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Abstract— Research in Computer Vision and Deep Learning
has recently proposed numerous effective techniques for detect-
ing objects in an image. In general, these employ deep Convo-
lutional Neural Networks trained end-to-end on large datasets
annotated with object labels and 2D bounding boxes. These
methods provide remarkable performance, but are particularly
expensive in terms of training data and supervision. Hence,
modern object detection algorithms are difficult to be deployed
in robotic applications that require on-line learning. In this
paper, we propose a weakly supervised strategy for training
an object detector in this scenario. The main idea is to let the
robot iteratively grow a training set by combining autonomously
annotated examples, with others that are requested for human
supervision. We evaluate our method on two experiments with
data acquired from the iCub and R1 humanoid platforms,
showing that it significantly reduces the number of human
annotations required, without compromising performance. We
also show the effectiveness of this approach when adapting the
detector to a new setting.

I. INTRODUCTION

State-of-the-art methods for object detection (the task of
recognizing and localizing with a 2D bounding box every
known object in an image) offer a variety of well-established
deep learning tools to achieve high performance in chal-
lenging real world scenarios. These approaches generally
rely on architectures trained end-to-end on datasets care-
fully collected and annotated (once and off-line). While this
provides an effective baseline, considering the deployment
on a humanoid robot to unconstrained environments, the
adaptation capability is equally important. This includes
learning to recognize novel, specific object instances, as well
as tuning to specific settings, by relying on data gathered
during the robot’s operation (“on-line”), which may be
scarce or not annotated. Moreover, the training may be
constrained in terms of computational resources and time.
In this paper we focus therefore on the problem of training
and in particular adapting object detectors on-line on little,
partially annotated data. We build on our previous work [1],
[2], where we proposed a method to train a humanoid robot
to detect novel object instances with training time in the
order of seconds and only a few hundred frames. In [1],
[2], however, supervision originated from interaction with a
human teacher, while generalization to different background
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and light conditions was limited by the small number of
training examples.

In this work we propose a strategy that allows the robot to
adapt an object detector by acquiring new training samples
with limited human intervention. The main idea is that, when
faced with a new setting, the robot can iteratively adapt
the object detector by parsing incoming images and either
annotating them autonomously or asking for human help.
This weakly supervised strategy integrates the fast object
detector proposed in [2] with an adapted version of the Self-
Supervised Sample Mining, SSM [3], [4].

As a benchmark, we rely on the publicly available iCub-
World Transformations (iCWT) dataset [5], [6], that repre-
sents 200 objects handheld by a human interacting with the
iCub [7]. To evaluate our method, we contribute an extension
to the dataset, that represents 21 of its objects, randomly
positioned in two table-top conditions, acquired with the
R1 humanoid robot [8]. While our contribution provides
a method to adapt detectors in scenarios where automatic
annotation is challenging, for the sake of performance as-
sessment, we chose a table top setting, which is distinct from
the training procedure (refer to Fig. 2) but allowed us to
automatically collect the ground-truth.

The resulting method shows successful results and allows
our detection models to adapt to the new conditions, while
limiting the amount of novel annotated images. The rest
of the paper is organized as follows: section II overviews
related work; section III describes our pipeline in detail and
section IV presents results from the considered benchmark;
finally, section V draws conclusions and outlines important
directions for future work.

II. RELATED WORK

In this section we first overview recent methods for object
detection in robotics (Sec. II-A), then we consider related
works exploring the field of weakly supervised learning for
object detection (Sec. II-B)

A. Object Detection for Robotic Applications

A major objective of latest research in object detection for
robotics is to improve performance in difficult scenarios, tar-
geting, e.g., occlusions and clutter [9], [10], [11], [12]. This
is also reflected in challenges like the APC (Amazon Picking
Challenge) 1. To this end, a major trend is to rely on deep
learning architectures, that can be stunningly effective in
complex settings. Deep learning approaches can be grouped

