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Abstract— Behavior Trees (BTs) are gaining acceptance in
robotics to specify action policies at the deliberative level.
Their advantages include modularity, ease of use and increasing
tool support. In this paper, we define Conditional Behavior
Trees (CBTs) as an extension of BTs wherein actions are
decorated considering pre- and post-conditions. CBTs improve
on basic BTs in that they enable monitoring the execution of
single actions by checking pre- and post-conditions, respectively.
Since there might exist action sequences wherein some pre-
conditions are violated, CBT executability may depend on the
success/failure of specific actions. We developed an encoding of
CBT executability into satisfiability of propositional formulas to
be checked off-line in a publicly-available tool that computes
the encoding for generic CBTs. For the kind of application
scenarios and related behavior specifications that we consider,
we show that our approach is effective and yields formal guar-
antees about the executability of deliberative policies designed
as CBTs.

I. INTRODUCTION

A Behavior Tree (BT) is a way to structure the switching
between different actions in an autonomous agent. Actions
are assumed to be re-usable sub-activities that the robot
carries out to complete an overall task. BTs were devel-
oped in the computer game industry, as a tool to increase
modularity in the control structures of non-player characters
(NPCs) [1] to enable modeling of discrete reactive behavior.
In the last decade, BTs have found appreciation also in the
robotics community, including unmanned aerial vehicles [2],
[3], [4], medical robotics [5], industrial robotics [6], and AI
[7], [8]. Moreover, BTs generalize successful robot control
architectures such as the Subsumption Architecture, Decision
Trees [9] and the Teleo-reactive Paradigm [10]. Modularity
in BTs is exploited using “prune and graft” operations,
whereby actions or entire subtrees can be inserted, appended
or removed from a BT without worrying to maintain consis-
tency with other parts of the BT. In other words, individual
behaviors can be reused in the context of another higher-
level behavior, without needing to specify how they relate
to subsequent behaviors [11]. Additional advantages of BTs
include ease of use and increasing tool support — see [9]
for a recent survey.

An example of a BT performing a simple activity is shown
in Figure 1. Informally, inner nodes represent control flow
statements and leaves represent action statements that can

Eleonora Giunchiglia (eleonora.giunchiglia@cs.ox.ac.uk)
is with University of Oxford, Department of Computer Science, Wolfson
Building, Parks Road, Oxford OX13QD.

Armando Tacchella (armando.tacchella@unige.it) is with
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Track Bottle Fetch Bottle
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Fig. 1. A Behavior Tree (BT) coordinating the execution of five sub-
behaviors.

succeed or fail when executed by the agent. With reference to
Figure 1, while actions have the obvious meaning, the control
nodes labeled with “?”, “→” and “⇒” define a fallback node,
a sequence node, and a parallel node, respectively. Fallback
nodes execute their children one after the other, and they are
successful as long as at least one of their child is so; sequence
nodes also execute their children one after the other, but they
are successful only if all their children are successful; parallel
nodes execute their children simultaneously and require all
of them to be successful in order to complete successfully.
Therefore, the BT in Figure 1 defines a policy whereby the
agent tries to reach the kitchen, to locate the bottle, and to
fetch it while tracking it. In case of failure of the main course
of actions, the agent asks a human for help.

When agents are deployed in the physical world, actions
may fail because enabling conditions are not met. At the
same time, once an action is executed successfully, the agent
can usually assume that the state of the world changed in a
predictable way. We call action pre-conditions the set of facts
that ought to hold for an action to be executable, and action
post-conditions the facts that hold after an action is executed.
While classical AI planning formalisms, e.g., STRIPS [12]
and its more recent evolution PDDL [13], cater for action
pre- and post-conditions, BTs do not. Policies synthesized
from scenarios described in STRIPS/PDDL can be subject
to monitoring in order to ensure that pre-conditions are
met before executing an action and that post-conditions are
enforced after action execution — see, e.g., [14]. On the
other hand, it is not possible to couple a monitor to a BT in
order to supervise the correct execution of actions.

