization:

min
x

g

L

X

i=1

⇣

p

�1�2�3

⇣

F (mx

g

i

,�)� 1
⌘⌘2

subject to: (3)
h

i

(a
i

, c

i

(mx

g

1 , . . . ,mx

g

L

)) > 0

for i = 1, . . . ,M .

Hereafter, we briefly recall the meaning of the most impor-
tant quantities of Eq. (3). An exhaustive description of the
pose computation approach is provided in [7].

• The cost function imposes the minimization of the
distance between the object superquadric O, represented
by the inside-outside function (F (·,�)� 1), and L

points mx

g

i

=
⇥

p

x

g

x,i

, p

x

g

y,i

, p

x

g

z,i

⇤

for i = 1, . . . , L,
properly sampled on the surface of the hand ellipsoid
H, whose pose is given by vector xg .

• The M constraints of Eq. (3) take into account obstacle
avoidance requirements. Each term h

i

, for i = 1, . . . ,M
is the implicit function representing the i-th obstacle.
As is in [7], the only obstacle of our scenario is the
table on which the object is located, hence M = 1.
The quantity h1(a1, c1(·)) = h(a, c(·)) is the implicit
function of the plane modeling the table. The vector
a consists of the parameters of the plane function and
each f(mx

g

1 , . . . ,mx

g

L

) accounts for a dependency on
the L points m

i

suitably designed for the grasping task.
We solve the optimization problem of Equation (3) with

the Ipopt package efficiently and with execution times

(a)

-0.15

-0.1

-0.1

-0.05

z
[m

]

y [m]

0

x [m]
-0.05 -0.35

(b)

Fig. 2. In Fig. (a), the reference frame (xg
,y

g
,z

g) attached to the robot
hand in RGB convention (xg is coloured in red, yg in green, zg in blue).
In Fig (b): the L points sampled on the closest half of the hand ellipsoid
H. The RGB frame represents the hand pose, showing how the ellipsoid H
is attached to the hand.

compatible with online applications (nearly 2 seconds on
average).

B. 3D model-aided particle filtering

The objective of a SMC filter, or particle filter (PF), is to
provide a numerical solution to the recursive Bayesian filter
defined by the the Chapman-Kolmogorov equation and the
Bayes’ rule [24]:

p

k|k�1(x) =

Z

'

k|k�1(x|⇣) pk�1(⇣) d⇣ , (4)

p

k

(x) =
g

k

(y
k

|x) p
k|k�1(x)

Z

g

k

(y
k

|⇣) p
k|k�1(⇣) d⇣

, (5)

where k is the time instant, y
k

2 Rn

y is the noisy measure-
ment at time k, p

k|k�1(·) is the predicted density, p
k

(·) is
the posterior density and '

k+1|k(·|⇣) is a Markov transition
density and g

k

(y|·) is the measurement likelihood function
[25]–[29].

Particle filters characterize the posterior density p

k

(x) of
the state x

k

2 Rn

x of a dynamical system at time k, with
a set of support points, termed particles, and associated
weights {x(i)

k

, w

(i)
k

}1iN

. The principle under which a
particle set is able to approximate the posterior density
p

k

(x) over time is the importance sampling [26], [30]. Dur-
ing importance sampling, a proposal or importance density
⇡

k

(x
k

|x
k�1, yk

) is used to draw preliminary particles at
time k:

x
(i)
k

⇠ ⇡

k

⇣

x|x(i)
k�1, yk

⌘

, (6)

whose weights are computed as follows:

ew

(i)
k

= w

(i)
k�1

g

k

(y
k

|x(i)
k

)'
k|k�1(x

(i)
k

|x(i)
k�1)

⇡

k

(x(i)
k

|x(i)
k�1,yk

)
(7)

w

(i)
k

=
ew

(i)
k

P

N

j=1 ew
(j)
k

(8)

for i = 1, . . . , N . To avoid that the particle weights degen-
erate to a situation where all except few become zero, a

resampling step [26]–[29]. The described particle method is
known in literature as Sequential Importance Sampling (SIS)
[28], [29].

