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Abstract. Accurately detecting objects in unconstrained settings is cru-
cial for robotic agents, such as humanoids, that function in ever-changing
environments. Current deep learning based methods achieve remarkable
performance on this task on general purpose benchmarks and they are
therefore appealing for robotics. However, their high accuracy comes at
the price of computationally expensive off-line training and extensive
human labeling. These aspects make their adoption in robotics challeng-
ing, since they prevent rapid model adaptation and re-training to novel
tasks and conditions. Nonetheless, robots, and especially humanoids,
being embodied in the surrounding environment, have access to streams
of data from their sensors that, even though without supervision, might
contain information of the objects of interest. The Weakly-supervised
Learning (WSL) framework offers a set of tools to tackle these problems
in general-purpose Computer Vision. In this work, we aim at investigat-
ing their adoption in the robotics domain which is still at a preliminary
stage. We build on previous work, studying the impact of different, so
called, scoring functions, which are at the core of WSL methods, on Pas-
cal VOC, a general purpose dataset, and a prototypical robotic setting,
i.e. the iCubWorld-Transformations dataset.

Keywords: Object detection · Active learning · Scoring function ·
Robotics

1 Introduction

Localizing and recognizing objects of interest is a crucial problem in modern
robotic applications. Current approaches to address this task are based on Con-
volutional Neural Networks (CNN) [1], like, e.g., Mask R-CNN [2], EfficientDet
[3] and YoloV4 [4]. These methods achieve remarkable performance on standard
object detection benchmarks like Pascal VOC [5], Imagenet [6] and MS COCO
[7]. However, they typically rely on Supervised Learning, therefore, they require
carefully annotated training data to be optimized. For tasks like object detec-
tion or instance segmentation, the image annotation process is typically highly
expensive as it requires an expert to manually provide both the names and loca-
tions (in terms of bounding box or contour, respectively) of all the objects of
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interest in the image. For this reason, these methods are not suited for agents
that operate in unconstrained environments (like e.g., humanoids), which require
the ability to quickly update the current model to novel conditions. It has been
shown [8] that in constrained scenarios it is possible to acquire automatically
annotated images, exploiting a human robot interaction and additional informa-
tion from the other sensory modalities of a humanoid, like iCub [9]. However,
recently it has been shown [8,10] that such an approach has limited generaliza-
tion capabilities and that performance drop when the robot is asked to recognize
objects in a different context.

Nonetheless, robots are autonomous agents that can actively explore the
surrounding environment, having access to streams of images that, even if with-
out supervision, might contain the objects of interest in different view poses and
conditions. Therefore, they convey useful information for model adaptation or re-
training, but they cannot be used within the Supervised Learning framework as
they lack exact annotations. Moreover, they are typically redundant and strongly
correlated in time. In these cases, Weakly-supervised Learning (WSL) [11,12] can
be considered. This is a Machine Learning framework which targets those sce-
narios where it is required to learn from partially annotated data. For this work,
the sub-classes of methods of WSL that are more relevant are Active Learn-
ing (AL) and Semi-supervised Learning (SSL). In particular, in AL [13,14], the
informative unlabeled images are asked for annotations to an expert, with the
aim of minimizing the labeling effort. The definition of the informativeness of an
image is at the basis of each AL algorithm. SSL, instead, attempts to exploit the
unlabeled images without querying for human annotation, by e.g., using high-
confident predictions as pseudo ground-truth, in a self-supervised fashion. In
both AL and SSL, it is fundamental to define evaluation functions which allow
to express both the informativeness of the unlabeled images related to the task
at hand and the confidence level of the predicted information. These functions
are typically called Scoring functions [13,14].

Lately, WSL has been successfully applied to the object detection task
[15–18], however their adoption in robotics is still at a preliminary stage. For
instance, in [10], an on-line learning method for object detection [19] has been
successfully integrated with a WSL pipeline [20], while in [21], different AL and
SSL selection policies have been tested in robotics. The aim of this paper is,
instead, to analyze the impact of different scoring functions, as they represent
a core component of WSL methods, in a prototypical robotic scenario. Specifi-
cally, we compare different scoring functions, drawn from the Computer Vision
literature, on two datasets for object detection: (i) the general purpose Pascal
VOC [5] and (ii) the robotic dataset iCubWorld-Transformations [22]. Moreover,
we provide insights on how the different functions affect the detection perfor-
mance in terms of accuracy, training time and labeled data requirement on the
two different tasks. We released the code to reproduce the experiments1.

