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Abstract. A fundamental ingredient in the success of deep learning for
computer and robot vision is the availability of very large-scale annotated
databases. ImageNet, with its 1000 object classes and 1.2 million images,
tends to be the dominant data collection for creating pre-trained deep
architectures. A less investigated avenue is how the possibility to create
task-specific data collections on demand, with limited or without manual
effort, would affect the performance of convolutional architectures. This
would be useful for all those cases where contextual information about
the deployment of the deep net is available, and it would be particularly
relevant for robot vision applications, where such knowledge is usually
available. The goal of this work is to present a protocol for the automated
creation of task specific datasets starting from a pre-defined list of object
classes, exploiting the Web as a source of information in an automated
fashion. Our pipeline consists of (a) an algorithm for automatic Web
crawling that searches for “image class seeds”, i.e., informative images of
object classes of interest, (b) algorithms for figure-ground segmentation
of the object of interest and pasting of the segmented item in contextual
images close to where the agent is going to work, and (c) a tailored
data augmentation routine for maximizing the informative content of the
generated images. A thorough set of experiments on a public benchmark,
as well as deployment to a robot platform, prove the value of the proposed
approach.
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1 Introduction

Robots need to have a visual understanding of their surroundings in order to
have cognitive behaviors. From visually perceiving an object, to recognizing it,
to understanding what it is, what its properties are and how it should be acted
upon, all these are crucial components to have truly intelligent and autonomous
systems. Since the seminal work of Krizhevsky et al [9], the overwhelming ma-
jority of state of the art approaches in computer and robot vision for object
recognition are based on Convolutional Neural Networks (CNNs, [11]), which
use end-to-end architectures achieving feature learning and classification at the
same time. Compared to shallow learning approaches, where feature extraction
and classification are two separate steps often laded with heuristics, CNNs of-
fer several advantages: first, they have proved over countless benchmarks to
be able to achieve much higher accuracies on basically any visual recognition
problem; second, they offer a conceptual simplicity of use that has made them
very quickly the dominant learning tool of the community. Despite these ad-
vantages, they also present some limitations, such as high computational cost,
long training time and the demand for large datasets, to name a few. As CNNs
are data-hungry algorithms, the possibility to train a given model on very large
scale annotated data collections is crucial for their success. As a consequence,
architectures trained over ImageNet [2] are the cornerstone of the vast majority
of CNN-based object recognition methods; such architectures are then adapted
to various classification needs through fine-tuning. This again, in turn, requires
annotated data collection and non trivial manual effort, although not of the same
scale needed for end-to-end training of CNNs.

This paper addresses this issue, following the recent trend of developing algo-
rithms for the automatic creation of annotated data from the Web through smart
downloading approaches [13]. As opposed to dealing with the automatic creation
of a very large scale data collection, that inevitably brings with it issues related
to the percentage of noisy images downloaded and of their effect on the training
of the network, we propose a protocol for generating automatically task-specific
databases for the fine tuning of pre-trained architectures. Given a list of object
categories that the robot is expected to encounter while performing its assigned
task, we first search the Web for a limited number of images representing the
object of interest, in white/empty backgrounds. By taking only the first images
resulting from the search, we strongly limit the amount of wrong/noisy images
in our download. Once obtained the images, we figure ground segment them to
remove any possible artifact in the background, and we paste them on generic
backgrounds resembling the environment where the robot will be deployed. Fur-
ther data augmentation contributes to bridge the perceptual gap between images
found on the Web and images that might be acquired in the actual robot setting.
Figure 1 gives an overview of the overall protocol. We evaluated the contribu-
tion of each step of the data generation pipeline by fine-tuning a deep network to
address an object categorization task on a publicly available benchmark (Figure
1, bottom left). We then deployed the pipeline on a robot platform (Figure 1,
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bottom right), where we show that it can run “on-the-fly” to generate image
sets for training standard SVM classifiers for fast object categorization learning.