The main advantages of particle filter methods are that
they can deal with arbitrary nonlinearities and distributions
(including multimodal ones), and can supply a complete rep-
resentation of the posterior state distributions that improves
as N ! 1 [25]–[28]. The most suboptimal choice of the
proposal is ⇡

k

⌘ '

k|k�1, i.e. the transitional density [29].
To adapt the SIS PF to our needs, we need to choose:
1) the initialization procedure;
2) the Markovian transition density defining the proposal;
3) the likelihood model.

For the sake of simplicity the following subsections consider
a single camera viewpoint at time instant k.

1) Initialization: the state of the pose of the end-
effector is denoted by x = [p

x

, p

y

, p

z

, u

x

, u

y

, u

z

, ✓]>,
where: (p

x

, p

y

, p

z

,) is the Cartesian position of the end-
effector with respect to the root reference of the robot
[9]; (u

x

, u

y

, u

z

, ✓) is the orientation of the end-effector
expressed in axis-angle notation. We use the joint angles
from the robot’s base frame to the end-effector frame qe

k

=
n

q

e

k, 1, . . . , q
e

k, n

o

to set the particle x
(i)
0 , 1 i N , equal

to the pose of the hand provided by the direct kinematics
map (qe

k

) [31].
2) Markovian transition density: we use the direct kine-

matics map (qe

k

) to model, given a certain motor command
�qe

k�1, the motion of the end-effector x
k

subject to uncer-
tainties and disturbances as

x
k

= f

k�1

�

x
k�1,�qe

k�1

�

+w
k�1 (9)

where w
k�1 is the process noise. The Markov transition

density results to be the described by the PDF

'

k|k�1

�

x
k

|x
k�1,�qe

k�1

�

=p

w

�

x
k

�f
k�1

�

x
k�1,�qe

k�1

��

.

(10)
3) Likelihood model: given a pose x, we use the OpenGL

3D rendering engine [32] to create a virtual image bI
k

of
the robot’s end-effector as it would be seen by the current
robot’s camera point of view. In particular, each particle x

(i)
k

represents a pose of the end-effector for which a virtual
image

b

I

(i)
k

, r

⇣

x
(i)
k

, qc

k

,K
⌘

, (11)

is rendered using the joint angles qc

k

of the camera kinematic
chain and the intrinsic matrix K [33]. Within (11), the
projection matrix

⇧ = KH(qc

k

) (12)

performs a homogeneous transformation from the robot base
reference frame to the camera image plane, with H(qc

k

)
the homogeneous transformation from the base reference
frame to the camera frame. A pictorial representation of the
rendering process (11) is shown in Fig. 3.

Using (11) and images from the robot’s camera, we define
the measurement likelihood function g

k

(·|·) on the HOG

Fig. 3. Top: mechanical model of the iCub right arm. Bottom left: image
from the left camera of iCub. Bottom right: rendered image of the right
end-effector (hand) of the iCub. In the context of this work, we decided
to disable the ring and little fingers from being rendered. Motivations are
detailed in Section VI.

descriptor y
k

extracted from the camera image and the
descriptor by(i)

k

extracted from the rendered image as follows:

g

k

⇣

y
k

|x(i)
k

⌘

, e

�
1

�

���y
k

�by(i)
k

���
, (13)

where � is a free tuning parameter.
Further details and a pseudo code of the 3D model-aided

SIS PF can be found in [8].

C. State estimate extraction method

After each PF cycle, a new estimation of the 6D pose
of the hand is available. However, such estimates have
a non-smooth trajectory and, as a result, are not suitable
for a control loop that should provide a smooth, straight
and precise trajectory of the robot’s end-effector. To tackle
this problem we use a Moving Average (MA) technique to
regularize the output of the PF.

V. VISUAL SERVO CONTROL

The goal of visual servoing is to command the robot’s
end-effector for accurately reaching a desired pose. A good
visual servoing approach for humanoid robots requires the
design of a robust and reliable control law and a human-like
motion of the upper-body. To this end, we set the following
requirements:
(I) The image Jacobian shall provide a velocity screw of

the end-effector in the Cartesian domain. Instead of
controlling each joint velocity, we command the end-
effector trajectory using a Cartesian controller [34].
The main advantage of using this approach is that it I)
automatically deals with singularities; II) automatically
accounts for joint limits; III) can find solutions in
virtually any working conditions [34].