1 https://github.com/RiccardoGrigoletto/SSM-Pytorch.

https://github.com/RiccardoGrigoletto/SSM-Pytorch
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In the remaining of this paper, we report on the state-of-the-art on object
detection and WSL (Sect. 2). Then, we describe the proposed method (Sect. 3)
and we report on our experimental analysis (Sect. 4). Finally, we conclude com-
menting the obtained results (Sect. 5).

2 Related Work

In this section we present the state-of-the-art on object detection and WSL.

2.1 Deep Learning Based Object Detection

Approaches to the object detection task can be divided in two different cate-
gories: (i) grid-based and (ii) region-based detectors. In grid-based methods, for
each image, classifiers are directly applied over a dense grid of cells, represent-
ing different object locations, scales, and aspect ratios. Recent examples of grid-
based methods are: YOLO [4,23,24], SSD [25,26], RetinaNet [27], RefineDet [28]
and CornerNet [29]. Instead, in region-based approaches, a previous step of
region proposal generation is performed to predict a sparse set of candidate
locations that might contain the objects of interest and that need to be further
classified. As an example, Region-CNN (R-CNN) [30] can be mentioned, together
with its optimizations: Fast R-CNN [31], Faster R-CNN [32], Region-FCN [33]
and Mask R-CNN [2]. Typically, grid-based methods prove to be faster than
region-based ones, but less precise [34].

All the aforementioned methods achieved high performance on general pur-
pose Computer Vision benchmarks [5–7]. However, their application in robotics
is not straightforward if fast adaptation capabilities are required. Indeed, these
methods are generally composed of monolithic deep CNN-based architectures,
trained end-to-end via stochastic gradient descent and back-propagation, thus
requiring long training time and a large amount of carefully annotated images.
Both these characteristics prevent fast and efficient adaptation to novel condi-
tions. While the first issue has been recently addressed in [19,35–37], in this
work we tackle the requirement of labeled data, by investigating WSL tech-
niques, more specifically the scoring function component, to reduce the labeling
human effort.

2.2 Weakly-Supervised Learning of Object Detection

The introduction of pipelines that allow to collect automatically annotated
images (like, e.g. [8]) has alleviated the manually labeled data requirement of
object detection methods. However, their usage may limit generalization capa-
bilities of the learned model, since they typically require constrained scenarios
for their functioning [8]. A solution to this problem is to consider WSL tech-
niques, which allow to exploit unlabeled data to update and improve detection
models [11,12]. AL and SSL (which have been introduced in Sect. 1) are two of
the tools provided by the WSL framework. While their application to the object
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classification problem is well known (see, e.g. [14,38,39]), their adaptation to the
object detection task is not straightforward, since each image can contain more
than one object and the scoring function needs to take all of them into account.
Moreover, the information of the location of the objects has to be considered as
well. Recent work has been done in this direction [15–17,40,41]. Moreover, lately,
SSL and AL have also been combined in a unique pipeline, called Self-supervised
Sample Mining (SSM) [20] that is composed of (i) a CNN-based object detec-
tion method and (ii) a scoring function called Cross Image Validation (ICV) [20].
This latter is used to evaluate with a score the predictions on each unlabeled
image. The produced score is used by the model to decide whether to ask it
for annotation (AL) or accept the proposed prediction as a training label for
that image (SSL). Finally, the newly obtained training set is used to fine-tune
the detector. This process is repeated for different iterations over the unlabeled
dataset.

While WSL techniques, and specifically SSM, have been recently inte-
grated [10,21] with an on-line learning method for object detection for
robotics [19], their adoption in robotics is still at a preliminary stage. In this
work, we aim at investigating the impact of different scoring functions, a core
component in all WSL pipelines, in a robotic scenario. Specifically, we integrate
main state-of-the-art scoring functions with the SSM pipeline and we evaluate
their robustness and efficiency on both general purpose and robotic datasets.

3 Methods

In this work, we consider the scenario of a robot provided with an object detec-
tion model pre-trained on a labeled, but scarce, dataset. The robot has access to
a second set of unlabeled images and it can use them to refine the given detection
model. We tackle this scenario with the WSL framework. Our aim is that of car-
rying out a systematic experimental evaluation, investigating the impact of the
scoring function component in a WSL pipeline for object detection for robotics.
In this section, we present the pipeline that has been used for our experimental
analysis (Sect. 3.1) and the considered scoring functions (Sect. 3.2).

3.1 Overview of the Pipeline

The proposed pipeline builds on the SSM [20]. It is composed of three main
building blocks (refer to Fig. 1 for a pictorial representation): (i) the Object
Detection module, (ii) the Dataset and (iii) the WSL module.