1http://amazonpickingchallenge.org/
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into grid-based and region-based methods. Architectures in
the first group typically apply a set of classifiers over a fixed,
dense grid of locations in an image (see, e.g., SSD (Single-
Shot MultiBox Detector) [13] and YOLO (You Only Look
Once) [14], [15]). Methods in the second group, instead,
consider for classification, a previously selected set of region
proposals –i.e., regions which might contain objects of inter-
est (see, e.g., Region-CNN (R-CNN) [16] and its evolutions
Fast R-CNN [17], Faster R-CNN [18], Region-FCN [19] and
Mask R-CNN [20]). In both groups, performance is usually
achieved mostly through the collection of huge datasets,
which require, long, time consuming training. In fact, the
common trend is to combine the different stages of the
typical object detection pipeline into a single model, that
can be learned end-to-end via backpropagation [15], [19],
[20], [18].

Nevertheless, we argue that a multi-stage architecture,
learning each stage separately (see, e.g., [16], [17] and,
specifically, [2]), might allow for faster strategies of adap-
tation, which is a critical requirement for many robotic
applications.

Moreover, since the amount of possible locations in an
image that might contain an object of interest (and that
consequently need to be visited and classified) is typically
large, the task of object detection is computationally heavy
per-se. Considering that the majority of these regions then
typically depicts background areas, the associated classifi-
cation problem must be treated properly in order to avoid
learning a biased predictor. To this end, solutions proposed in
the literature are based either on (i) specific loss functions, to
down-weight the contribution of the easier negative examples
in the total loss (see, e.g., [21]), or on (ii) the idea of training
a detector on a bootstrapped subset of harder background
examples (see, e.g., [22], [23], [16], [24]).

In this work, we build on the multi-stage architecture
proposed in [2]. This is composed of a deep learning-
based region proposal and feature extractor (namely, a part
of Faster R-CNN [18]), followed by a Kernel method for
classification and a boostrapping approach to address the
background-foreground imbalance. This pipeline is suited for
a typical unconstrained robotic setting, as the combination
of an extremely efficient classifier (FALKON [25]) with an
approximated bootstrapping (see [2]), provides fast model
training.

B. Weakly Supervised Learning for Object Detection

Gathering the ground truth for training object detection
algorithms through supervised learning is a costly operation,
since it requires drawing a bounding box around each object
of interest (and provide its label) in each image example –
and typically thousands are required.

While one approach that is gaining momentum is to rely
on synthetic imagery [10], [26], the scope of this work is to
consider latest research that focused on reducing this effort
by adopting weakly or self-supervised (SS) techniques to
extract as much information as possible from unlabeled or
partially labeled images.

Methods to leverage on datasets annotated only at the
image level (i.e., without bounding box information) were
proposed to, respectively, learn an object detection sys-
tem [27] or a region proposal generation algorithm [28].

Differently from applications where the images come from
the web and no prior information about them is known, in
a typical robotic setting it can be easier to gather some
bounding box annotations, for instance by relying on spa-
tial or temporal contextual information. In this perspective,
in [29] a visual tracking algorithm was used to automatically
generate, in a self-supervised fashion, the sufficient ground
truth (bounding boxes and labels) to learn representations
from thousands unlabeled videos. One of the problems of
self-supervised pipelines, that generate a pseudo ground truth
by relying on the predictions of a previously trained detection
model, is model drift and degradation.

Another approach to address a weakly supervised scenario
is active learning (AL) [30], [31]. In this case, the effort
is focused on defining a sample selection strategy, i.e., a
policy to choose the most informative samples to be asked
for annotation to an oracle (e.g., a human). In [32] the authors
proposed to refine object detectors by actively requesting
crowd-sourced image annotations from the web, while in [33]
a method that combines AL and semi-supervised learning
is proposed to improve object detection performance by
leveraging the concept of diversity for the active learning
policy. While not suffering from model degradation, these
methods still require some human effort –even if significantly
lower than a full dataset annotation.