(II) The end-effector trajectory shall be as straight as pos-
sible. This particular requirement is to simplify motion
planning, which usually has an initial open loop phase
to bring the end-effector in the proximity of the object
to manipulate.

The two main ingredients to design a visual servo control
are the goal pose

xg =
⇥

p

g

x

, p

g

y

, p

g

z

, u

g

x

, u

g

y

, u

g

z

, ✓

g

⇤> (14)

and the current pose of the end-effector

xe =
⇥

p

e

x

, p

e

y

, p

e

z

, u

e

x

, u

e

y

, u

e

z

, ✓

e

⇤>
, (15)

where
�

p

⇤
x

, p

⇤
y

, p

⇤
z

�

are the 3D Cartesian coordinates and
�

u

⇤
x

, u

⇤
y

, u

⇤
z

, ✓

⇤� is the axis-angle representation of the ori-
entation. xg is provided by the the grasping pose computa-
tion of Section IV-A, while xe is given by the 3D model-
aided particle filter of Section IV-B. The visual servoing
objective is to minimize the error

e
k

, s(xe

k

)� s(xg) = se
k

� sg , (16)

where se
k

and sg are some feature representing, respectively,
the manipulator and the goal pose. Once a feature s is
selected, the aim is to design a velocity controller. To do so,
considering the object stationary, we require the relationship
between the variation of se

k

2 Rm and the end-effector
velocity. Denote the spatial velocity of the end-effector as

ẋe , [v, !]> 2 R6
, (17)

v = [v
x

, v

y

, v

z

]> , (18)
! = [!

x

, !

y

, !

z

]> , (19)

with v the linear velocity of the origin and ! the in-
stantaneous angular velocity of the manipulator frame. The
relationship between ṡe

k

and ẋe is described by the equation

ṡe
k

= Jẋe

, (20)

where J 2 Rm⇥6 is the feature Jacobian, or simply
Jacobian, and from which, using (16), is possible to derive
a control law with exponential decrease of the error of the
form

ẋe = �K

eJ†
e , (21)

with K

e

> 0 a proportional gain and J† the Moore-Penrose
pseudo-inverse of the Jacobian.

The visual servoing approaches can be divided in two
categories: image-based visual servoing and position-based
visual servoing [5]. The first approach uses image-plane
coordinates of a set of points to define the feature vector
s⇤, while the latter directly uses the pose for s⇤. It would be
natural, in our setting, to use a position-based visual servo
control since we estimate both the pose of the goal and of
the end-effector. However, image-based visual servoing is
preferable because it allows precise control, despite errors in
the extrinsic camera parameters.

Image-based visual servo controls are known to be robust
to camera and robot calibration errors [2], but produce poorly
predictable Cartesian trajectory [3]. To tackle this problem, it

is important to construct a good Jacobian J that 1) ensures
an exponential decrease of the error e; 2) guarantees that the
trajectory of the feature points will follow a straight line from
their initial to their desired positions; 3) avoids unexpected
translational motion when the rotation between the initial
and desired configurations is large [5]. In order to design a
proper control law, let us introduce the image feature s and
the corresponding generic formulation of the image Jacobian
J .

To control the 6D pose of the end-effector and to avoid
configurations in which J becomes singular, four different
visual features can be considered from both xg and xe [5].
In particular, we define four coplanar 3D points around both
xg and xe that are in turn projected on both left and right
camera image plane with (12), i.e.

⇧
l

xe

i

= z

e

l, i

2

6

4

u

e

l, i

v

e

l, i

1

3

7

5

, ⇧
r

xe

i

= z

e

r, i

2

6

4

u

e

r, i

v

e

r, i

1

3

7

5

, 1 i 4 ;

(22)

⇧
l

xg

i

= z

g

l, i

2

6

4

u

g

l, i

v

g

l, i

1

3

7

5

, ⇧
r

xg

i

= z

g

r, i

2

6

4

u

g

r, i

v

g

r, i

1

3

7

5

, 1 i 4 .