Object Detection Module. For this part, in our experiments we chose the
state-of-the-art approach Faster-RCNN [32]. This is a region-based method (see
Sect. 2.1) and it is composed of: (i) a CNN based feature extractor, which com-
putes convolutional descriptors for each image, (ii) a Region Proposal Network
(RPN), which predicts a set of rectangular candidate regions in the image that
might contain the objects of interest and (iii) a final Detector which classifies
and refines all these proposals, providing a final set of predicted detections.
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Fig. 1. Pictorial representation of the proposed pipeline. The blue arrows represent the
SL phase, the orange ones represent the WSL phase (see Sect. 3.1 for details). (Color
figure online)

In this work, for training Faster-RCNN we rely on the method proposed in [32].
Initially, we train it with the available labeled images, during the Supervised
Learning (SL) phase (blue arrows in Fig. 1). Subsequently, the obtained detec-
tion model is iteratively refined using the unlabeled set of images, with the WSL
module, during the WSL phase (orange arrows in Fig. 1).

Dataset. This component collects both the labeled and unlabeled sets of images
at each iteration of the WSL phase. The former one is firstly used to pre-train
the Object Detection module during the SL phase. Then, during the WSL phase,
the unlabeled set is processed by the current Object Detection module and the
predictions are evaluated by the WSL module. All the images with uncertain
detections are asked for annotations (AL) and added to the labeled set, while all
the confident ones are used as pseudo-groundtruth (SSL). Both of them are used
as Training set for re-training the detection model during the current iteration
of the WSL phase. At the end of each iteration, the Training set is re-initialized.

WSL Module. Finally, the WSL module consists of a (i) Scoring Function
and a (ii) Selection Policy. During the WSL phase, the former one evaluates
the predictions of the current Object Detection module on the unlabeled set of
images, producing a consistency score [20] for each of them. The consistency
score represents the confidence of the predictions and it is used by the Selection
Policy to decide whether they are confident enough to be used as pseudo-labels
(SSL) or if it is necessary to ask that image for manual annotation (AL). In this
work, for the Selection Policy, we rely on the method proposed in [20]. Moreover,
we refer to [21] for an empirical analysis of this latter component in a robotic
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setting. Our main contribution is in the scoring function block. In the next
section, we describe the ones that we considered for our experimental analysis.

3.2 Scoring Functions

A scoring function calculates a consistency score S(x), given an image x from
the unlabeled set of images I and the corresponding predictions from the cur-
rent model. In our pipeline, the predictions of the Object Detection module, for
each image x ∈ I, are represented by a set of bounding boxes Bx. For each
b ∈ Bx, a vector of confidence scores K is predicted, of size n, where n is the
number of classes of the considered task (we denote with C the set of classes).
The jth element in K represents the probability that the considered predicted
box represents an instance of the jth class. Typically, for each b, the predicted
class c1 corresponds to the index of the maximum value k∗

b in K. Therefore, k∗
b

represents the probability that the bounding box b depicts an object of class
c1, i.e., k∗

b = max{c1∈C}(p̂(c1|b)). In this work, we consider five different scoring
functions from the state-of-the-art of Computer Vision and we evaluate them in
a robotic setting. Specifically, two of them (namely, Maximum Confidence and
Margin Sampling) have been drawn from the image classification literature [13]
and adapted as follows for object detection while the others (namely, Cross
Image Validation, Localization Tightness and Localization Stability) have been
proposed for general purpose object detection with the purpose of integrating
them in a robotic pipeline. We describe each of them in the following paragraphs.

Maximum Confidence (MC) [13]. This function computes the consistency
score of an image x as the average of the k∗

b values for all the boxes in Bx:

S(x) =
1

|Bx|
∑

b∈Bx

k∗
b (1)

Margin Sampling (MS) [13]. This function compares the difference between
the first and second maximum values in K for each b ∈ Bx. It is computed as
follows:

S(x) =
1

|Bx|
∑

b∈Bx

M1(b) (2)

where M1(b) represents the score for the single bounding box b ∈ Bx, such that:

M1(b) = | max
{c1∈C}

(p̂(c1|b)) − max
{c2∈C\c1}

(p̂(c2|b))| (3)

Cross Image Validation (ICV) [20]. It measures the confidence of the detec-
tions for an image by examining each predicted box as follows: (i) each detection
is pasted into L different annotated images and (ii) the current detection model
is used to predict them. The new predictions are compared with the ones of the
original image and the score function is defined as:

S(x) =
1

|Bx|
∑

b∈Bx

M2(b) (4)
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M2(b) represents the score for the single bounding box b ∈ Bx such that:

M2(b) =
1∑

l∈BL

p̂(c1|l)
∑

l∈BL

1(IoU(b, l) ≥ γ)p̂(c1|l) (5)

where BL is the set of detections in the images in L corresponding to b. The
IoU(·) is the Intersection over Union function, 1(·) is the indicator function and
γ represents the acceptance threshold for an IoU (γ = 0.5, in our experiments).

