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Abstract— This paper proposes an object modeling and
grasping pipeline for humanoid robots. This work improves
our previous approach based on superquadric functions. In
particular, we speed up and refine the modeling process by using
prior information on the object shape provided by an object
classifier. We use our previous method for the computation of
grasping pose to obtain pose candidates for both the robot
hands and, then, we automatically choose the best candidate
for grasping the object according to a given quality index.
The performance of our pipeline has been assessed on a real
robotic system, the iCub humanoid robot. The robot can grasp
18 objects of the YCB and iCubWorld datasets considerably
different in terms of shape and dimensions with a high success
rate.

I. INTRODUCTION

Grasping of unknown objects or whose pose is uncertain
is still an open problem in robotics [1]. The missing or noisy
information on object models and poses strongly affects
manipulation performance.

In this work, we propose a modeling and grasping pipeline
for humanoid robots equipped with two arms, a vision
system supplying 3D information (stereo vision or RGBD
camera) and tactile sensors on their fingertips. This pipeline
is obtained by improving our previous approach based on
superquadric models [2] and consists of the following steps.
An object categorization system [3] provides prior informa-
tion on the shape of the object to be grasped. Our modeling
approach reconstructs a superquadric representing the object
by combining the information provided by vision and the
prior on object shape. The estimated model is used by our
pose computation method to obtain pose candidates for the
right and left hand. The best hand for grasping the object is
automatically selected according to proper criteria that are
summarized in a pose quality index. Once the selected hand
reaches the desired pose, grasp stabilization is achieved via
tactile feedback [4] so that the robot can robustly lift the
object.

The first contribution of this paper is a general improve-
ment of our previous work [2], in terms of reliability and
computation time. This is achieved by using prior infor-
mation on the object shape. We classify the objects to
be grasped according to their shape with a visual object
categorization stage trained on the fly and integrated in our
pipeline. This is achieved by using the recognition system
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proposed in [3]. Our second contribution is the definition of
a pose quality index that, given a pose candidate for the right
and the left hand, automatically chooses the best hand for
grasping the object according to proper criteria. This leads
to a considerable improvement of the performance, since
we enlarge the dexterous workspace and the robot grasping
capabilities.

We validated our entire pipeline on the iCub humanoid
robot [5], demonstrating significant improvements in the
number of graspable objects with respect to tests performed
in [2].

The paper is organized as follows. Section II reviews the
state of the art on object grasping approaches. In Section III,
we briefly recall the modeling and grasping approach fully
described in [2]. Section IV explains the main contributions
of this work. In Section V, we describe the integration in
our pipeline of the classification system. Section VI collects
the results of the validation experiments we carried out for
testing the complete pipeline. Finally, Section VII ends the
paper with concluding remarks and perspectives for future
work.

II. RELATED WORKS

Grasp synthesis problem consists of finding a pose of
the robot hand that satisfy a set of criteria for grabbing a
given object. This problem is frequently addressed in the
robotics community, since an ultimate approach that works
effectively in a wide range of conditions has not been found
yet.

Grasp methodologies can be classified according to
several criteria. Sahbani et al. [6] divide the techniques
into analytic and empirical. Analytic approaches construct
force-closure grasps with multi-fingered robot hand that
exhibit certain properties, such as stability and dexterity.
Grasp synthesis is then formulated as an optimization
problem that aim to minimize some given cost functions.
Empirical or data-driven techniques, instead, compute grasp
candidates relying on dedicated experiments generated in
simulation or collected on a real robot by using heuristics.

Bohg et al. [1] classify empirical grasping techniques
according to the role of the perception in the process. In
particular, they group the approaches based on the a priori
knowledge about the object: if it is known, familiar or
unknown. In case of unknown objects, there are different
ways to deal with the information acquired from the sensors,
such as stereo cameras. Some methods approximate the full
shape of the objects [7]–[9], while others compute grasps
by using low-level features and heuristics [10], [11].



There exist techniques that generate grasp hypotheses
approximating the objects with shape primitives. Dunes et
al. [7] model the object with quadrics whose minor axes are
used to infer the wrist orientation. The quadric is estimated
from multi-view measurements of the object in monocular
images. Marton et al. [8] instead exploit object symmetries
for fitting a curve to a cross section of the point cloud
of the object. Then, the reconstructed model is used in a
simulator for generating pose candidates. Rao et al. [12]
sample grasp points from the surface of the segmented
object and then exploit geometrical considerations. Bohg
et al. [9] reconstruct the full object shape assuming planar
symmetry by using the complete object point cloud.