The rest of the paper is organized as follows: after a review of relevant pre-
vious work (section 2), we describe the protocol proposed for the automatic
creation of databases (section 3); section 4 describes the experiments performed
and our findings, while conclusions and future works are discussed in section 5.

Data Augmentation
[Dwibedi et al., 2017]

Segmentation
[Jain et al., 2017]
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Fig. 1: Visual representation of the proposed system.

2 Related Works

Earlier work explored the possibility of mining the Web for semantic information
to be used in robot systems, mostly to populate automatically on-board knowl-
edge base representations [17, 19, 18]. Still, semantic information alone will not
suffice: visual perceptual capabilities are crucial for robots to operate in uncon-
strained, task-oriented settings. As the leading deep learning paradigm for robot
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vision relies heavily on the availability of data collections, the ability to recognize
large classes of objects is linked to the creation of such data corpora.

Database creation from the Web has been attempted in the past with the use
of semantic query expansions [1, 13], where the query expansion helps in reducing
the amount of noisy and mislabeled images automatically downloaded, while at
the same time helps in guaranteeing the visual richness of the collection. In spite
of this, automatic data creation from the Web tends to include a non-trivial
percentage of noise in the data, that might negatively affect the performance of
convolutional networks trained on them. Several authors proposed strategies to
deal with it [3]. Researchers have also started working on automatic data mining
for robot vision applications with deep networks and the results are promising
[13]. All the works revised above target explicitly the creation of general purpose
databases, mimicking ImageNet.

We are not aware of previous work attempting to create task specific databases
from the Web without manual annotation, nor attempting to use Web data as
starting point for the creation of artificial, synthetic images.

3 Method

This section details the steps of our pipeline, as outlined in Figure 1.

Images Download From the Web. This step requires dealing with noisy images
(i.e., images found when searching the Web for a given object that instead show
something else). We address this issue by noticing that, for the vast majority
of publicly available search engines, the top-retrieved images tend to depict the
object of interest on an uniform background. Thus, we developed a simple script
that, given a label, downloads the first N images found in the Web (after du-
plicate removal), that we use as “seed images”, to be augmented with synthetic
transformations. While this does not guarantee the lack of noise in the seeds, we
verified heuristically that, by keeping N ∼ 100, its impact is largely reduced.

Object Mask Extraction. For creating the synthetic images, it is first necessary
to “extract” the objects of interest from the downloaded image. To do this auto-
matically, we applied the foreground/background segmentation method from [7].
The authors showed that a fully convolutional network with backbone weights
pre-trained on a large-scale image classification dataset (like ImageNet [2]) can
learn to produce dense binary segmentation masks by fine-tuning on a relatively
small set of images with foreground/background pixel-level annotations. The
idea is to leverage the notion of “pixel objectness” learned by the network on
the large classification task, and fine-tune it to ‘extend’ its activation responses
from fragments to entire objects. We used the model released by [7], which
worked well off-the-shelf. We note that, being the pipeline fully automatic, it
has to deal with the noise in the masks.
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Synthetic Data Generation. At this stage, the segmented “seed” objects must be
placed on suited background images. We opted for backgrounds from environ-
ments that are coherent with the categories of choice. As our case study considers
mostly office objects, we tried using either (i) the backgrounds provided with the
Washington RGB-D dataset [10] (the ones representing offices/desks), or (ii) a
set of backgrounds acquired directly in the robot’s operation setting.

To implement this step we exploited the work of [4], which provides methods
(with code) to alleviate the artifacts that appear when an object is pasted onto
a different background. To augment the size and variability of the final data
collection, we applied also the provided set of transformations (2D rotations,
scaling, occlusions, etc.) with the addition of illumination changes (brightness,
contrast and saturation).