In the proposed pipeline, we consider the Self-Supervised
Sample Mining method [3], [4] (SSM), a weakly supervised
approach, which combines (i) a SS technique to generate
pseudo ground truth, with (ii) an AL strategy to select the
hardest unlabeled images to be requested for annotation.
The SSM method was proposed as an end-to-end deep
architecture, where the AL and SS processes alternated
with the fine-tuning of a Region-FCN (Fully Convolutional
Network) [19]. In this contribution, we isolate the AL and SS
processes from the Region-FCN and show a simple approach
to use them within our fast, on-line learning pipeline [2].
We also opted for training a new model at every adaptation
iteration (rather than fine-tuning or modifying the previous
one), which was only feasible due to the training speed of
our detection method.

III. METHODS

In the scenario considered in this work, a robot is asked
to detect a set of object instances in an unconstrained
environment (hereinafter referred to as TARGET-TASK).

We assume that the detection system is initialized with
a set of convolutional weights, previously trained off-line
on a separate set of objects, using the method described
in [18]. A first detection model is trained during a brief
interaction with a human, in a constrained scenario (the
TARGET-TASK-LABELED). The robot then explores the
environment autonomously, acquiring a stream of images in
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Fig. 1: Overview of the proposed pipeline. The on-line detection system proposed in [2] (green block) is integrated with
a weakly supervised method [3] (yellow block) that combines a self supervised technique to generate pseudo ground truth
(Temporary Dataset), with an active learning strategy to select the hardest unlabeled images to be asked for annotation and
added to a growing database (Permanent Dataset). We refer the reader to Sec. III for further details.

a new setting. These images are not labeled (TARGET-
TASK-UNLABELED) and are used to adapt the detector.

The pipeline uses the the on-line detection algorithm
proposed in [2] and an adaptation of the weakly supervised
approach of SSM [3], [4]. The detector is adapted thanks
to the additional training data which is either automatically
labeled by the robot (we call it pseudo ground truth) or
labeled with human supervision.

A. Pipeline Description

The proposed pipeline is divided into two main modules
(see Fig. 1): an (i) On-line Object Detection Module (OOD)
and a (ii) Weakly Supervised Module (SSM). The first one
predicts bounding boxes and labels, and can be trained in
few seconds as a new dataset is available, while the second
one processes the predictions generated by the former one
on a stream of (unlabeled) images in order to generate their
annotations.

On-line Object Detection Module. For this first module
(green block in Fig. 1) we rely on the method proposed
in [2]. This method consists of a (i) first stage of region
proposals and feature extraction and (ii) a second stage of
region classification and bounding box refinement.

The first stage relies on layers from the Faster R-CNN
architecture [18], specifically the convolutional layers, the
Region Proposal Network (RPN) [18] and the RoI pooling

Layer [17]. In particular, this part is used to extract a number
of Regions of Interest (RoIs) from an image and encode
them into a set of features. In this work, we considered
ResNet50 [34] as the CNN backbone for Faster R-CNN.

The second part is composed of a set of FALKON [25]
binary classifiers (one for each class of the TARGET-
TASK) and Regularized Least Squares (RLS), respectively
for the classification and the refinement of the RoIs
proposed at the previous stage. Specifically, the training
of the classifiers applies an approximated bootstrapping
approach, called Minibootstrap [2]. This approach is used to
overcome the well-known problem in object detection of the
background-foreground class imbalance, while maintaining
a learning time of the order of seconds. Please, refer to [2],
for further details about this algorithm.