Moreover, other methods generate a certain number
of grasp hypotheses on the basis of specific heuristics,
which are evaluated with resort to machine learning
algorithms [10], [11]. Recently, data-driven approaches have
been investigated and large datasets have been used for
training a convolutional neural network (CNN). Successful
examples are provided by [13] where hand-eye coordination
for grasping is learned from monocular images and [14],
where the planning of a manipulation task is formulated as
a structured prediction problem.

The grasping approach described in [2] - and improved in
this work - can be classified as an empirical technique for
grasping unknown objects. Pose computation is formulated
as a nonlinear constrained optimization problem, based on
geometric considerations. The object is modeled with a su-
perquadric function reconstructed in real-time using a single-
view point cloud. The superquadric models are introduced
in computer graphics by A. H. Barr [15] as a generalization
of quadric surfaces and play an important role in graphics
and computer vision [16]. The most popular technique for
estimating the parameters of superquadrics fitting 3D points
is proposed by Solina [17]. Further, a number of works in
literature propose also suitable extensions of geometric mod-
eling to complex shapes using a set of superquadrics [18],
[19].

III. MODELING AND GRASPING WITH
SUPERQUADRIC FUNCTIONS

In this Section, we briefly recall the modeling and grasping
approach described in [2].

A. Object and hand modeling

The technique proposed in [2] for computing a suitable
grasping pose is based on modeling the object and the
volume graspable by the hand with superquadric functions.

Superquadrics are an extension of quadric surfaces and
include supertoroids, superhyperboloids and superellipsoids.
Superellipsoids are most commonly used in object modeling
because they define closed surfaces. The best way to repre-
sent a superellipsoid - which we will call simply superquadric
from now on - in an object-centered system is the inside-

outside function:
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The five parameters of Eq. (1) take into account
the superquadric dimensions (λ1, λ2, λ3) and shape
(λ4, λ5). The values (λ4, λ5) are also responsible for the
concavity/convexity of the superquadric. In this work we
focus on the use of convex superquadrics. Equation (1)
provides a simple test whether a given point lies (F = 1)
or not (F > 1 or F < 1) on the superquadric surface.
Furthermore, the inside-outside description can be expressed
in a generic coordinate system by adding six further
variables, representing the superquadric pose (three for
translation and three Euler angles for orientation), with a
total of eleven independent variables, i.e. λ = [λ1, . . . , λ11].

Object modeling consists in finding the superquadric O
which best represents the object to be grasped starting from
a single, partial 3D point cloud acquired from vision. In other
words, we want to find those values of the parameters vector
λ ∈ R11, so that most of the N 3-D points si = [xi, yi, zi]
for i = 1, . . . , N of the point cloud lie on or close to
the superquadric surface. The minimization of the algebraic
distance from points to the model can be solved by defining
a least-squares minimization problem:

min
λ

N∑
i=1

(√
λ1λ2λ3 (F (si,λ)− 1)

)2
, (2)

where (F (si,λ)− 1)
2 imposes the point-superquadric

distance minimization and the term λ1λ2λ3, which is
proportional to the superquadric volume, compensates for
the fact that the previous equation is biased towards larger
superquadric. This problem can be efficiently solved by the
Ipopt [20], a software package capable of solving large
scale, nonlinear constrained optimization problems.

The volume graspable by the hand is instead represented
by a fictitious superquadric, whose shape and pose are
chosen by considering the anthropomorphic shape of the
robot hand and its grasping capabilities. A suitable shape
for this purpose is shown to be an ellipsoid H attached to
the hand palm (see Fig. 1).