(23)
In order to evaluate the error (16), we define the visual
feature s as:

se =
h

s̄e1, s̄
e

2, s̄
e

3, s̄
e

4

i>
(24)

s̄e
i

,
h

u

e

l, i

, u

e

r, i

, v

e

l, i

, v

e

r, i

i

, 1 i 4 , (25)

sg =
h

s̄g1, s̄
g

2, s̄
g

3, s̄
g

4

i>
(26)

s̄g
i

,
h

u

g

l, i

, u

g

r, i

, v

g

l, i

, v

g

r, i

i

, 1 i 4 . (27)

Finally, to relate changes in image point coordinates to
changes in the Cartesian pose of the robot’s manipulator,
the general image Jacobian J is calculated as follows [2]:

J = ROW
⇣

J1, J2, J3, J4

⌘

2 R16⇥6
, (28)

J
i

=

2

6

6

6

6

6

6

6

6

6

6

6

4

� fl
zl, i

0
ul, i

zl, i

ul, ivl, i
fl

�f2
l + (ul, i)

2

fl
vl, i

� fr
zr, i

0
ur, i

zr, i

ur, ivr, i
fr

�f2
r + (vr, i)

2

fr
vr, i

0 � fl
zl, i

vl, i
zl, i

f2
l + (vl, i)

2

fl
�ul, ivl, i

fl
�ul, i

0 � fl
zr, i

vr, i
zr, i

f2
r + (vr, i)

2

fr
�ur, ivr, i

fr
�ur, i

3

7

7

7

7

7

7

7

7

7

7

7

5

,

where f

l

and f

r

are, respectively, the focal length of the
left and right camera, which are known from the camera
calibration matrix K in (12), and ROW(·) is a row-wise
matrix stacking operator. Note that the image coordinates
(u⇤, v⇤) do not specify any of the two possible superscript
e or g. This is because several choice are available, each
generating a different velocity screw ẋe. Popular approaches
are [5]:

1) evaluate J , Je using (22);
2) evaluate J , Jg using (23);
3) evaluate J , Jc = 0.5 (Je + Jg).

These choices, however, provide unsatisfactory Cartesian
trajectory of the end-effector. A pictorial view of the resulting
trajectories is shown in Fig. 4. As a result, we designed
a new image-based visual servoing control that provides
satisfactory trajectories and complies with requirements (I)
and (II).

140 160 180 200 220 240 260 280 300 320 340

60

80

100

120

140

160

180

200

Fig. 4. Left camera view of four image-plane trajectories performed by the
right end-effector using different image Jacobians. The green and red crosses
represent, respectively, the initial and final position of the end-effector. The
reaching task was carried out in simulation to avoid damaging the robot,
and it mainly consists of a translation toward the left and a small positive
rotation. The solid black line on the right highlights the end of the image
frame, which in our setting is 320 ⇥ 240. Note that only the green solid
line, representing our image-based visual servoing control, is capable of
providing a satisfactory trajectory.

Our approach considers two image-based visual servoing
problems to be solved. The first solves for the translation
motion assuming the rotation completed. This is equivalent
to consider the current pose of the end-effector as the
combination of the 3D Cartesian component of xe and the
axis-angle representation of the orientation of xg , i.e.

xe

t

,
⇥

p

e

x

, p

e

y

, p

e

z

, u

g

x

, u

g

y

, u

g

z

, ✓

g

⇤>
. (29)

Conversely, in the second problem we compute the rotation
motion under the assumption of achieved translation, i.e.

xe

o

,
⇥

p

g

x

, p

g

y

, p

g

z

, u

e

x

, u

e

y

, u

e

z

, ✓

e

⇤>
. (30)

We then proceed with the classic approach, defining four
coplanar 3D points around xe

t

and xe

o

as in (22), i.e.