To fill the gap between specification and monitoring in
BTs, we define Conditional Behavior Trees (CBTs). In-
tuitively, CBTs are an extension of BTs wherein actions
are decorated considering pre- and post-conditions as in
classical AI planning. CBTs improve on basic BTs since they
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Fig. 2. Graphical representation of each type of BT nodes: 2(a) action node, 2(b) condition node, 2(c) sequence node with N children. 2(d) fallback
node with N children, and 2(e) Parallel node with N children. A child can be any BT node.

enable off-line verification for executability and reduce on-
line monitoring to check that single actions fulfill their pre-
and post-conditions. CBTs retain all advantages exhibited by
BTs, e.g., it is still possible to prune and graft actions or sub-
trees without worrying about implicit behavioral interactions.
However, if we view a CBT as a compact encoding of several
action sequences, we observe that there might be sequences
wherein some pre-conditions are always violated. Since we
assume that post-conditions are enforced only when an action
is successful, the result is that the executability of a sequence
of actions in a CBT may depend on the success/failure of
specific actions. Notice that the success or failure of the
root node of a BT is independent of executability: a CBT
which is verified to be executable off-line, can still return
failure; on the other hand, a BT which is not executable
could in principle return success by never attempting to
execute the action whose preconditions are violated. Because
of this, refactoring a CBT whose actions share pre- and
post-conditions is to be checked for executability to avoid
unpredictable behavior at runtime.

We present an off-line checking method to verify the
executability of a CBT, i.e., ensure that all action sequences
encoded by the CBT are executable. We wish to stress that
our method does not aim to replace on-line monitoring of
pre- and post-conditions for single actions, but it guarantees
that if such monitoring does not signal anomalies, then the
robot will operate correctly. The keystone of our approach
is an efficient encoding of a CBT executability problem into
a propositional satisfiability (SAT) problem. Such encoding
is not supported by the standard BT formalism. Informally
speaking, given any CBT, we can construct a Boolean
formula that admits a satisfying assignment exactly when
there is at least one sequence that is always not executable.
From the satisfying assignments (if any) it is also possible
to reconstruct the problematic action sequence to debug the
CBT. The encoding is efficient because its size is at most
polynomial in the size of the behavior tree. Furthermore,
while SAT is the archetypal NP-hard problem [15], and thus
the worst-case complexity of checking executability could
be exponential in the size of the CBT, current state-of-the-
art solvers — see, e.g., [16] — can handle formulas with
variables in the order of 106 in a matter of seconds. In
all the scenarios that we consider, and for the (C)BTs that
are typically found in the literature, the resulting encodings
are not challenging. Indeed, our tool is able to compute
the encodings and check the executability of the CBTs
proposed in the paper in less than 50 ms. Early study
of formal verification of BTs are found in [3] where the

BT is parsed into the formalism Attributive Language with
Complements and concrete Domains ALC(D), for tractability
purposes. The verification is executed on a pre-existent BT.
Other approaches combine formal verification with the BT
modeling to create a correct-by-construction BT, where the
framework automatically synthesizes a BT to satisfy a user-
defined Linear Temporal Logic (LTL) formula. An early
approach [17] synthesizes a maximally-satisfying control
policy in form of a BT taking into account robot failures.
However the BT modeling are used only as a bridge be-
tween their task execution framework and the low level
controllers of the robot. Another approach [18] synthesizes
the BT directly, preserving the advantages of BTs in terms of
modularity, reactiveness, robustness and human readability.
A recent extension on the BT formalism [19] allows the
implementation of a PDDL-like planner that gives a BT as
a result. In our work it is enough to define pre- and post-
conditions to formulate the SAT problem.

Summing up, in this paper we contribute (i) a definition
of CBTs, an extension of BTs that enables expressing
pre- and post-conditions for actions, (ii) a methodology
to statically check CBTs to ensure their executability, and
(iii) a tool based on off-the-shelf SAT solvers, which is
publicly available. 1 Finally, we contribute the description of
some human-robot interaction scenarios devised in the EU
project RobMoSys/CARVE2 and based on the R1 robot [20].
With these scenarios, we show that checking executability is
totally feasible for CBTs of practical use. The remainder
of the paper is structured as follows. In Section II we
provide syntax and semantics of BTs; in Section III we
define the syntax and semantics of CBTs, including the
notion of executability; in Section IV we show how to encode
executability into SAT, and in Section V we test our encoding
on the RobMoSys/CARVE scenarios. We conclude the paper
in Section VI with some final remarks.