B. Grasping pose computation

The grasping approach proposed in [2] computes a feasible
pose x ∈ R6 of the robot hand which allows grabbing the ob-
ject by looking for that pose x that makes the hand ellipsoid
H overlap with the object superquadric O while meeting a
set of requirements. We choose x = [xh, yh, zh, φh, θh, ψh],
where (xh, yh, zh) are the coordinates of the origin of the
hand frame and (φh, θh, ψh) are the RPY Euler angles,
accounting for orientation. The desired pose is computed by
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Fig. 1. Fig. (a): an example of grasping pose computed for the right iCub
hand with the pose computation approach of [2]. The figure shows both the
object model O and the hand ellipsoid H. Fig. (b): the right hand reference
frame in RGB convention: red for x, green for y and blue for z axis.

solving the following optimization problem:

min
x

L∑
i=1

(√
λ1λ2λ3 (F (pxi ,λ)− 1)

)2
,

subject to:
hi(ai, f i(p

x
1 , . . . ,p

x
L)) > 0,

for i = 1, . . . ,M.

(3)

Hereafter, we briefly recall the meaning of the most
important quantities of Eq. (3). The exhaustive description
of Eq. (3) and the pose computation approach is provided in
[2].

The cost function in Eq. (3) imposes the minimization of
the distance between the object superquadric O, represented
by the inside-outside function (F (·,λ)− 1), and L points
pxi =

[
pxx,i, p

x
y,i, p

x
z,i

]
for i = 1, . . . , L, properly sampled on

the surface of the hand ellipsoid H, whose pose is given by
vector x.

The M constraints of Eq. (3) take into account obstacle
avoidance requirements. Each term hi, for i = 1, . . . ,M
is the implicit function representing the i-th obstacle. As is
in [2], the only obstacle is the table on which the object
is located, hence M = 1. The quantity h1(a1, f1(·)) =
h(a, f(·)) is the implicit function of the plane modeling the
table. The vector a consists of the parameters of the plane
function and each f(px1, ...,px1) accounts for a dependency
on the L points pi suitably designed for the grasping task.

The optimization problem of Eq. (3) is efficiently solved
by using the Ipopt package, meeting the requirements for
real-time applications and providing local minimizer when
no global solution is available. Fig. 1 shows an example of
grasping pose computed by solving Eq. (3).

Suitable joint trajectories to reach for the grasping pose
are provided by the Cartesian controller available on the iCub
[21].

IV. IMPROVING PIPELINE RELIABILITY
In this work, we propose an improved modeling and

grasping pipeline1 with respect to the one described in [2]
by adding novel features and integrating a visual object
categorization system (see Section V).

In order to increase the overall grasping reliability:
• we improve, speed up and stabilize the computation

of the superquadric model described in Section III, by
means of the use of prior information on the object
shape;

• we design a pose quality index to automatically select
the best hand for grasping the object, once the right and
the left pose candidates are computed.

In the next paragraphs, we detail the improvements we
propose, whereas in Section VI we show their effect on the
grasping performance.

A. Modeling improvement with prior on object shape

As we recall in Section III, object modeling consists in
estimating the parameters vector λ ∈ R11 of a superquadric
function through the optimization problem of Eq. (1).

A useful information to reduce the computational time
required to solve the optimization problem is to properly
set the lower λl ∈ R11 and upper bounds λu ∈ R11 of the
variables to be estimated λ ∈ R11. Reasonable bounds for
the object dimensions (λ1, λ2, λ3) and position (λ6, λ7, λ8)
can be extracted respectively from the volume occupancy and
the centroid of the 3D point cloud.

We can instead obtain proper bounds on the superquadric
exponents (λ4, λ5), that are responsible for the object shape,
by classifying the objects according to their similarity to
shape primitives, such as cylinders, parallelepipeds and
spheres. Each shape is in fact identified by a specific couple
(λ4, λ5) in the superquadric representation: (λ4, λ5)cyl =
(0.1, 1.0) for cylinders, (λ4, λ5)par = (0.1, 0.1) for paral-
lelepipeds and (λ4, λ5)sph = (1.0, 1.0) for spheres (Fig. 2).
Thus, we can use different lower and upper bounds for the
superquadric exponents according to the shape primitive of
the object. The bounds can be expressed as:

(λ4, λ5)l,shape = (λ4, λ5)shape − (∆l,4,∆l,5)

(λ4, λ5)u,shape = (λ4, λ5)shape + (∆u,4,∆u,5),
(4)

where the label shape stands for one of the shape primitives.
The bounds shown in Eq. (4) force the superquadric shape
to be of the category identified via object classification. The
(∆l,4,∆l,5) and (∆u,4,∆u,5) values are positive numbers
introduced in order to deal with the noise affecting the point
cloud. In fact, an object point cloud might be better repre-
sented by a superquadric with softer edges due to its noise.
Fig. 3 shows an example of this phenomenon while modeling
a box. The noisy point of the box cloud is represented with
blue dots and we provide two examples of reconstructed

1Our modeling and grasping approach C++ implementation are
available on Github:
https://github.com/robotology/superquadric-model/tree/master
https://github.com/robotology/superquadric-grasp/tree/feature-
visualservoing.