Localization Tightness (LT) [40]. This function specifically applies to region-
based object detection methods (see Sect. 2.1). It is computed as follows.

S(x) =
1

|Bx|
∑

b∈Bx

M3(b) (6)

where M3(b) represents the score for the single bounding box b ∈ Bx such that:

M3(b) = |IoU(r, b) + k∗
b − 1| (7)

where r is the region candidate from which b originated. The intuition behind
this scoring function is that if r and b are too different it means that the Detec-
tor heavily modified the candidate regions predicted by the RPN during the
refinement (see Sect. 3.1). This represents a “disagreement” of the two models
on the position and size of the bounding boxes in an image, therefore they would
benefit from re-training with the correct labels for that image.

Localization Stability (LS) [40]. This function measures the confidence of a
detection for an image by repeating the prediction step on noisy versions of the
same image and examining the consistency of the detections. Specifically, if N
different Gaussian noise levels are chosen, the current detection model is applied
N times on the N differently corrupted images (N = 5, in our experiments). For
each initial predicted bounding box b, the most overlapping bounding box bn is
associated, which has been predicted by the detection model on the nth image
of total N . The consistency score is computed as follows:

S(x) =

∑
b∈Bx

k∗
bM4(b)∑

b∈Bx
k∗
b

(8)

where M4(b) represents the score for the single bounding box b ∈ Bx such that:

M4(b) =
∑

n∈N IoU(b, bn)
N

(9)
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4 Experiments

In this section, we present the experimental analysis carried out to evaluate and
compare the scoring functions presented in Sect. 3.

4.1 Experimental Setup

For our analysis, we considered two different datasets: the Pascal VOC (VOC) [5]
and the iCubWorld-Transformations (iCWT) [22]. Specifically, for VOC we used
both train and validation sets of the two subsets, namely, VOC2007 (∼5k
images) and VOC2012 (∼11k images), both depicting 20 object categories
(which represent different animals, vehicles, furniture, etc.). The VOC2007 is
used for the SL phase, while VOC2012 is used for the WSL phase (see Sect. 3.1).
Therefore, in our experiments, VOC2012 is treated as an unlabeled dataset. We
used the test set of VOC2007 to calculate accuracy (∼5k images). When using
iCWT, instead, we selected 30 of the 200 available objects instances, gathering
∼2k, ∼6k and 4.5k images, respectively for the labeled, unlabeled training sub-
sets and for the test set. This dataset has been acquired as described in [22], with
a natural interaction with the iCub humanoid robot [9], simulating a teacher-
learner scenario. The 200 depicted objects can be typically found in a domestic
environment and, for each of them, several image sequences are available. For
the acquisition procedure and the depicted objects, iCWT represents a suitable
test bench to validate our system in the target robotic scenario. In the reported
experiments, we chose ResNet50 [42] as CNN backbone for feature extraction for
Faster R-CNN. In both cases, the training is done by fine-tuning a set of weights
that has been pre-trained on MS COCO [7]. For the SL phase, we fine-tuned
the network for 70k and 8k iterations for respectively VOC and iCWT while for
the WSL phase, we iterate the selection policy for four times over the unlabeled
part of the dataset, fine-tuning the weights, each time, for 20k and 4k iterations
for respectively VOC and iCWT.

The evaluation is performed comparing 3 different metrics:

1 The mean Average Precision (mAP) as defined in [5].
2 The computational time2 during the scoring function computation reported

in terms of processed images per second (im/s). This aspect is critical in the
considered robotics application.

3 The ratio between the number of images selected for manual annotation
(AL) and the number of those that are automatically annotated with a self-
supervision (SSL) (referred to as AL/SS ratio). This metric has practical
relevance because it allows to understand how much the self-supervision is
used by the different scoring functions.