Weakly Supervised Module. The aim of this module
(yellow block in Fig. 1) is to generate a new training set by
combining images annotated by the robot autonomously, with
those annotated with human supervision. This is achieved
with an iterative process [3]. For each iteration, the predic-
tions of the current detection model on the images acquired
by the robot (the TARGET-TASK-UNLABELED) are
evaluated in order to identify (i) those detections that can be
used as training set (pseudo ground truth) and (ii) those that
need to be labeled with a human intervention. The dataset
resulting from this process is used to train a refined version



of the model with the On-line Object Detection Module.
For this module, we rely on the weakly supervised ap-

proach proposed in [3]. It combines a self supervision
based on a Cross Image Validation to select a reliable
pseudo ground truth, with an active learning policy to pick
the most informative unlabeled samples and ask for their
annotation. Specifically, the Cross Image Validation is per-
formed for each unlabeled image of the TARGET-TASK-
UNLABELED and is designed as follows: the current
detection model is tested on an unlabeled image, then, the
consistency of the predicted detections is evaluated by (i)
pasting them into different annotated images and (ii) using
the current detection model to predict them. If the detection
is confirmed for the majority of the cases, it is considered
consistent (the reliability is measured by a Consistency
score), and thus usable as pseudo ground truth.

Instead, for the active learning process, the selection cri-
teria is based on the classical uncertainty-based strategy [35]
where the policy is to ask for annotations of the least con-
fident samples, (the Consistency score computed previously
is used as measure of confidence of the image).

B. Training the Pipeline

The learning process of the proposed method is divided
into two phases: (i) a fully supervised learning stage with a
few seconds of interaction with a human, on the TARGET-
TASK-LABELED, in order to get a first detection model,
and (ii) a weakly supervised learning stage, where the
previously trained detector is used to generate pseudo
ground truth, or queries for image annotations, on the
TARGET-TASK-UNLABELED.

Fully Supervised Phase. The features provided by the
Feature and Region Extractor (see Fig. 1) are used as
training examples for the FALKON classifiers and the RLS
regressors, for region proposals classification and refinement,
respectively. For the RLS regressors, we used the method of
Region-CNN [16], keeping the same learning objective and
loss function. For the classification, we consider a one-vs-all
approach (so that a multi-class problem is addressed with
a collection of n binary classifiers, where n is the number
of classes). For each class, the training set is collected by
selecting and labeling region proposals as either positive
examples (i.e., belonging to the class) or negative ones
(i.e., belonging to the background). The resulting dataset
is used to train a binary classifier and it is usually large
and strongly unbalanced, due to the fact that the majority
of the regions typically depicts background areas. The large
size and imbalance of this dataset is addressed by the
Minibootstrap procedure [2], which is an approximation of
the Hard Negatives Mining procedure adopted in Region-
CNN [16] and in [23].

The combination of FALKON, the Minibootstrap and the
RLS regressors is used to train a detector on the TARGET-
TASK-LABELED. This model will be, consequently, used
as a seed model for the weakly supervised learning phase

on the TARGET-TASK-UNLABELED.

Weakly Supervised Phase. After the first supervised learn-
ing phase, the weakly supervision process on the TARGET-
TASK-UNLABELED starts. For this phase we rely on the
protocol proposed in [3]. Specifically, this is a process that
iterates on the TARGET-TASK-UNLABELED to progres-
sively refine the detection model. Each iteration is structured
as follows: the images of the unlabeled dataset are predicted
with the current model and the consistency of the predictions
is evaluated with the Image Cross Validation procedure
illustrated above. The images with a high Consistency score
are added as pseudo ground truth while the ones with a low
Consistency score or the ones ambiguous for the detector
(specifically, the images where the same region is predicted
with two positive categories) are added to the set that needs
to be asked for labeling.

The dataset composition at each iteration is controlled
by a parameter that limits the number of images to be
added to both sets, which is defined as a percentage of
the TARGET-TASK-LABELED. The strategy adopted to
set this parameter in [3] is to allow, for early iterations, a
higher number of images to be labeled, while, in subsequent
iterations, an increasing number of pseudo labeled images
can be added.