II. BEHAVIOR TREES

As explained in [9], BTs are rooted trees whose inner
nodes are control flow nodes and whose leaves are execution
nodes. BTs present two types of execution nodes, namely
action and condition, and four types of control flow nodes,
namely sequence, fallback, parallel and decorator. Since the
decorator node carries user-defined behavior, we do not
consider it in our analysis. For each type of node we consider,
we show the corresponding graphical syntax in Figure 2.

1https://github.com/EGiunchiglia/CBTs-Checker.
2Website: https://robmosys.eu/carve/.



Algorithm 1 Pseudocode of the function Tick() of a Sequence Node
1: for i← 1 tototo N do
2: childStatus← child(i).Tick()
3: if childStatus = RUNNING then
4: return RUNNING
5: else if childStatus = FAILURE then
6: return FAILURE
7: return SUCCESS

Algorithm 2 Pseudocode of the function Tick() of Fallback Node
1: for i← 1 tototo N do
2: childStatus← child(i).Tick()
3: if childStatus = RUNNING then
4: return RUNNING
5: else if childStatus = SUCCESS then
6: return SUCCESS
7: return FAILURE

Algorithm 3 Pseudocode of the function Tick() of Parallel Node
1: for i← 1 tototo N do
2: childStatus← child(i).Tick()

3: if ∀i.(childStatus(i) = SUCCESS) then
4: return SUCCESS
5: else if ∃i.(childStatus(i) = FAILURE) then
6: return FAILURE
7: return RUNNING

Fig. 3. Pseudocode for the semantics of control flow nodes in BTs.

The execution of every BT starts from the root, which is
assumed to receive ticks with a given frequency. Ticks are
then propagated from each parent node to its children, and
each node is executed exactly when it receives ticks. Once
the tick is received, each node may return: (i) RUNNING if its
execution is not complete yet, (ii) SUCCESS if the execution
was completed successfully, or (iii) FAILURE otherwise. The
execution semantics of action nodes is straightforward: when
such nodes receive ticks, they execute the corresponding
action returning SUCCESS if the action is completed, FAIL-
URE if the action fails, and RUNNING while the action is
ongoing. When a condition node receives a tick, it checks
if a condition holds or not: in the former case it returns
SUCCESS, in the latter it returns FAILURE, but it never returns
RUNNING. The execution semantics of control flow nodes is
given in Figure 3, assuming that a node has N children.

III. CONDITIONAL BEHAVIOR TREES

CBTs extend BTs by specifying, for each action node,
(i) a set of pre-conditions that must be satisfied in order
to perform the corresponding action, and (ii) a set of post-
conditions that are satisfied exactly when the action is
successful. To define the syntax of CBTs, let us consider
two finite and disjoint sets:

1) the set of actions A that a robot may perform, and
2) the set of fluents F , i.e., propositions about the robot

and the environment that might hold or not depending

on the current state.
For each fluent p ∈ F we define its complement as p, and
the set F = {p | p ∈ F} is the set of all complements of F .
The set of literals C is defined as C = F ∪ F . Every action
node a ∈ A is decorated by a couple (Prea, Posta), where,
for all actions a ∈ A, both Prea and Posta are subsets of
F such that for all p ∈ F it is never the case that p ∈ Prea
(resp. p ∈ Posta) when p ∈ Prea (resp. p ∈ Posta) and
vice-versa.

Example 1: Consider the BT represented in Figure 1. The
set of actions A is defined as

A = {GK,FB, TB, FeB,AH}.

where the elements of A stand for “Goto Kitchen”, “Find
Bottle”, “Track Bottle”, “Fetch Bottle”, and “Ask for Help”,
respectively. We define the set of fluents F as

F = {rk, bv, bl, bf, nh}

where each proposition stands for the following facts:
• rk: the robot is in the kitchen;
• bv: the bottle is visible;
• bl: the bottle is located;
• bf : the bottle is fetched; and
• nh: the robot is near a human.