⇧
l

xe

t,i

= z

e

l,t,i

2

6

4

u

e

l,t,i

v

e

l,t,i

1

3

7

5

, ⇧
r

xe

t,i

= z

e

r,t,i

2

6

4

u

e

r,t,i

v

e

r,t,i

1

3

7

5

, 1 i 4

(31)

⇧
l

xe

o,i

= z

e

l,o,i

2

6

4

u

e

l,o,i

v

e

l,o,i

1

3

7

5

,⇧
r

xe

o,i

= z

e

r,o,i

2

6

4

u

e

r,o,i

v

e

r,o,i

1

3

7

5

, 1 i 4

(32)

the visual features se
t

and se
o

as in (24), two image Jacobians
Je

t

and Je

o

using, respectively, (31) and (32) as in (28), and
finally the error functions

e
t

, se
t

� sg , (33)
e
o

, se
o

� sg . (34)

The velocity screws

ẋe

t

, [v
t

, !
t

]> , (35)
ẋe

o

, [v
o

, !
o

]> , (36)

are computed with

ẋe

t

= �K

e

t

(Je

t

)† e
t

, (37)
ẋe

o

= �K

e

o

(Je

o

)† e
o

. (38)

Finally, (35) and (36) are combined in a single velocity
screw ẋe = [v

t

, !
o

]> that is used by the Cartesian con-
troller to command the robot’s end effector. The resulting
trajectory turns out to be satisfactory, combining a decoupled
translation and rotation motion. A comparison view of the
trajectories is shown in Fig. 4.

A. Gain scheduling
The choice of K

e in (21) is critical because it affects
both the speed of the final movement and the convergence
to the goal pose. On the one hand, high K

e may lead to
overshooting and/or oscillating around the goal, on the other
hand, a low K

e would increase the control convergence,
but the resulting movement will be slow. A practical, yet
effective, solution to the above-mentioned considerations is
to have different gains depending on the robot’s operative
point.

In this work, we use a gain-scheduling approach [35] to
change the value of K

e when the end-effector is close to
the goal pose. As a result, the control law (21) becomes as
follows:

ẋe =

(

�K

e

1J
†e , if ||e|| � ⌧

e

�K

e

2J
†e , otherwise

, (39)

where ⌧
e

is a distance threshold and K

e

1 � K

e

2 > 0 are the
two proportional gains.

VI. EXPERIMENTAL RESULTS
To evaluate the effectiveness and robustness of the pro-

posed framework, a C++ implementation of the pipeline has
been tested on the iCub humanoid robot platform. We ran
our experiments on two laptops, shipped with an Intel i7
processor, and a workstation equipped with a NVIDIA K40
GPU in order to use the CUDA [36] HOG implementation
provided by OpenCV [37].

We carried out two different experiments: 1) 10 grasps
on 3 different objects and 2) 10 reaching motions using the
same initial and goal pose. On the one hand, the goal of the
first experiment is to assess the robustness of the pipeline as a
whole. The 3 objects have different shape and size, see Fig. 6,
in order to put to test the superquadric modeling, the grasping
pose computation and the precision of the visual servoing

-0.35

0.04

-0.39

0.06

0.16
-0.31

0.08

0.14

0.10

-0.29 0.12

0.12

-0.27 0.10
-0.25 0.08

-0.23 0.06
-0.21 0.04

180 200 220 240 260 280 300

120

130

140

150

160

170

180

190

200

210

220
100 120 140 160 180 200 220

120

130

140

150

160

170

180

190

200

210

220

Fig. 5. Left: 3D Cartesian trajectories of the right end-effector. Center/Right: Image coordinates on the left/right camera of the four points representing
the pose of the right end-effector. Green/Red crosses represents the starting/goal positions. Note that the starting position numbers 1-4 are ordered clockwise,
while the goal positions numbers are ordered counter-clockwise, implying for a 180 [�] rotation.

Fig. 6. Left: Domino sugar box of the YCB dataset [38]. Center: French’s
mustard bottle of the YCB dataset [38]. Right: Pineapple juice bottle, a
small everyday cylinder-shaped object.

control. On the other hand, the second experiment focuses
on assessing the repeatability of the generated trajectories.
In particular, we tested the 3D model aided particle filter
and the image-based visual servo control by performing a
trajectory that involves a translation and 180 [�] rotation.