After this pruning, the images considered as pseudo
ground truth are added to a Temporary Dataset, while the
ones that need annotation are asked to be labeled and then
added to a Permanent Dataset (see Fig. 1). Note that, while
at the beginning of this iterative procedure the first one
is empty, the latter one already contains the TARGET-
TASK-LABELED. At the end of each iteration, while
the Permanent Dataset is retained (it thus grows at each
iteration), the Temporary Dataset is cleaned. For further
details on this weakly supervised approach we refer the
reader to [3].

Note that we adopted the protocol of [3], but we replaced
the fine-tuning of Region-FCN [19] with the fast learning
method proposed in [2], thus reducing the training time at
each iteration from minutes/hours to a few seconds, allowing
to use the pipeline in an on-line scenario. Another important
distinction with respect to the original SSM algorithm is
that, in our pipeline, at each iteration the detector is trained
from scratch on the composed image set, while in SSM
the Region-FCN is fine-tuned with a warm restart from the
weights obtained at the previous iteration.

IV. EXPERIMENTS
In this section we first describe the datasets used for

evaluation (Sec. IV-A), then we provide details about the
setup used for the experiments (Sec. IV-B) and finally we
present the performance achieved by the proposed pipeline
on two different scenarios (Sec. IV-C and Sec. IV-D).

A. Datasets description
In this section we describe the datasets used for the

experimental analysis of this work.



Fig. 2: Examples images of the datasets used for this work: a) ICWT dataset; b) POIS cloth in the table top dataset; c)
WHITE cloth in the table top dataset.

iCubWorld Transformations Dataset. The ICUBWORLD
TRANSFORMATIONS dataset2 [6] (hereinafter referred to as
ICWT) contains images for 200 objects instances belonging
to 20 different categories (10 instances for each category).
Each object instance is acquired in two separate days and,
for each day, different sequences representing specific
viewpoint transformations are collected: planar 2D rotation
(2D ROT), generic rotation (3D ROT), translation with
changing background (TRANSL), scaling (SCALE) and,
finally, a sequence that contains all transformations randomly
combined (MIX). The sequences have been acquired with
the iCub humanoid robot [7], with an automatic annotation
procedure that relies on human interaction in a student-
teacher fashion [6]. See Fig. 2 (first row) for some example
images.

Table Top Dataset. To prove the generalization capabilities
of the proposed integration to different settings, we collected
a table top dataset (that will be made publicly available at
the same ICWT website) by using the R1 robot [8]. For this
dataset we selected 21 objects from ICWT.

The data acquired is split in 2 sets of sequences. In each
set we considered a different table cloth: (i) pink/white pois
(hereinafter referred to as POIS) and (ii) white (hereinafter
referred to as WHITE). For each set we split the 21 objects
in 5 groups, and we acquire 2 sequences for each group for
the WHITE set, and 1 sequence for each group for the POIS
set, gathering a total of 2K images for the WHITE set and
1K images for the POIS set.

For each sequence, the robot is placed in front of the
objects and executes a set of pre-scripted exploratory move-

2https://robotology.github.io/iCubWorld/
#icubworld-transformations-modal/

ments to acquire images depicting the objects from different
perspectives, scales, and viewpoints. We used a table top
segmentation procedure to gather the ground truth of the
object locations and labels, and we manually refined them
using the labelImg tool3. See Fig. 2 (second and third rows)
for some example images.

B. Experimental Setup

To show the effectiveness of the proposed integration
we present results on two different experiments. We firstly
validate the pipeline on ICWT, then we consider the scenario
of a robot trained with human interaction to detect a set of
objects, which needs to adapt and refine the detection model
in order to generalize to a different setting. Specifically, in
this work we consider as a new setting, the table top dataset
described above. This is a challenging task as the robot is
trained by a human demonstrator while holding the objects in
the hand and it is later required to detect objects when they
are placed on a table (see Fig. 2 to compare the two settings).
Fast adaptation is required to avoid large performance drop
as demonstrated by our experiment.