Finally, we may obtain a CBT by decorating actions as
follows:
• PreGK = {nh} and PostGK = {rk, bv,¬nh};
• PreFB = {rk, bv} and PostFB = {bl};
• PreTB = {rk, bl} and PostTB = {};
• PreFeB = {rk, bl} and PostFeB = {bf};
• PreAH = {nh} and PostAH = {}.
In the following, we assume that if the action node is

ticked at some time instant t ∈ N, the corresponding action
is always over at time instant t + 1. As a consequence,
the execution semantics of control flow nodes shown in
Figure 3 is modified considering that childStatus can never
be RUNNING. In sequence and fallback nodes it is assumed
that children are ticked, if ever, at increasing time instants,
i.e., if the control flow node is ticked at time t ∈ N, then
its first child is ticked at time t, the second at time t + 1,
and so on. In the case of parallel nodes, we assume that
all children are ticked at the same time, i.e., the time in
which also the parallel node gets ticked; further, we assume
to have only action nodes as children in parallel nodes.
Given an action a ∈ A and some time instant t ∈ N,
we write at (resp. ãt) to denote that action a is ticked at
time t and succeeds (resp. fails) at time t + 1. We call at
and ãt instantiations of action a at time t, and we speak
of successful and failed action instantiations, respectively.
Given a CBT T , we define an action instantiation sequence
of T , denoted as σT = 〈ut0 , ut1 , ut2 , . . .〉, as a sequence
of actions instantiations, i..e., ut = at or ut = ãt for some
action a ∈ A which may get ticked in T at some time t ∈ N,
where ti ≤ ti+1 for all i ∈ N. The set of all such sequences
for a CBT T is denoted as ΣT in the following.



Example 2: Action instantiation sequences in the CBT de-
fined in Example 1 include, e.g., 〈GK0, FB1, TB2, FeB2〉,
where action GK is executed first and succeeds; then action
FB is executed and succeeds, and finally actions TB and
FeB are initiated in parallel and succeed. Another one is
〈G̃K0, AH1〉 where action GK fails and then action AH
is tried and succeeds. On the other hand, 〈AH0〉 is not
an action instantiation sequence because action AH may
never be ticked first, and 〈GK0, AH1〉 is also not allowable
because, if GK0 is successful AH cannot be invoked next.

To take into account pre- and post-conditions, we define
a history as a mapping h : N→ 2F . Intuitively, at any point
in time t ∈ N, i.e., after t ticks have been generated, h(t)
is the set of fluents that hold at such point in time. For a
generic t ∈ N+, we call h(t) state, and h(0) is the initial
state. Given some history h and some instant t ∈ N, we
say that action a ∈ A is executable in a state h(t), denoted
h(t) |= a, exactly when, for all fluents p ∈ F such that
p ∈ Prea, it is also the case that p ∈ h(t), and for all fluents
q ∈ F such that q ∈ Prea, it is also the case that q 6∈ h(t).
Intuitively, an action is executable in state h(t) exactly when
its pre-conditions hold in that state. We extend the notation to
action instantiations, and we write h(t) |= ut with ut = at or
ut = ãt for some action a ∈ A as long as a is executable in
state h(t). Given a CBT T , we say that a history h supports
an action instantiation sequence σT = {ut0 , ut1 , ut2 , . . .},
denoted with h |= σT , exactly when for all ut ∈ σT :

• h(t) |= ut (every action instantiation must be executable
at the time in which the corresponding action might get
ticked in T ).

• If ut = at, then for all p ∈ Posta it must be p ∈
h(t+ 1), and for all q ∈ Posta it must be q 6∈ h(t+ 1);
for all other p ∈ F\Posta it must be p ∈ h(t+1) (resp.
p 6∈ h(t+1)) exactly when p ∈ h(t) (resp. p 6∈ h(t)) —
as in STRIPS/PDDL planning, if an action instantiation
succeeds at time t, its post-conditions must hold at time
t+ 1; all other fluents do not change.