Fig. 2. How superquadric shapes change according to λ4 and λ5 values.
We are interested only in convex objects, thus λ4,min = λ5,min > 0.0
λ4,max = λ5,max < 2.0. For avoiding difficulties with singularities we use
the further bounds λ4,min = λ5,min = 0.1 [17]. In this work we take into
account the object shapes highlighted with blue frames. The sharp-cornered
shape of parallelepiped and cylinder shapes are caused by λ4 = 0.1.
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Fig. 3. Two examples of superquadric models overlapped to the acquired
object point cloud. Fig. (a) shows the superquadric modeling the object
obtained by setting ∆l,4 = ∆u,4 = ∆l,5 = ∆u,5 = 0.0. Consequentely,
(λ4, λ5) are fixed equal to (0.1, 0.1) and they are not estimated by the
optimization problem. Fig. (b) shows the superquadric modeling the object
by setting ∆l,4 = ∆l,5 = 0.0 and ∆u,4 = ∆u,5 = 0.4. In this case, λ4
and λ5 are computed by solving the optimization problem and corresponds
to (0.25, 0.25). The superquadric with softer edges shown in Fig. (b) better
fits the noisy object point cloud.

superquadrics. In Fig. 3(a), we force the superquadric to
be a sharp-cornered parallelepiped, i.e. ∆l,4 = ∆u,4 =
∆l,5 = ∆u,5 = 0.0 and, thus, (λ4, λ5) = (0.1, 0.1). In
this case, the optimization problem of Eq. (2) estimates only
9 parameters (instead of 11), since λ4 and λ5 are fixed.
However, a sharp-cornered shape is not the best one for the
point cloud of interest. For this reason, the solution of the
optimization problem does not correctly fit the point cloud
and provides a wrong model for the object. If we instead
set ∆u,4 = ∆u,5 > 0, the optimization problem has to
estimate also λ4 and λ5, since they can range in a non-zero
interval. This allows properly fitting the point cloud with a
superquadric with softer edges, i.e. (λ4, λ5) > (0.1, 0.1), as
result of the optimization problem (Fig. 3(b)).

B. Automatic selection of the hand

In case of robots equipped with two hands, computing
grasping poses for both the hands helps enlarge the dex-
terous workspace and, ultimately, the grasping capabilities.

Fig. 4. Example of object graspable only by the left hand. The poses and
the ellipsoids shown on the left and on the right are respectively for the left
and the right hand. The object is located out of the right hand reachable
workspace. For this reason, the optimization problem is not able to find a
solution where the right ellipsoid is overlapped on the object model. In this
case we obtain Ff,left < Ff,right.

However, the increased redundancy brings about a further
complexity due to the need for conceiving a principled
way to determine which is the best hand to be used for
accomplishing the grasp. Depending on the object pose, the
robot can better grasp it with the right or the left hand. The
method described in [2] and summarized in Section III can be
applied both on the right and left hand. What is still missing
in [2] is an automatic way for selecting the hand to be used
given pose candidates for the right and the left hand. At this
aim, we propose to rely on the following index:

IP,hand =
1

w1Ff,hand + w2 (zhand · zroot)
, (5)

that is proportional to the pose quality, i.e. the higher
IP,hand, the better the pose is. The index of Eq. (5) takes
into account:

• the cost function of Eq. (3) evaluated in the computed
grasping pose xf,hand,

Ff,hand =
L∑

i=1

(√
λ1λ2λ3 (F (pxi ,λ)− 1)

)2∣∣∣
x=xf,hand

.

(6)

The higher Ff,hand, the worse the overlapping between
the hand ellipsoid and the object superquadric and, thus,
the pose are. An example is shown in Fig. 4.

