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Abstract
There is a growing need for autonomous robots to complete
complex tasks robustly in dynamic and unstructured environ-
ments. However, current robot performance is limited to sim-
ple tasks in controlled environments. To improve robot auton-
omy in complex environments, the robot’s deliberation sys-
tem must be able to synthesise correct plans for a task and
generate contingency plans for handling anomalous scenar-
ios that were not expected at design time. The robustness of
such a system can be quantified using techniques for formal
verification and validation. This paper outlines the progress
of EU project CONVINCE (CONtext-aware Verifiable and
adaptIve dyNamiC dEliberation), which aims to develop a
software toolchain that aids developers in designing, devel-
oping, and deploying robot deliberation systems that are fully
verified. We describe our modelling approach, each of the
toolchain components, and how they interact. We also discuss
survey results which demonstrate the demand for a verifiable
toolchain among the robotics community.

Introduction
Modern robotic systems are increasingly deployed in un-
structured, unseen, and dynamic environments. For exam-
ple, a mobile manipulator may be used to assemble struc-
tures where previously unseen blocks are damaged or vary
in size, and humans move through the environment. The ul-
timate goal of robotics research is to attain robust autonomy
where robots interact intelligently with their environment
and respond effectively to anomalies, i.e. unexpected events
which are either known or unknown to the system a priori.
However, robots are still unable to autonomously complete
complex tasks in real-world environments. High levels of au-
tonomy can only be achieved for simple tasks in controlled
environments. In recent years, the performance of individual
robot components such as deliberation, perception, and con-
trol have improved greatly. To robustly complete complex
tasks and handle unexpected changes in the environment,
these components must be comprehensively integrated into
a software toolchain.
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The robustness of autonomous systems can be guaran-
teed through validation and verification techniques (Es-
piau, Kapellos, and Jourdan 1996). Research effort within
robotics and AI has largely focused on testing single
software components to develop safe and dependable au-
tonomous robots (Ingrand 2019). This ignores interactions
between components, and how the robot interacts with the
environment. We argue that to guarantee robustness the en-
tire robotic system must be verified in its environment. This
ensures at design time that the system can complete its task
while handling anomalies and guaranteeing that properties
describing correct operation are not violated. Such guaran-
tees cannot be provided through testing alone.

Current robotic development is limited by the lack of
comprehensive software frameworks for integrating single
components into complex systems. The most common ap-
proach is to develop independent components and rely on
a communication layer such as the robot operating system
(ROS) (Quigley et al. 2009) to interconnect them. There ex-
ist frameworks which expand on this to provide additional
scaffolding for building coherent systems (Bruyninckx
2001; Nordmann, Hochgeschwender, and Wrede 2014; Bru-
gali 2015). However, these approaches lack any formal mod-
elling or verification, which help achieve levels of confi-
dence in the system behaviour that are unreachable through
other techniques (Ingrand 2019). Some toolchains explicitly
support robot behaviour design and verification (Colledan-
chise et al. 2021b,a; Meywerk et al. 2020). The cognitive
interaction toolkit (CITK) (Lier et al. 2014), Papyrus for
robotics (Radermacher et al. 2021), and SmartSoft (Schlegel
et al. 2009) cover a large portion of the robotic develop-
ment cycle. Papyrus (Radermacher et al. 2021) and Smart-
Soft (Schlegel et al. 2009) in particular provide an inte-
grated set of robotic meta-models which cover common as-
pects of robotic applications. These meta-models have been
extended to support verification in CARVE (Colledanchise
et al. 2021b), SCOPE (Colledanchise et al. 2021a), and
SafeCC4Robotics (Martinez et al. 2021). However, none
of these solutions provide a consistent development tool
for integrating deliberation, learning, perception, and con-



trol while also providing modelling languages and verifica-
tion tools. The lack of appropriate tools for verifying au-
tonomous deliberation prevents the introduction of higher
cognitive abilities in industry, limiting the development of
truly adaptable commercial applications and products.

In this paper, we outline the progress and position of EU
project CONVINCE (CONtext-aware Verifiable and adap-
tIve dyNamiC dEliberation). The key contribution of CON-
VINCE is to develop and verify cognitive deliberation capa-
bilities that ensure safe robot operation over extended peri-
ods of time, i.e. ensure that robots avoid undesirable states
or behaviours with a very high probability. In this paper, we
describe a model-driven software toolchain which allows de-
velopers to build application-specific deliberation systems
capable of i) determining the robot behaviours required for
a given task; ii) deploying and configuring the components
required for these behaviours; and iii) automating the analy-
sis of these behaviours using formal modelling and verifica-
tion to ensure the system is safe and robust. We also discuss
the use cases we will use to evaluate our toolchain, and sur-
vey results which demonstrate the demand for a verifiable
robotic toolchain among the robotics community.

Toolchain Use Cases
In this section, we describe the real-world robotic use cases
we will use to evaluate our toolchain.