• if ut = ãt, then for all p ∈ F it must be p ∈ h(t +
1) (resp. p 6∈ h(t + 1)) exactly when p ∈ h(t) (resp.
p 6∈ h(t)) — if an action instantiation fails then nothing
changes.

A CBT T is executable exactly when, for all action instanti-
ation sequences σT ∈ ΣT , there exists h such that h |= σT .

Example 3: Consider again the BT represented in Figure 1
decorated into a CBT as shown in Example 1. The CBT
is not executable because there exists at least one action
instantiation sequence which is not supported by any history.
To see this, consider the action instantiation sequence σ =
〈GK0, F̃B1, AH2〉; any history h supporting σ must be
such that nh ∈ h(0), rk, bv ∈ h(1) and nh ∈ h(2) to
satisfy all the pre-conditions when actions are instantiated;
however, it is also the case that nh 6∈ h(1), since GK is
successful at time 0; furthermore, nh 6∈ h(2), given that no
succesful action is executed to change the value of nh, which
invalidates the execution of AH2.

IV. ENCODING EXECUTABILITY

Below, we will consider CBTs whose longest plan has
length equal to N . This can be done without loss of general-
ity because CBTs (or BT) can represent finitely many plans
with a fixed maximum length. Given a CBT T , we want to
obtain an encoding in propositional logic that is satisfiable
exactly when there exists σT ∈ ΣT that is supported by no
history. Further, we want that each model of the encoding
corresponds to such an action instantiation sequence. To
obtain such encoding, we have to create two propositional
logic formulas:
• ηΣ′

whose models correspond to σ′ ∈ Σ′, where
Σ′ is the set of action instantiation sequences σ′ =
〈uto , ut1 , ut2 , . . .〉 with ut = at or ut = ãt for some
a ∈ A such that there exists no h : h |= σ′, and

• ηΣT whose models correspond to σT ∈ ΣT .
With these assumptions, the models of ηΣ′∧ηΣT correspond
to the action instantiation sequences belonging to Σ′ ∩ ΣT .
Hence, if the encoding is satisfiable, we have Σ′ ∩ΣT 6= ∅.
A. Encoding of Σ′

The encoding ηΣ′
is the conjunction of three elements: for

every a ∈ A and i = 0, . . . , N − 1

ai →
∧
{ci+1 | c ∈ Posta};

for every c ∈ C and i = 0, . . . , N − 1

(¬ci ∧ ci+1)→
∨
{ai | c ∈ Posta};

and for every a ∈ A and i = 0, . . . , N − 1 the disjunction
of

ai ∧
(∨
{¬ci | c ∈ Prea}

)
.

The above states that (i) if an action is instantiated, then
at the next time step its post-conditions must hold, (ii) if a
condition, that does not hold at time step t holds at time
step t+1 then at least one action having it as post-condition
must succeed at t, (iii) every action instantiation sequence
must contain at least an action instantiation ut = at such
that there exists no h : h(t) |= uT . Computing the encoding
ηΣ′

has time complexity O(|A|) +O(|C|).
Example 4: Consider the CBT in Example 1, we will now

show its encoding ηΣ′
. First, we notice that N = 4. Then,

we write the formulas below for i = 0, . . . , 3 and we conjoin
them:

(GKi → (rki+1 ∧ bvi+1 ∧ ¬nhi+1))∧
(FBi → bli+1) ∧ (FeBi → bfi+1)∧

((¬rki ∧ rki+1)→ GKi) ∧ ((¬bvi ∧ bvi+1)→ GKi)∧
((nhi ∧ ¬nhi+1)→ GKi) ∧ ((¬bli ∧ bli+1)→ FBi)∧

((¬bfi ∧ bfi+1)→ FeBi)∧
((rki ∧ ¬rki+1)→ ⊥) ∧ ((bvi ∧ ¬bvi+1)→ ⊥)∧
((¬nhi ∧ nhi+1)→ ⊥) ∧ ((bli ∧ ¬bli+1)→ ⊥)∧

((bfi ∧ ¬bfi+1)→ ⊥)

The formula obtained is conjoined with the disjunction of:(
(GKi ∧¬nhi)∨ (AHi ∧¬nhi)∨ (FBi ∧ (¬rki ∨¬bvi))∨
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(b) BT encoding the task for Experiment 3

Fig. 4. BTs encoding the tasks for Experiment 1 and 3 (Experiment 2 is the same as Figure 1).