We repeat each experiment for five trials for VOC and for three trials for iCWT
and we present the results, reporting the mean and the standard deviation of
the obtained results.
2 The models have been trained on a single GPU Nvidia TESLA K40 and Intel(R)

Xeon(R) CPU E5-2620 v4 @ 2.10 GHz.
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4.2 Results Analysis on Pascal VOC

We report the obtained results in Fig. 2. In particular, we show the mAP and
AL/SS ratio trends for growing numbers of annotated images, respectively, in
Fig. 2A and Fig. 2B. As it can be noticed in Fig. 2A, the different scoring func-
tions have similar mAP trends. This means that, for VOC, both approaches
drawn from the image classification literature (MC and MS) and the ones based
on the consistency of the predicted bounding boxes (ICV, LT and LS) present
similar accuracy performance for growing numbers of annotations. Notably, how-
ever, MC turned out to be the one that leads to less accurate results for small
annotation budgets and to a higher variability of the obtained mAP on the dif-
ferent experiment trials. Moreover, as it can be observed from Fig. 2B, ICV and
LS present AL/SS ratios which are, respectively, ∼10 and ∼7 times higher than
the other methods. On the contrary, MS, MC and LT present very low values.
This means that, for instance, ICV and LS achieve roughly the same accuracy
as LS and LT, with the same number of AL but less SSL.

A B

Fig. 2. Comparison of scoring functions on VOC in terms of mAP trend (A) and AL/SS
ratio (B) for growing numbers of manual annotations.

Table 1. Time performance comparison for the different scoring functions on both
datasets, VOC and iCWT.

Method (im/s) (im/s)

on VOC on iCWT

MC 2.19 2.07

MS 2.20 2.06

ICV 0.56 1.06

LT 1.06 1.60

LS 0.55 1.04
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4.3 Results Analysis on iCWT

In this section, we compare the scoring functions presented in Sect. 3.2 on the tar-
get robotic scenario, represented by the iCWT dataset. We report the obtained
results in Fig. 3. Specifically, we show the mAP and AL/SS ratio trends for
growing numbers of annotated images, respectively, in Fig. 3A and Fig. 3B. As it
can be observed in Fig. 3A, mAP trends for iCWT for ICV and LS present the
lowest slopes, while MC, LT and MS have the steepest ones especially for lower
numbers of manual annotations. Notably, MC reaches the highest value of mAP
(∼0.71) with only 606 annotated images.

As a comparison, we trained Faster R-CNN with all the available annotated
images (i.e. ∼16k) in iCWT for the chosen task. The obtained model represents
the upper-bound of the results presented in Fig. 3 since it uses the full dataset for
training, achieving an mAP of 0.866. Even if the results in Fig. 3 are reasonably
lower than the upper-bound, it is worth noticing that, for instance, with MS it
has been possible to obtain an mAP of ∼ 0.71 with a significant lower amount
of manually annotated images (606). This makes the proposed method a better
trade-off than the training with the fully annotated dataset. Moreover, as it
can be noted in Fig. 3B, as for VOC, ICV and LS present the highest AL/SS
ratios. For instance, ICV (blue line in Fig. 3B) achieves 120 on the last step,
meaning that for each image chosen for SSL, 120 are chosen for AL. However,
differently from the VOC case, ICV and LS have the worst accuracy levels for
early WSL iterations. This means that the samples chosen by the model as self-
supervision for LT, MS and especially MC, significantly improved the overall
detection accuracy.

Finally, Table 1 shows the time performance comparison. Specifically, the
second column reports results for VOC, while the third one for iCWT. As it can
be noted, in both cases MS and MC take considerably less time than all the
other methods, while ICV and LS are the slowest methods. This is due to the

A B

Fig. 3. Comparison of scoring functions on iCWT dataset in terms of mAP trend (A)
and AL/SS ratio (B) for growing numbers of manual annotations. (Color figure online)
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fact that both ICV and LS require to perform several inferences of Faster R-CNN
for different images to evaluate the prediction consistency, while the others do
it only once for the initial unlabeled image.

5 Discussion

In this work, we considered the scenario of a robot that is required to refine an
object detection model with an incoming set of unlabeled images. We tackled this
scenario with the WSL framework and we empirically evaluated the impact of the
scoring function component in a WSL pipeline for object detection for robotics.
Specifically, we compared five different scoring functions on both general purpose
and robotics datasets, by means of the two benchmarks Pascal VOC and iCWT.
Interestingly, we found out that while for Pascal VOC, the five methods have
comparable accuracy performance, for the target robotic scenario they perform
differently. Moreover, with the comparative analysis in terms of annotations and
computation time required, we identified the most efficient methods. Notably,
the three fastest scoring functions (namely, MC, MS and LT) present the best
trends in terms of mAP and make a better use of self-supervision, representing
valid options for a WSL based robotic application. We believe that the presented
analysis provides useful insights on how to apply WSL techniques in a robotic
setting, going towards the design of more efficient learning based robotic vision
systems.
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