Both experiment 1 and 2 use the same set of parameters.
Details of the grasping and 3D model-aided particle filter im-
plementation can be found on Github1. The visual servoing
gains with gain scheduling are K

e

t,1 = 0.5, K

e

t,2 = 0.25,
K

e

o,1 = 3.5 and K

e

o,2 = 0.5, with distance thresholds
⌧

e

t

= ⌧

e

o

= 10 [pixel]. The termination condition for visual
servoing is achieved when the `

2-norm of e falls below 1
pixel.

A. Experiment 1
To evaluate the performance of experiment 1, we calculate,

for each object, the Root Mean Square Error (RMSE) of
both the image and Cartesian coordinates of the end-effector
pose. Further, in order to have a good term of comparison,
we also calculate the RMSE of the image and Cartesian
coordinates that would have been obtained if the direct
kinematics would have been used in place of the estimates
of the particle filter. We term the RMSE of the image
coordinates Image RMSE (IRMSE), the Cartesian position
error Position RMSE (PRMSE) and the orientation error
Orientation RMSE (ORMSE).

Table I reports the RMSE obtained with 10 grasping. As it
can be seen, the IRMSE decreases by three order of magni-
tude and we successfully achieved sub-pixel precision. The

1� github.com/robotology/superquadric-model/tree/master
� github.com/robotology/superquadric-grasp/tree/feature-visualservoing
� github.com/robotology/visual-tracking-control/tree/master

PRMSE is decreased by an order of magnitude, achieving
millimeter precision, and the ORMSE by almost a factor of
2.

TABLE I
RMSE OF EXPERIMENT 1

Name IRMSE [pixel] PRMSE [m] ORMSE [�]

0.857 0.004 2.071Sugar box
13.171 0.028 7.482

0.871 0.003 2.46Mustard bottle
11.491 0.021 6.098

0.887 0.003 3.08Juice bottle
11.202 0.022 5.73

B. Experiment 2
The iCub is required to start form the pose xe =

[�0.28, 0.12, 0.13, 0.131,�0.492, 0.86, 2.962]>, with the
palm oriented upward, and to reach the pose xg =
[�0.28, 0.08, 0.03, 0.213,�0.94, 0.265, 2.911]>, with the
palm oriented downward, for 10 times. No objects are present
in this setting, thus the final goal is provided manually and
it is thus not used to evaluate the pose error. Instead, we
are interested in assessing whether or not the trajectories are
smooth, with decoupled translation and orientation motion,
and reproducible given the same initial and final pose. The
termination condition is achieved when the `2-norm of e falls
below 1 [pixel].

The robot achieved sub-pixel precision for all 10 trials
with an IRMSE of 0.855 [pixel] A pictorial view of the
trajectories are shown in Fig. 5 Note that our framework
has the capability of providing smooth and reproducible tra-
jectories, with the desired behaviour of decoupled translation
and rotation motion.

VII. CONCLUSIONS AND FUTURE WORK
This paper proposed a new framework for markerless

visual servoing on unknown objects which consists of the
following methods: a grasping approach for estimating the
3D shape, pose and grasping pose of unknown objects using
stereo information; a Bayesian recursive filtering approach,
based on Sequential Monte Carlo filtering, for estimating the
pose of the robot’s end-effector using RGB images; a novel

image-based visual servoing approach capable of providing
decoupled translation and orientation control.

It was shown, through experimental results on the iCub
humanoid robot platform, that our framework is robust
and reliable, providing a significant improvement in terms
of Root Mean Square Error in both image and Cartesian
coordinates with respect to using information provided by
the direct kinematics. Further we also showed that given
the same initial and goal position, we can achieve smooth
trajectories with decoupled translation and rotation motion.

The objects taken into account during the experimental
evaluation favored lateral grasps due to their elongated shape.
However, smaller and differently shaped objects might be
better grasped from the top or with grasping poses that
partially occlude the hand. In this scenario, our framework,
and in particular the end-effector pose estimation, can be
easily extended to include the forearm CAD model, thus
accounting for partial or complete occlusion of the hand. This
is toward testing our framework on a larger set of objects,
like the YCB dataset [38].