(TBi ∧ (¬rki ∨ ¬bli)) ∨ (FeBi ∧ (¬rki ∨ ¬bli))
for i = 0, . . . , 3.

B. Encoding of ΣT

The encoding ηΣT can be obtained as follows:
1) Assign the time step t to each node.
2) Assign a unique identifier i to each node.
3) Conjoin the formulas below:∧

{¬bt | b ∈ A \ C}

for every parallel node having children encoding the set
of actions C at time t, together with∧

{¬bt | b ∈ A \ a}

for every action node (not child of a parallel) encoding
an action a at time t or with∧

{¬bt | b ∈ A}

for every condition node (not child of a parallel) encod-
ing a condition that must hold at time t.

4) For every node i, define two new variables: (i) ηsucci ,
modeling the success of i, (ii) ηtryi , modeling the execu-
tion of i. For every node i of the CBT, we create a new
formula given by the conjunction of (ηsucci → ηtryi ),
which is conjoined with the conjunction of (ηsucci ↔
xt) for every execution node i representing either an
action x at t or a condition x that must hold at t.

5) Inductively define the encoding of the plans associated
to a successful CBT.
• for every execution node i: ηsucci

• for every parallel node p with children i =
1, . . . ,K:(

ηsuccp ↔ (ηsucci ∧ . . . ∧ ηsucci+K)
)
∧(

ηtryp ↔ (ηtryi ∨ . . . ∨ ηtryi+K)
)

• for every sequence node s with children i =
1, . . . ,K:

(ηsuccs ↔ (ηsucci ∧ . . . ∧ ηsucci+K)) ∧ (ηtrys ↔ ηtryi )∧(
(ηtryi+K → ηsucci+K−1) ∧ . . . ∧ (ηtryi+1 → ηsucci )

)

• for every fallback node f with children i =
1, . . . ,K:

(ηsuccf ↔ (ηsucci ∧ ¬ηsucci+1 ∧ . . .¬ηsucci+K) ∨ . . .∨
(ηsucci+K ∧ ¬ηsucci ∧ . . .¬ηsucci+K−1)) ∧ (ηtryf ↔ ηtryi )∧(

(ηtryi+K → ¬ηsucci+K−1) ∧ . . . ∧ (ηtryi+1 → ¬ηsucci )
)

• for the root node r with child c:

(ηtryr ↔ ηsuccc ) ∧ ηtryr

Computing the encoding ηΣT requires polynomial time
in the worst case, because encoding fallback nodes requires
a quadratic number of symbols to be introduced. Hence the
overall time complexity is O(M2) where M is the number of
nodes of the BT. Since M > |A|, the overall time complexity
is O(M2) +O(|C|).

Example 5: Continuing Example 4, the the set of all
actions sequences represented by the CBT is given by the
conjunction of:

(¬FB0 ∧ ¬TB0 ∧ ¬FeB0 ∧ ¬AH0)∧
(¬GK1 ∧ ¬TB1 ∧ ¬FeB1 ∧ ¬AH1)∧

(¬GK2 ∧ ¬FB2 ∧ ¬AH2)∧
(¬GK3 ∧ ¬FB3 ∧ ¬TB3 ∧ ¬FeB3)∧

(ηsucc1 ↔ GK0) ∧ (ηsucc2 ↔ FB1)∧
(ηsucc3 ↔ TB2) ∧ (ηsucc4 ↔ FeB2)∧

(ηsucc1 → ηtry1 ) ∧ (ηsucc2 → ηtry2 ) ∧ (ηsucc3 → ηtry3 )∧
(ηsucc4 → ηtry4 ) ∧ (ηsucc5 → ηtry5 ) ∧ (ηsucc6 → ηtry6 )∧

(ηsucc7 → ηtry7 ) ∧ (ηsucc8 → ηtry8 )∧(
ηsucc5 ↔ (ηsucc3 ∧ ηsucc4 )