Training. In all our experiments we rely on a convolutional neural network pre-
trained on the object categorization task of the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) [2], specifically, the Caffe [8] implementation4

of ResNet-50 [6].
We adopt two different transfer-learning methods in the two settings con-

sidered in this paper. When targeting object categorization on a benchmark
dataset, we fine-tune the network on the generated synthetic training sets. This
leads to adapt the image representation to the considered task, but also to the
synthetic domain. Since we do not apply sophisticated computer graphics, in this
setting we evaluate the trade-off between the benefit of gathering semantically
rich images at no cost, and the domain shift possibly introduced in the network
by the lack of realism. Differently, in the robotic application we opted to fix
the image representation to the one learned on ImageNet and use the synthetic
image sets to train linear SVMs on top. We call this on-the-fly learning, because
fine-tuning the network takes several minutes/hours, while the training time of
the linear SVMs is of the order of seconds and can be interactive.

When fine-tuning, we relied on standard Caffe protocols and just ensured
that the learning rate policy was leading to convergence. We used a validation
set to stop the training when we observed no accuracy gain and in any case
no later than 30 epochs. For each experiment we performed three fine-tuning
trials, averaging the results and observing around 1% of performance oscillation
across trial. The code for training SVMs employs the liblinear [5] package. In
this case, cross-validation for the regularization parameter was performed once
on an example task.

4 Results

In this section we report on the experimental evaluation that we performed
to asses the feasibility of the proposed pipeline for data generation. In all the
experiments we use synthetic images generated with our pipeline for training and

4 https://github.com/KaimingHe/deep-residual-networks
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test on real images acquired by recording from the camera of humanoid robots.
In section 4.1, we present a quantitative evaluation of the performance benefit
of each step of the pipeline. To this end, we fine-tune ResNet-50 from ImageNet
to address an object categorization task on the iCubWorld dataset [15] which,
being recorded from the camera of a robot (iCub5) while this is observing hand-
held objects, provides a faithful benchmark for real robotic operation settings. In
section 4.2, we show that the proposed data generation can also be performed on
a robot on-the-fly, to quickly train linear SVMs on specific object categories asked
by a user. To this end, we report qualitative results of the pipeline deployment
within an interactive object learning application running on the R1 robot6.

4.1 Benchmark on iCubWorld

In this section we assess if the difference between the synthetic and real domain
is such to prevent the suggested approach to be effective for training deep net-
works. We first report the performance achieved by progressively introducing
more processing steps in the proposed image generation pipeline. Then, we show
how it is possible to achieve good performance on iCubWorld by injecting a
limited amount of real images in a purely synthetic training set.

Real Vs. Synthetic Datasets

Test on iCubWorld. We consider the “iCubWorld Transformations” dataset [15]
as our test set (iCWT in the following). This dataset represents 20 object
categories of daily use (10 objects per category), each recorded in five image
sequences while undergoing isolated viewpoint transformations (e.g., SCALE,
2/3D ROT, BKG, etc.). Each sequence is acquired in two sessions with little
setting variations and comprises around 150 frames. We refer the reader to [15]
for details. In all experiments, we target a 20-class categorization task and con-
sider, as test set, 5 object instances per category (out of the 10 available) in the
BKG sequence. In this sequences the objects are moved by the operator around
the robot, keeping their face fixed thus making only the background change. We
randomly sampled 50 frames from each sequence, hence our test set is composed
of 5K images.

Synthetic Training Sets. To address this task, we downloaded from the Web
80 images for each category in iCWT (see section 3). We randomly selected 60
images per category for training, for a total of 1200 images. The remaining 20
images per category have been used as validation set. After passing the images
through foreground segmentation, we remained with around 1150 training im-
ages (it is possible that the network used [7] is not able to detect the object,
returning an empty mask that is discarded). We tried using two different im-
age sets for the following background replacement step. The first one is from

5 http://www.icub.org/
6 https://www.youtube.com/watch?v=TBphNGW6m4o
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the background images publicly available in Washington RGB-D dataset [10].
Specifically, we selected around 350 background images in tabletop-like settings.
The second one is a set of the same size, but recorded in the acquisition setting
of the iCWT dataset. As explained in section 3, since we relied on the data aug-
mentation procedure from [4], we optionally applied scale, in-plane rotation and
light augmentation while replacing the background. In this data augmentation
step, for each source image we generated 4 synthetic images, producing a total
of around 4600 training images.