Note that, when considering the TARGET-TASK-
UNLABELED, we simulate the human intervention for
providing annotations, by fetching the actual ground truth
from the dataset. We report performance in terms of mAP
(mean Average Precision) at the IoU (Intersection over
Union) threshold set to 0.5, as defined for Pascal VOC
2007 [36].

All experiments reported in this paper have been per-
formed on a machine equipped with Intel(R) Xeon(R) E5-
2690 v4 CPUs @2.60GHz, and a single NVIDIA(R) Tesla

3https://github.com/tzutalin/labelImg

https://robotology.github.io/iCubWorld/#icubworld-transformations-modal/
https://robotology.github.io/iCubWorld/#icubworld-transformations-modal/
https://github.com/tzutalin/labelImg


Fig. 3: Benchmark on ICWT. The figure shows (i) the mAP
trend of the proposed pipeline, as the number of annotations
required on the TARGET-TASK-UNLABELED grows
(OOD + SSM), compared to (ii) the accuracy of a model
trained only on the TARGET-TASK-LABELED (OOD +
no supervision) and to (iii) the mAP of a model trained with
full supervision on the TARGET-TASK-UNLABELED
(OOD + full supervision). The number in parenthesis repre-
sents the number of images selected by the self supervision
process at each iteration.

P100 GPU. Furthermore, we limit the RAM usage of
FALKON to at most 10GB.

C. Experiments on the iCubWorld Transformations Dataset

For this experiment, we define as TARGET-TASK a 30-
object identification task, considering 3 instances for each
10 categories in ICWT remaining after excluding those
used for initializing the CNN backbone. For each object,
we then use the TRANSL sequence (for a total of ∼2K
images) as TARGET-TASK-LABELED and the union of
the 2D ROT, 3D ROT and SCALE sequences (for a total
of ∼6K images) as the TARGET-TASK-UNLABELED.
This simulates a situation where only a simple sequence is
fully annotated and other sequences are not. As a test set,
we used 150 images from the MIX sequence of each object,
whose annotations have been manually refined adopting the
labelImg tool4.

In Fig. 3 we report the mAP trend (green line) with respect
to the total number of images asked for annotation in the
TARGET-TASK-UNLABELED (in parenthesis we spec-
ify the number of samples selected by the self supervision
process). Note that, as the images get accumulated at every
iteration, in order to calculate how many images are required
by the robot, one has to take the difference of the indicated
number with the one at the previous iteration.

The red point shows the mAP on the considered test
set, achieved after the supervised learning phase, i.e., after
training the detection module on the TARGET-TASK-
LABELED. Thus, we consider it our lower-bound. The

4https://github.com/tzutalin/labelImg

Fig. 4: Benchmark on the table top dataset. The figure shows
(i) the mAP trend of the proposed pipeline, as the number
of annotations required grows (OOD + SSM), compared to
(ii) the mAP of a model trained on the TARGET-TASK-
LABELED (OOD + no supervision) and to (iii) the mAP
of a model trained with full supervision on the TARGET-
TASK-UNLABELED (OOD + full supervision). In this
experiment we also compare with the mAP of a model
trained only on annotated images randomly selected (OOD +
rand AL). The number in parenthesis represents the number
of images selected by the self supervision process at each
iteration.

blue point represents the mAP achieved by training the
detection module on the union set of the TARGET-TASK-
LABELED and TARGET-TASK-UNLABELED (fully
manually annotated). Thus, we consider it as the upper-bound
of this experiment. As it can be observed, nearly half of the
images of TARGET-TASK-UNLABELED are enough to
obtain ∼70% of mAP with a drop in performance of ∼1.2%
with respect to the fully supervised case.

Each point of the green line has been obtained by re-
training a new set of 30 FALKON classifiers, with the
Minibootstrap, on the data accumulated after the weakly
supervised iteration. As the dataset increases, the training
time increments from ∼40 seconds to ∼60 seconds, with an
average of ∼55 seconds for each step.