)
∧
(
ηtry5 ↔ (ηtry3 ∨ ηtry4 )

)
∧(

ηsucc6 ↔ (ηsucc1 ∧ ηsucc2 ∧ ηsucc5 )
)
∧

(ηtry5 → ηsucc2 ) ∧ (ηtry2 → ηsucc1 )∧



(ηsucc7 ↔ AH3)∧(
ηsucc8 ↔ ((ηsucc6 ∧ ¬ηsucc7 ) ∨ (¬ηsucc6 ∧ ηsucc7 ))

)
∧

(ηtry7 → ¬ηsucc6 )∧
(ηtryr ↔ ηsucc8 ) ∧ ηtryr

Let us assume that we want to check whether there non-
executable plans when the robot is initially near the human
agent, while all other conditions do not hold. Given this
initial condition, we have that our encoding is satisfiable and
it has four possible models, associated with the following
action instantiation sequences:

1) 〈GK0, F̃B1, AH2〉
2) 〈GK0, FB1, T̃B2, FeB2, AH3〉
3) 〈GK0, FB1, TB2, F̃ eB2, AH3〉
4) 〈GK0, FB1, T̃B2, F̃ eB2, AH3〉

V. EXPERIMENTAL SCENARIOS

In this section, we show experiments wherein we run our
tool in some scenarios from the CARVE project. In Experi-
ment 1, we show an example of an executable CBT, whereas
in Experiment 2, we show an example of a non-executable
CBT. In Experiment 3, we consider an example of a CBT
that is executable only if a condition of the environment
holds. Finally, in Experiment 4 we consider a CBT larger
than those used in previous experiments to assess practical
feasibility. We wish to point out that the generation of the
above encodings and their satisfiability check always took
less than 100ms of CPU time with our tool as can be seen
in Table I.3 All the tests have been conducted on a macOS
High Sierra (10.13.6) mounting an Intel Core i7 (1,7 GHz)
and 8GB RAM. Satisfiability checking was performed with
limboole 1.14 (with picoSAT as backend, compiled
with gcc 4.2.1).

Experiment 1: In this experiment we use the CBT de-
picted in Figure 4(a), while the pre- and post-conditions of
each action are defined as in Example 1. Different initial
conditions lead us to two different scenarios: (i) As in
Figure 5(a), the robot is in the kitchen and near a human,
while the bottle is neither fetched nor located, but it is
visible. The initial state is described by the following set
of propositions:

{nh0, rk0,¬bf0,¬bl0, bv0}

By executing this CBT, the robot finds the bottle and fetches
it. (ii) As in Figure 5(b), the robot is in the kitchen and near
a human, while the the bottle is neither fetched nor located,
and it is not even visible. The initial state is described by
the following set of propositions:

{nh0, rk0,¬bf0,¬bl0,¬bv0}

By executing the CBT depicted in Figure 4(a), the robot
cannot find the bottle and asks for help.

3Our tool does not support parallel nodes with control nodes as children,
thus we report just the time for satisfiability checking in Experiment 4.

4https://github.com/alescode/limboole

TABLE I
TIME TO CHECK EXECUTABILITY.

Experiment time
1 91 ms
2 92 ms
3 96 ms
4 12 ms

TABLE II
CONDITIONS FOR SOME ACTIONS NODES IN THE CBT OF FIGURE 6.

Node Precondition Postcondition
Compute Pre-grasp Pose Pre- grasp Pose Exists Pre-grasp Pose Computed
Goto Pre-grasp Pose Pre-grasp Pose Computed Robot at Pre-grasp Pose
Locate Bottle Bottle Visible Bottle Located with High Confidence
Grasp Bottle Bottle Located with High Confidence Bottle Fetched

Hence, if we impose the initial conditions to be
{nh0, rk0,¬bf0,¬bl0}, we obtain that our encoding is un-
satisfiable, no matter the value of bv0. All plans encoded in
the CBT are executable.