REFERENCES

[1] B. Espiau, F. Chaumette, and P. Rives, “A new approach to visual
servoing in robotics,” IEEE Transactions on Robotics and Automation,
vol. 8, no. 3, pp. 313–326, 1992.

[2] S. Hutchinson, G. D. Hager, and P. I. Corke, “A tutorial on visual servo
control,” IEEE Transactions on Robotics and Automation, vol. 12,
no. 5, pp. 651–670, 1996.

[3] E. Malis, F. Chaumette, and S. Boudet, “2-1/2-D visual servoing,”
IEEE Transactions on Robotics and Automation, vol. 15, no. 2,
pp. 238–250, 1999.

[4] D. Kragic and H. I. Christensen, “Survey on Visual Servoing for
Manipulation,” Tech. Rep. ISRN KTH/NA/P–02/01–SE CVAP259,
2002.

[5] F. Chaumette and S. Hutchinson, “Visual servo control. I. Basic
approaches,” IEEE Robotics & Automation Magazine, vol. 13, no. 4,
pp. 82–90, 2006.

[6] F. Chaumette and S. Hutchinson, “Visual servo control. II. Ad-
vanced approaches [Tutorial],” IEEE Robotics & Automation Mag-
azine, vol. 14, no. 1, pp. 109–118, 2007.

[7] G. Vezzani, U. Pattacini, and L. Natale, “A grasping approach based on
superquadric models,” in IEEE International Confeference on Robotics
Automation, pp. 1579–1586, IEEE, 2017.

[8] C. Fantacci, U. Pattacini, V. Tikhanoff, and L. Natale, “Visual end-
effector tracking using a 3D model-aided particle filter for humanoid
robot platforms,” accepted for publication on IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, Vancouver, BC,
Canada, September 24–28, 2017. arXiv preprint 1703.04771.

[9] G. Metta, L. Natale, F. Nori, G. Sandini, D. Vernon, L. Fadiga,
C. Von Hofsten, K. Rosander, M. Lopes, J. Santos-Victor, et al.,
“The iCub humanoid robot: An open-systems platform for research
in cognitive development,” Neural Networks, vol. 23, no. 8, pp. 1125–
1134, 2010.

[10] G. Taylor and L. Kleeman, “Flexible self-calibrated visual servoing
for a humanoid robot,” Proceedings of the Australian Conference on
Robotics and Automation, pp. 79–84, 2001.

[11] G. Taylor and L. Kleeman, “Grasping unknown objects with a hu-
manoid robot,” Proceedings of the Australian Conference on Robotics
and Automation, no. November, pp. 27–29, 2002.

[12] K. Hosoda and M. Asada, “Versatile visual servoing without knowl-
edge of true Jacobian,” in Proceedings of IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), vol. 1, pp. 186–
193, 1994.

[13] J. Lapreste, F. Jurie, M. Dhome, and F. Chaumette, “An efficient
method to compute the inverse Jacobian matrix in visual servoing,”
in Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), vol. 1, pp. 727–732, 2004.

[14] G. Sun and B. Scassellati, “A fast and efficient model for learning
to reach,” International Journal of Humanoid Robotics, vol. 2, no. 4,
pp. 391–414, 2005.

[15] L. Natale, F. Nori, G. Sandini, and G. Metta, “Learning precise 3D
reaching in a humanoid robot,” in IEEE 6th International Conference
Development and Learning and Epigenetic Robotics, pp. 324–329,
2007.

[16] N. Vahrenkamp, S. Wieland, P. Azad, D. Gonzalez, T. Asfour, and
R. Dillmann, “Visual servoing for humanoid grasping and manipu-
lation tasks,” in IEEE-RAS International Conference on Humanoid
Robots (HUMANOIDS), pp. 406–412, IEEE, 2008.