D. Experiments on Table Top Scenario

For this experiment, we define as TARGET-TASK an
identification task among 21 object instances chosen from
the ICWT –excluding those used to inizialize the CNN
backbone. As TARGET-TASK-LABELED, we select a
subset of the available images from the TRANSL, 2D
ROT, 3D ROT and SCALE sequences (for a total of ∼
5600 images), while we consider the 2K images of the
WHITE table top set (see Sec. IV-A) as TARGET-TASK-
UNLABELED and the POIS table top set as test set.

In Fig. 4, we show the result of this experiment. As before,
with the green line we report the mAP with respect to
the increasing number of images asked for annotation, and

https://github.com/tzutalin/labelImg


indicated in parenthesis the number of self-annotated images
at each iteration.

Similarly, the red point shows the mAP on the considered
test set, achieved after the supervised learning phase on
the TARGET-TASK-LABELED, while the blue point
represents the mAP obtained by training the on-line de-
tection module on the union set of the TARGET-TASK-
LABELED and TARGET-TASK-UNLABELED (fully
annotated).

As it can be observed, just a quarter of the full TARGET-
TASK-UNLABELED dataset was enough to train a model
with even a higher accuracy (∼55%) than the one obtained
with full supervision (∼52%). This may be due to the
fact that, by using all images from the TARGET-TASK-
UNLABELED, the model may overfit the scenario of the
white table cloth, which causes a poorer performance when
testing on images depicting a different table cloth. Our
findings suggest that AL algorithms may help reducing
overfitting, confirming what has been previously reported in
the literature (see, e.g., [37]).

One may argue that, in order to avoid the overfitting
caused by considering all the images in the TARGET-
TASK-UNLABELED (blue point), a random sub-sampling
of the images to label would suffice. To this end, in Fig. 4
we also compare the proposed approach with a model trained
on the same number of images as the ones selected by the
AL process, but randomly sampled (cyan line). It can be
noticed that, while the mAP obtained is relatively high, it
also presents a gap with respect to the performance achieved
with the integration proposed in this work, demonstrating
the effectiveness of the active learning and self supervision
processes in choosing the more meaningful samples.

As for the previous experiment, each point of the green
line has been obtained by retraining a new set of 21 FALKON
classifiers, with the Minibootstrap, on the data accumulated
after the weakly supervised iteration. As the dataset in-
creases, the training time increments from ∼35 seconds to
∼47 seconds, with an average of ∼42 seconds for each step.

V. CONCLUSIONS

In this work we proposed a pipeline for on-line adap-
tation of object detectors in scenarios with limited human
supervision. To this end, we extended our on-line detection
system from [2] with a weakly supervised method taken
from [3]. This latter combines a self-supervision process
to generate pseudo ground truth for the most confident
predictions, with an active learning strategy to select the
hardest images to be asked for annotation. In the integration,
we replaced the detection learning adopted in [3] (i.e., the
fine-tuning of Region-FCN) with our learning method, which
can be trained in much less time (a few seconds), since
it relies on the efficient FALKON algorithm [25] and our
Minibootstrap approximation [2]. Moreover, we show, with
the experimental analysis presented in this work, that the
effectiveness of the weakly supervised approach of [3] in
reducing the annotation effort is preserved.

For this analysis, we simulated the action of asking for
human supervision with a process that reads annotations
from a database. We now plan to devise an interactive
application where the human provides annotations through
pointing to objects, and by exploiting spatial and temporal
cues to propagate labels in absence of human supervision.
This involves the implementation of an active exploration
policy that allows the robot to push, pick up and rotate
objects to acquire new views, while propagating labels by
tracking objects and the strategy proposed in the papers,
enriched to actively engage humans when their supervision
is required.

From an algorithmic point of view, we plan to study
a tighter coupling between the self-supervision and active
learning processes, with the Minibootstrap happening at each
training. In fact, the two procedures both iterate on the
dataset in order to extract an effective training set, thus our
integration offers an interesting starting point to devise a
more efficient and robust sample selection process.
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