• zhand · zroot, the inner produt between the z-axis of the
frame attached to the hand and the z-axis of the root
frame, thus measuring essentially the grade of alignment
between the two axes. Given the definition of the hand
and root reference frames, this quantity is used to favor
lateral or top grasps, that give values < 0.8 in absolute
value (Fig. 5).

These two terms are combined together with the proper
weights w1 and w2 to make the quantities comparable. In
particular, w2 is > 0 or < 0 depending if the index is
computed for the left or the right hand in order to take into
account for the different orientation of the hand frames.
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Fig. 5. In this figure, the root reference frame is represented on the
horizontal plane representing the table where the object lies. Then, we report
an example of top and lateral grasping poses.

In summary, once pose candidates are computed for
the right and the left hand, we evaluate the quantities
IP,right and IP,left. The hand chosen for grasping the
object is the one providing the maximum index, i.e.
arg max(IP,right, IP,left).

V. INTEGRATION WORK

In Section IV-A, we claim that our modeling process
improves when prior information on the object shape is
available. To this end, we classify the objects according
to their similarity to shape primitives. Object classification
is formulated as a categorization problem and is achieved
by taking advantage of the recognition system described
in [3]. We employ the implementation currently in use on
the iCub robot2 and, specifically, we adopt the ResNet-50
Convolutional Neural Network model [22], trained on the
ImageNet Large-Scale Visual Recognition Challenge [23]
and available in the Caffe framework [24]3, as a feature
extractor. A rectangluar region around the object of interest
is cropped from the image by using an object segmentation
method based on RGB information. Each cropped image is
fed to the network and encoded into a 1024-dimensional
vector composed of the activations of the ’pool5’ layer. In
the considered recognition pipeline, the extracted vector rep-
resentations are fed to a multiclass Support Vector Machine
(SVM), which is trained to categorize the objects according
to their shape.

The training is performed on the fly in a supervised
manner: a human teacher shows a number of example objects
to the robot, whose labels represent their shape categories.
Fig. 6 depicts the objects used to train the system on the
three shapes under consideration. A few example images per
objects are sufficient to achieve good prediction accuracy on
the test set of 18 objects (see also Fig. 8), thanks to the use
of deep representations. At test time, the object is assigned
to the class with maximum score produced by the SVM
classifier, if this is above a certain threshold (set empirically),
otherwise it is considered a generic object. Importantly, the
18 objects used for the graping experiments are not part of
the training set, i.e., they are fully novel when presented to

2https://github.com/robotology/himrep.
3https://github.com/KaimingHe/deep-residual-networks.

Fig. 6. Training set: 8 parallelepipeds, 8 cylinders and 8 spheres belonging
to the YCB dataset and the iCub world dataset [25].

Fig. 7. The complete and improved modeling and grasping pipeline.

the robot.

With the addition of object categorization step, the entire
novel pipeline we propose is the following (Fig. 7):

1) A rectangular crop of the image is extracted from
the camera images. The categorization system uses
the pipeline proposed in [3] to classify the cropped
image according to its similarity to shape primitives.
We take into account three possible shapes: cylinder,
parallelepiped and sphere. All those objects that cannot
be well represented with a shape primitive (e.g. some
plushes of Fig. 8) are threated as generic objects.

2) The object segmentation is used for extracting the
relative 3D point cloud from stereo vision.

3) The modeling approach computes the superquadric that
better fits into the object 3D points.

4) Our grasping approach finds a pose candidate for the
right and left hand by solving Eq. (3).

5) The pose quality indices IP,right and IP,left

are evaluated and the hand with maximum index
value is chosen for grasping the object: hand =
arg max(IP,right, IP,left).

6) The robot uses the selected hand to reach for the
grasping pose. Once the final pose is reached, the robot
close the fingers until a contact is detected by the
tactile sensors mounted on the fingertips. Then, the
tactile feedback on the fingertips is used continuosly
to achieve a stable grasp of the object [4] and the robot



Fig. 8. Classification results on the test set. The objects whose confidence
is lower than a threshold for all the shape primitives are not classified and
are considered as generic objects from the superquadric modeling process.

lifts the object.