Vacuum Robot. Autonomous vacuum cleaners must period-
ically clean a space within a reasonable duration without get-
ting stuck. Domestic environments feature multiple sources
of uncertainty. First, the environment is dynamic due to
moving humans, animals, furniture, and other household ob-
jects, where dynamics occur over multiple timescales. This
makes it challenging for a robot to predict when a location
will be free, and to generate a complete list of anomalies it
may encounter during execution. For example, small items
such as toys and shoe laces may get sucked into the robot,
causing it to fail. The robot must also remain small enough
to drive under furniture and inside narrow spaces which im-
poses hardware limitations. We will use our toolchain to im-
prove robot coverage by robustly handling anomalies.

Assembly Robot. In this use case, a mobile manipulator as-
sists a human in assembling a kiln car for heavy clay/ce-
ramic production. Though similar to a classical pick-and-
place task, there are multiple challenges to consider. Blocks
must be placed with millimetre precision to ensure stabil-
ity and safety. Blocks may also be occluded, and must be
uncovered to complete assembly. Sources of uncertainty in-
clude the chance of a human blocking the robot’s path, and
blocks falling due to possible damage or slight variations in
size. Our toolchain will improve the efficiency of assembly
while successfully handling known and unknown anomalies.

Museum Tour Guide. In this use case, an autonomous mo-
bile robot must provide guided tours in an art museum. Here,
the robot must interact with humans in terms of verbal com-
munication and movement within a crowded environment.
This makes the task unpredictable and subject to failures.
For example, some areas of the museum may be too crowded

for a robot to safely navigate, artworks may be moved, visi-
tor questions may be hard to comprehend, and visitors may
leave a tour without notice. Using our toolchain, we will mit-
igate these issues and improve the quality of robotic tours.

The CONVINCE Toolchain
In Fig. 1, we present an overview of the CONVINCE
toolchain. A more detailed overview is available online
alongside the implementation status of each toolchain com-
ponent and an initial open source implementation1. The
CONVINCE toolchain uses a layered architecture similar
to Colledanchise et al. (2021b), where higher layers are more
abstracted from the robot hardware. The robot system and
environment are modelled formally to admit offline plan-
ning and verification, as well as online planning and mon-
itoring. While this implies a model-driven approach, where
models are used to generate code, the CONVINCE toolchain
is also designed to be used alongside existing codebases. To
achieve this, our toolchain uses two types of model. Con-
crete models are directly executable, such as the description
of a behaviour tree (BT) (Colledanchise and Ögren 2018),
which acts as a task model but can also be executed by an
interpreter. Abstract models capture the behaviour of a soft-
ware component but are not directly executable. Abstract
models can be used for verification, but there is no formal
guarantee that the model matches the behaviour of the com-
ponent it describes. Our toolchain layers are as follows:

• The functional layer interfaces with the robot hardware,
including sensors, user interfaces, drives, manipulators
and communication in a hardware-specific way.

• The skill layer implements basic robot behaviours in a
modular way using the functional components, such as
object picking and navigating to a charging station.

• The deliberation layer orchestrates skills to achieve a
robotic task or mission, such as giving a guided museum
tour, assembling a structure, or cleaning a house.

Functional components define core robot capabilities,
and are often developed by the robot provider or pro-
vided through open source libraries. We model functional
components using an extension of SCXML2 developed
within CONVINCE. Our extended SCXML format captures
robot components and behaviours as finite state machines
(FSMs). Functional components are represented as abstract
models, as their functionality exceeds what is required for
the high-level task. Continuous values in functional compo-
nents such as a robot’s battery level are discretised to reduce
the complexity of model checking. Skills in the skill layer
can be either concrete or abstract models, again represented
using our extended SCXML format. Prior to execution,
concrete skill SCXML files are translated into executable
robot code using the model to code generator in Fig. 1. We
model the deliberation layer using BTs (Colledanchise and
Ögren 2018), a reactive, modular, and flexible formalism
for high-level robot behaviours. BTs are concrete models

1https://convince-project.github.io/overview/
2https://www.w3.org/TR/scxml/



Figure 1: An overview of the CONVINCE toolchain.

specified in the BehaviorTree.cpp V3.83 XML format,
from which they can be directly executed. The BT leaf
nodes are defined in the CONVINCE SCXML format as
‘plugins’. Plugins are often associated with a single skill,
and act as an interface between the deliberation and skill
layers, i.e. they convert ticks received by the BT leaf nodes
into function calls for the skill, such as start, stop, or abort.
Our toolchain allows models which are tied to a particular
middleware, e.g. where ROS interfaces are defined, and
models which are middleware agnostic. In fact, a key
advantage of the CONVINCE SCXML format is that it
allows easier modelling of middleware-specific interfaces,
but translates to plain SCXML internally. Properties for
system-level verification are specified in metric temporal
logic (Koymans 1990) and written in XML. Properties
represent logical conditions that should be satisfied during
execution. For example, we may want to guarantee that
the charge of a vacuum robot never falls below a certain
threshold. The complete CONVINCE toolchain data model
is available online4. Defining formal models for each layer
admits verification of the entire robotic system.