Table 1: Classification accuracy achieved by performing diverse processing steps
on the downloaded images.

Training Set Number of Images Accuracy [%]

Chance Level - 5

Web 1200 22

White 1150 18
RGBD 1150 32
iCWT 1150 35

RGBD+ 4600 42

Reducing The Domain Shift - Part I

Ablation Experiment. We evaluated the performance achieved after applying
each step of the data generation pipeline and report results after fine-tuning the
network on each of the following “intermediate” datasets:

– Images downloaded from the Web (Web).
– Web images segmented with background replacement. We tried a white back-

ground (White) or the background from either Washington RGB-D or the
iCWT settings (RGBD or iCWT).

– Web images segmented with background replacement and data augmenta-
tion. In this case we opted for using the background from Washington RGB-D
dataset, since the goal of this work is to build training sets fully automati-
cally and without the need for the user to acquire any data in the operation
setting (RGBD+).

We report results in Table 1. We see that just by downloading 60 images per
category from the Web we are able to achieve 22% accuracy (chance level is 5%).
As expected, the white background replacement is detrimental for performance,
while replacing backgrounds which are similar to the one of the test set, does
improve results. In this case, the exact same background of the test set (iCWT)
provides higher results (35%) than one which is similar (RGBD, 32%). However,
it is interesting to observe that the performance difference is small, motivating
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our choice. A relatively high accuracy (42%) is achieved by applying the data
augmentation from [4] to the RGBD training set. However, we note that we are
still far from achieving perfect performance. This result establishes a baseline
achieved with simple image processing steps. On the one hand, this proves the
effectiveness and the potential of the approach. On the other hand, it shows that
a better covering of the domain shift is critical to improve performance.

Table 2: Classification accuracy achieved by performing diverse processing steps
on the downloaded images (like in Table 1) and by adding real images from
iCWT.

Training Set iCWT Objects Number of Images Accuracy [%]

Web - 1200 22
Web 1 1200 + 120 (10%) real 46

RGBD+ - 4600 42
RGBD+ 1 4600 + 600 (13%) real 65

RGBD 1 1150 + 600 (52%) real 63
iCWT 1 1150 + 600 (52%) real 62
Web 1 1200 + 600 (50%) real 62

White 1 1150 + 600 (52%) real 62

RGBD+ 5 4600 + 600 (13%) real 73
RGBD+ 5 4600 + 5K (109%) real 85

- 5 5K (100%) real 87

Reducing the Domain Shift - Part II

Injection of Real Images. Given the above results, two options can be considered
in order to increase performance: (i) improving the realism of the synthetic im-
ages and/or (ii) considering the injection of a small set of real images. We opted
to evaluate this second possibility, following the suggestion of the authors [4].

In this experiment, we evaluate the performance achieved by adding, to the
synthetic training sets considered in the previous section, images of objects from
iCWT. For the addition, we sample objects from the remaining 5 instances per
category (excluding the test set). Results are reported in Table 2 for two sets of
experiments.

We started considering the addition of a single object example per category.
We hence sampled from iCWT a few images for each of 20 objects not in the test
set (from BKG sequences) and added them to the Web and RGBD+ training
sets. We kept the real to synthetic ratio around 10% and used 6×20=120 real
images for the Web and 30×20=600 real images for the RGBD+. In rows 1-4 of
Table 2, we observe around 23% performance increase in both cases, achieving
65% with the RGBD+ training set.
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Fig. 2: Block diagram of the application running on the robot: (a) Training Mode,
images are downloaded from the web and used to train the SVMs on the new
category; (b) Test Mode, the robot localizes the closest object in the scene and
classifies it.