VI. EXPERIMENTS

In this section we detail the experiments we carried out
for testing our pipeline for modeling and grasping tasks. We
extensively evaluate our approach on the iCub humanoid
robot by using the 18 objects shown in Fig 8. The test set
consists of the objects used in [2] plus 13 objects, including
objects of the YCB dataset [26]. The objects have been
selected so as to be graspable by the iCub: we discarded
objects with slippery surfaces, that are too large or too
heavy for the robot hand and too small for being grasped
with a power grasp technique.

A. Modeling results

In this paragraph, we report the results we obtained
with our improved modeling approach. In Fig. 8, we
show how the objects of the test set are classified. The
objects that cannot be modeled with a shape primitive
are considered as generic objects in the superquadric
reconstruction step. Fig. 9 highlights how the use of prior
on the object shape improves the model reconstructed for a
box (i.e. a parallelepiped). Table I contains the superquadric
computation time we achieve thanks to the use of prior
information on the object shape. The computation time is
20 times faster with respect to the values obtained in [2].
In fact, the use of priors on the object shape allows also
reducing the number of 3D points sampled from the object
point cloud from 300, as in [2], to 50, without loosing
accuracy of the overall process.

The use of prior information on object shape increases
the reliability of the modeling process. In order to evaluate
this improvement, we performed the test we termed
Experiment 1. We executed 10 grasping trials with the
improved modeling approach and with the one described in
[2]. In Table II, we report the success rate of the tests. In
order to focus only on the improvements given by the new
modeling approach, we put all the objects in the left hand
workspace, so as to use only one hand for this evaluation.

The experiments show a performance gain when we
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Fig. 9. Superquadric models of the jello box 1 overlapped on the
complete object point clouds (represented with blue dots). We show the
superquadric obtained without any prior information on the object shape
(Fig. (a)) and the relative grasping pose (Fig. (b)) and the same quantities
obtained with the prior information (Fig. (c)). The model obtained with prior
information has sharp-cornered shapes. The use of prior information enable
to significantly downsample the object point cloud used for superquadric
estimation (number of points used=50) and to obtain better grasping poses,
i.e. located on the top surface of the box (Fig (c)) instead of on the box
corners (Fig. (b)).

TABLE I
EXECUTION TIME FOR MODEL RECONSTRUCTION

Object Average time [s] Object Average time [s]

Cylinder 0.09 Pig 0.13
Cat 0.09 Lettuce 0.08
Bear 0.12 Mustard box 0.09
Juice bottle 0.06 Sugar box 0.08
Jello box 1 0.08 Turtle 0.13
Meat can 0.10 Lego brick 0.05
Carrots 0.06 Cereal box 0.09
Jello box 2 0.07 Octopus 0.04
Dog 0.10 Ladybug 0.12

Table I indicates the average execution time across 10 trials for model
reconstruction process of each object including prior information and by
using 50 points sampled from the object point clouds.

use prior shape information. The prior information on
object shapes helps to obtain a finer and more sharp-
cornered model that is crucial for computing better grasping
poses for parallelepipeds, cylinders and spheres. For
example, the box model shown in Fig. 9 (c) leads to
pose candidates on the top or on the lateral surfaces of
the box, since the hand ellipsoid better overlaps on those
portions of the object superquadric. If, instead, we use the
model of Fig. 9 (a), the model made of rounded corners
lets the final pose lie also on the box top corners (Fig. 9 (b)).



TABLE II
EXPERIMENT 1: PERCENTAGE OF SUCCESSFUL GRASPS

Object Success on Trials [%] Success on Trials [%]
Old modeling approach New modeling approach

Jello box 1 40% 100%
Jello box 2 60% 90%
Cereal box 60% 80%
Sugar box 60% 90%
Juice bottle 80% 90%
Cylinder 70% 90%
Lego brick 50% 80%
Meat box 50% 80%
Mustard box 60% 80%
Carrots 40% 70%
Dog 50% 70%
Octopus 70% 80%
Lettuce 50% 80%
Turtle 70% 80%
Cat 70% 80%
Bear 70% 90%
Ladybug 50% 90%
Pig 60% 70%

Table II shows the percentage of successful grasps, in case the old and the
new modeling approach (including prior on object shape) are used. The
number of points is 50 in both the experiment.