[17] K. Huebner, K. Welke, M. Przybylski, N. Vahrenkamp, T. Asfour,
D. Kragic, and R. Dillmann, “Grasping Known Objects with Hu-
manoid Robots: A Box-Based Approach,” International Conference
on Advanced Robotics (ICAR), pp. 1–6, 2009.

[18] X. Gratal, J. Romero, and D. Kragic, “Virtual Visual Servoing
for Real-Time Robot Pose Estimation,” IFAC Proceedings Volumes,
vol. 44, no. 1, pp. 9017–9022, 2011.

[19] B. Espiau, F. Chaumette, and P. Rives, “A new approach to visual
servoing in robotics,” IEEE Transactions on Robotics and Automation,
vol. 8, no. 3, pp. 313–326, 2002.

[20] A. I. Comport, E. Marchand, M. Pressigout, and F. O. Chaumette,
“Real-Time Markerless Tracking for Augmented Reality: The Virtual
Visual Servoing Framework,” IEEE Transactions on Visualization and
Computer Graphics, vol. 12, no. 4, pp. 615–628, 2006.

[21] G. Borgefors, “Hierarchical Chamfer matching: A parametric edge
matching algorithm,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 10, no. 6, pp. 849–865, 1988.

[22] P. Vicente, L. Jamone, and A. Bernardino, “Towards markerless visual
servoing of grasping tasks for humanoid robots,” in IEEE International
Conference on Robotics and Automation (ICRA), pp. 3811–3816,
IEEE, 2017.

[23] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear program-
ming,” Mathematical programming, vol. 106, no. 1, pp. 25–57, 2006.

[24] Y. Ho and R. Lee, “A Bayesian approach to problems in stochastic
estimation and control,” IEEE Transactions on Automatic Control,
vol. 9, no. 4, pp. 333–339, 1964.

[25] N. J. Gordon, D. J. Salmond, and A. F. Smith, “Novel approach to
nonlinear/non-Gaussian Bayesian state estimation,” in IEE Proceed-
ings F (Radar and Signal Processing), vol. 140, pp. 107–113, IET,
1993.

[26] A. Doucet, S. Godsill, and C. Andrieu, “On sequential Monte Carlo
sampling methods for Bayesian filtering,” Statistics and computing,
vol. 10, no. 3, pp. 197–208, 2000.

[27] A. Doucet, N. De Freitas, and N. Gordon, Sequential Monte Carlo
methods in practice. Springer-Verlag, New York, 2001.

[28] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial
on particle filters for online nonlinear/non-gaussian bayesian tracking,”
IEEE Transactions on Signal Processing, vol. 50, no. 2, pp. 174–188,
2002.

[29] B. Ristic, S. Arulampalam, and N. J. Gordon, Beyond the Kalman
filter: Particle filters for tracking applications. Artech house, 2004.

[30] C. P. Robert and G. Casella, Monte Carlo statistical methods. Springer,
2nd edition, 2004.

[31] B. Siciliano and O. Khatib, Springer handbook of robotics. Springer,
2016.

[32] D. Shreiner, G. Sellers, J. Kessenich, and B. Licea-Kane, OpenGL
programming guide: The Official guide to learning OpenGL, version
4.3. Addison-Wesley, 2013.

[33] R. Hartley and A. Zisserman, Multiple view geometry in computer
vision. Cambridge university press, 2003.

[34] U. Pattacini, F. Nori, L. Natale, G. Metta, and G. Sandini, “An
experimental evaluation of a novel minimum-jerk cartesian controller
for humanoid robots,” in IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), pp. 1668–1674, IEEE, 2010.

[35] K. J. Åström and B. Wittenmark, Adaptive control. Courier Corpora-
tion, 2013.

[36] NVIDIA, “CUDA.” Online: https://developer.nvidia.com/cuda-zone.
[37] Itseez, “Open source Computer Vision (OpenCV).” Online:

http://opencv.org/.
[38] B. Calli, A. Walsman, A. Singh, S. Srinivasa, P. Abbeel, and A. M.

Dollar, “Benchmarking in manipulation research: Using the yale-
cmu-berkeley object and model set,” IEEE Robotics & Automation
Magazine, vol. 22, no. 3, pp. 36–52, 2015.