To further investigate to which extent this result depends on the real or
synthetic data, in rows 5-8 of Table 2 we increased the real to synthetic ratio
up to around 50%, by considering the same 600 real images but adding them
to the not augmented synthetic training sets. We observed that performance
was almost the same, independently on the quality of synthetic images. It is
interesting to note that the addition of as few as 30 frames of a single example
instance per category provides a performance gain increase of 40% (from 22 to
62%) when using just Web images. A similar gain is achieved by combining data
augmentation (from 22 to 42%) and injection of even less real images (from 42
to 65%).

We finally added all available 5 object examples per category in iCWT to
the synthetic training sets (rows 9-11 in Table 2). In this case, with 6 real im-
ages per object (for a total of 6×5×20=600 images) we achieve 73% accuracy.
Furthermore, adding to the training set as much real images as the synthetic
ones (50 frames per object for a total of 5K images) leads to 85% accuracy. This
error rate is probably dominated by the information available in the real object
examples. This is confirmed by the 87% accuracy achieved by training only on
the real images.

4.2 On-the-fly Learning of Object Categories

In this section we briefly describe the deployment of the data generation pipeline
to an application running on the R1 robot platform.

The current object recognition system on R1 is the same as the one on
the iCub robot and is based on a deep neural network for feature extraction
(ResNet-50 trained on ImageNet classification task) and shallow classifiers that
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are trained on-the-fly to learn the objects shown by a user [14]. Learning on
images acquired during the robot’s operation allows for flexibility. However, while
this works well for object identification (the robot can observe objects from varied
viewpoints) it is time consuming for object categorization [15].

Integrating this data generation pipeline offered an improvement in this di-
rection. To teach a category (Fig. 2(a)), the user tells the label to the robot;
the system produces a synthetic training set, that is used to train on-the-fly a
classifier. It takes no more than one or two minutes to download and process
around 100 images on a standard laptop and internet connection. Images are
then encoded into ResNet-50’s representation and used to train an SVM (linear
Kernel). The feature extraction and classifier training are fast and part of the
usual learning pipeline employed on the robot. As showed in the benchmark
in Sec. 4.1, the synthetic dataset can also be integrated with real example im-
ages acquired by the robot autonomously (see, e.g., our previous work7). After
training, the robot recognizes the category (Fig. 2(b)). A simple depth segmen-
tation [16] localizes a region of interest as the closest object in the scene, which
is then classified.

A video showing qualitatively the performance of the running system is avail-
able here8. The pipeline deployed on the robot applies data augmentation over
background images from Washington RGB-D (the video shows also the kind of
noise affecting the content or the foreground masks of the generated images).

The code of the application can run on a normal laptop and can be made
publicly available upon request at the same GitHub repository of the original
application9.

While we do not have yet a quantitative benchmark for this data generation
pipeline within the on-the-fly training strategy adopted on the robot, we plan
to perform such evaluation. Specifically, it would be interesting to compare with
prior work [15], where it was shown that, for object categorization in absence
of enough object examples, classifier training on top of ImageNet features was
more effective than fine-tuning.

5 Conclusions and Future Work

We have studied an automatic pipeline to create task-specific training sets for
object categorization. We built the pipeline by downloading “image class seeds”
from the Web and composing publicly available code blocks to apply standard
image processing, i.e., figure-ground segmentation and blending onto contextual
images. This approach is useful in those situation in which example objects are
difficult to obtain, as in the case of a robotic system.

Our results showed that simple image processing and data augmentation
remarkably improve the performance of the object recognition system (20%)
and demonstrated that an additional performance gain (40%) can be obtained

7 https://youtu.be/HdmDYIL48H4
8 https://youtu.be/eIb9GjIOYXo
9 https://github.com/robotology/onthefly-recognition
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by integrating the synthetic dataset with a small set of real images of a similar
object, taken from the robot. This is interesting, because such a set could also be
used to disambiguate the web research, by providing a visual example together
with the category label.

The approach presented in this paper can potentially be extended to other
tasks in robotics, in which fast adaptation is hampered by the cost of acquiring
training samples. For example, in future work we plan to address object detection
tasks, by combining our recent work [12]. In this perspective, this line of research
could be key to develop vision systems trainable on-the-fly on novel categories.
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