Fig. 10. Pose quality index for right hand and left hand of the jello box
1 in different positions. The indices have been computed sliding the object
along the y axis of the robot reference frame from the left (in red) to the
right (in blue) workspace.

B. Automatic selection of the hand

In order to evaluate the effectiveness of our automatic
approach for selecting the hand for grasping the object, we
evaluate the pose quality indices IP,right and IP,left by
varying the object position (with the same orientation) from
the left hand to the right hand workspace. The trend of
the indices obtained with the jello box 1 is shown in Fig.
10. As expected, the index for each hand is higher in the
hand workspace and decrease while the object position goes
towards the other hand workspace.

In addition, we executed the following experiment (Ex-
periment 2) to show how the pose computation for both the
hands and the selection of the best hand for grasping the
object increases the number of successful grasps. We put the
object of interest in a fixed position reachable by both the

TABLE III
EXPERIMENT 2: PERCENTAGE OF SUCCESSFUL GRASPS

Object Success on Trials [%] Success on Trials [%]
One hand approach Automatic hand selection

Jello box 1 90% 100%
Jello box 2 80% 90%
Cereal box 70% 90%
Sugar box 70% 90%
Juice bottle 80% 90%
Cylinder 70% 100%
Lego brick 80% 90%
Meat box 60% 80%
Mustard box 70% 90%
Carrots 60% 80%
Dog 80% 90%
Octopus 90% 100%
Lettuce 70% 90%
Turtle 60% 80%
Cat 70% 80%
Bear 60% 100%
Ladybug 70% 90%
Pig 50% 70%

Table III shows the percentage of successful grasps, in case only one hand
is used for grasping the hand and the automatic selection of the hand is
implemented.

hands and we change only its orientation during each trial.
Table III compares the success rate if, respectively, only one
hand or two hands are used for grasping the object. Even
if the object is in a workspace sufficiently dexterous for the
both hands, its orientation and reconstructed model can favor
one hand with respect to the other, increasing the success
percentage when the best hand is automatically selected for
grasping the object.

VII. CONCLUSIONS

In this paper, we improve the object modeling and grasp-
ing pipeline described in [2]. In particular, we refine and sta-
bilize the object superquadric modeling technique by using
prior information on the object shape. The prior information
is provided by a visual object classifier we trained and
integrated in the pipeline employing the recognition system
of [3]. In addition, we propose a novel pose quality index for
automatically selecting the best hand for grasping the object
among two pose candidates for the right and the left hand.

We evaluated the improved pipeline on 18 real objects
with the iCub humanoid robot, focusing on the effects of
the refined modeling process and the automatic selection of
the hand. The experiments highlight how these contributions
increase the pipeline reliability in terms of number of suc-
cessful grasps. The overall success rate of the entire pipeline
is nearly 85%.

The main source of failures is represented by the un-
calibrated eye-hand system of the robot that entails non-
negligible misplacements of the robot hand when reaching
for the target pose. This problem is peculiar of humanoid
robots in that elastic elements lead to errors in the direct
kinematics computation. Moreover, robots with moving cam-
eras, such as the iCub platform, need to deal with errors in



the visual estimation of the object pose due to imprecise
knowledge of the cameras extrinsic parameters. These errors
can be compensated by closed loop control techniques of the
end-effector resorting to a visual feedback. At this regard,
we could improve the grasping reliability by integrating the
visual servoing technique described in [27], where desired
poses computed from stereo vision are accurately reached
by the robot end-effector thanks to the use of a precise end-
effector pose estimate over time.

The pipeline we propose in this paper can be extended
in several ways. At first, we are aware of the fact that a
trajectory plan for reaching the final pose is still missing
in our work. A viable solution is to use our approach
also for computing a set of waypoints, together with the
final grasping pose. At this aim, superquadrics could be
used to model obstacles, and their avoidance added as
optimization constraints as shown in Section III-B. Another
extension is the formulation of a supervised learning method
for automatically discriminate good grasping poses. The
approach in this paper in fact only selects the best pose
between two candidates, even if neither of them is suitable
for grasping the object. Moreover, we aim in the future at
refining the estimation of the object model by using a set
of superquadrics in place of only a single superquadric [18],
[19]. This way, we will be able to accurately model more
complex and concave objects and, thus, locate the point of
contact of the fingers onto specific parts of the objects.
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