Experiment 2: The robot is asked to fetch a bottle in the
kitchen. The policy of the robot is the same as the one
used for the examples and hence is encoded by the CBT
in Figure 1. The pre- and post-conditions of each action are
defined as in the previous experiment. The initial state is
depicted in Figure 5(c), the robot is in the living room, is
near a human, the bottle is not visible, not fetched and not
located. Thus, the initial state is described by the following
set of propositions:

{nh0,¬rk0,¬bv0,¬bl0,¬bf0}
Executing this CBT, the robot goes into the kitchen to fetch
the bottle (Figure 5(d)). When Find Bottle fails — due to
the bottle being partially visible as the chair is on the line
of robot’s sight —, the action Ask for Help is not executable
anymore. Given the initial conditions, there exists a plan that
is never executable. Our encoding will be satisfiable and
will have models corresponding to the action instantiation
sequences given in Example 5.

Experiment 3: The robot is asked to fetch a bottle in
the kitchen first, and then another one in the living room
afterwards. Both bottles cannot be located because the floor
is not in the robot’s visual field. The policy of the robot is
encoded by the BT in Figure 4(b), while the pre- and post-
conditions are defined as in the previous experiments. The
initial state is depicted in Figure 5(e), the robot is in the
living room, is near a human, the bottle is not visible, not
fetched, and not located. The initial state is hence the same
as in Experiment 2. When we execute this CBT, if the robot
fails to locate the bottle in the living room (Find Bottle fails),
the CBT can be completed because Ask For Help succeds
(the human is near the robot). However, if the robot reaches
the kitchen (as in Figure 5(f)), then the BT fails because the
bottle cannot be located, and the human is not nearby (both
Find Bottle and Ask For Help fail). The BT is not executable,
and our encoding is satisfiable.

Experiment 4: In Experiment 4, we show an example of a
CBT which is larger than the ones in previous experiments:
in Figure 6 we show the corresponding BT. The pre- and



(a) (b)

(c) (d)

(e) (f)

Fig. 5. Scenarios. 5(a) Initial state for Experiment 1, Scenario 1. 5(b) Initial state for Experiment 1, Scenario 2. 5(c) Initial state for Experiment 2. 5(d)
Experiment 2: action Find Bottle failing because the bottle is partially occluded by the chair. 5(e) Initial state for Experiment 3. 5(f) Experiment 3: Fetch
Bottle failing because the bottle is not visible.

?

→

Goto Kitchen Find Bottle ⇒

Track Bottle →

Compute
Pre-grasp Pose

Goto
Pre-grasp Pose

Locate
Bottle

Grasp
Bottle

Ask For Help

Fig. 6. CBT encoding the task of Scenario 4

post-conditions of the actions {Goto Kitchen, Find Bottle,
Track Bottle and Ask for Help} are defined as in the previous
experiments, while the pre- and post-conditions of the actions
{Compute Pre-grasp Position, Goto Pre-grasp Pose, Locate

Bottle and Grasp Bottle} are listed in Table II. In the initial
state we have that the only two conditions satisfied are: Robot
Near Human and Pre-grasp Pose Exists. As it can be noticed,
here the assumption that a parallel node has only action
nodes as children is dropped. Such assumption was added
to make the discussion easier to follow. Nevertheless, it is
possible to relax it and assume that, given a parallel node, all
its children always define instantiation sequences of the same
length. When a CBT does not respect such assumption, the
problem can still be circumvented by adding no action nodes
as necessary, i.e., action nodes which are always successful
and last for 1 tick without changing fluents. Executing this
CBT, the robot can go to the kitchen (hence can be far from
the human) and any of the actions can fail there. Hence our
encoding is satisfiable.



VI. CONCLUSIONS

In this paper we have introduced CBTs, a new formalism
to annotate BTs with action conditions in the style of
STRIPS/PDDL planning. We have shown how to encode
executability of CBTs into propositional formulas in an
efficient way — polynomial in the size of the CBT. Finally,
we have shown that computing executability of CBTs is
possible by leveraging current stateo-of-the-art SAT solvers,
tackling scenarios of practical interest in reasonable time.
Further developments along this line of research will include
tackling more complex scenarios to assess the limits of
scalability and relating this approach to other formal-based
techniques, e.g., contract-bases analysis and monitoring.
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