Given a set of models, we now describe how the CON-
VINCE toolchain operates in the context of a museum tour
guide. Toolchain components are categorised into either sit-
uation understanding, planning, or verification. Some com-
ponents are run offline prior to execution, and others are
run online. Before execution, formal models are verified us-
ing offline model checking to evaluate system robustness,
e.g. whether tours are consistently completed within a cer-
tain duration. A set of execution monitors are also gener-
ated to monitor the models, components, and properties dur-
ing execution. The initial BT model supplied by the de-

3https://www.behaviortree.dev/
4https://github.com/convince-project/data-model/

signer is also refined using offline planning to improve ro-
bustness under uncertainty. BT refinement will allow the
robotic tour guide to effectively adjust its tour based on
crowd levels. Finally, concrete models are translated into ex-
ecutable code. During execution, the robot receives sensor
data which is input to multiple components. Sensor inputs
update the knowledge model for situation understanding and
planning as well as the execution monitors. In the museum,
the knowledge model may capture crowd levels and the tour
group location. Monitors inspect messages exchanged by the
skills and functional components to ensure that system be-
haviour matches their models. This is particularly important
for abstract models. Monitors also detect property violations
caused by anomalies. Upon firing, the anomaly is identified
using situational awareness, which reasons over the knowl-
edge model and sensor data. Active planning then identifies
the root cause of the anomaly and recovers from it. For ex-
ample, a robotic tour guide may be unable to see an artwork,
and use active planning to identify that it has moved. We pro-
ceed by describing each toolchain component in more detail.

Situation Understanding
Our tools for situation understanding allow robots to reason
over their perception and prior knowledge to understand the
context of their execution and adapt accordingly.

Situational Awareness and Situation Learning. Situa-
tional awareness and situation learning form a pipeline for
handling known and unknown anomalies. This ensures ro-
bustness against unexpected events during execution. At the
core of this pipeline is a knowledge base represented as an
ontology (Olivares-Alarcos et al. 2019). The first step of
situational awareness is to combine data from robot sen-
sors and a digital twin to infer the symbolic system state.
If this state contains anomalous predicates or causes a mon-
itor to fire (described below), an anomaly has occurred. A



description of the anomaly is then constructed using fea-
ture extraction techniques such as deep learning or symbolic
approaches. This description is compared against existing
anomaly descriptions in the knowledge base and classified
as known or unknown. Known anomalies have existing, ex-
ecutable recovery behaviours. For unknown anomalies, we
call our active planner for root cause analysis and recovery
(described below). After unknown anomaly recovery, sit-
uation learning updates the knowledge base with the new
anomaly description and corresponding recovery behaviour.

Planning
Our planning tools synthesise robust robot behaviour in un-
certain, dynamic, and unstructured environments.

BT Refinement. BTs are popular within robotics for their
reactivity, modularity, and flexibility. However, it is chal-
lenging for a human designer to fully account for all sources
of uncertainty which affect a robot, such as human move-
ment. Therefore, we include a tool which uses Markovian
planning techniques (Puterman 2014; Sutton, Precup, and
Singh 1999) to refine the initial BT provided to the deliber-
ation layer. Refinement modifies the logical structure of the
BT to achieve robustness under the effects of uncertainty.

Planning for Root Cause Analysis and Recovery. During
execution, a robot may experience an unknown anomaly
which causes the system to halt, i.e. an anomaly the robot
has never experienced or modelled. Anomaly detection is
handled by the execution monitors and situational aware-
ness. We present a planning tool which collects information
about an unknown anomaly to identify its root cause, and
another for anomaly recovery. This is achieved through
answer set programming (Lifschitz 2019) and scene graph
analysis (Jiao et al. 2022). After recovery, the robot can con-
tinue to execute the task plan encoded in the (refined) BT.

Formal Verification
Our verification tools formally evaluate the robustness of the
complete robotic architecture offline and online.

Model Checking. Robotic architectures are large concurrent
systems which are challenging to verify using traditional
numerical model checking techniques. Therefore, we intro-
duce statistical model checkers which verify metric tem-
poral logic properties on the formal system model (Legay,
Delahaye, and Bensalem 2010). Our model checkers can
be used offline and one of them also online to find violat-
ing traces, or the probability of property satisfaction along-
side a corresponding confidence interval. Confidence inter-
vals tighten as the time for verification increases. This pro-
vides a confidence level over system robustness for a given
guarantee. Our toolchain also integrates the Storm model
checker (Hensel et al. 2022). Prior to model checking, we
use the model converter in Fig. 1 to convert the system
model into a format accepted by our model checkers, such
as JANI (Budde et al. 2017).

Monitoring. Statistical model checking improves on the
complexity of exhaustive numerical model checking, but
complexity can still be high for large systems. The models

verified offline also do not perfectly reflect reality. This mo-
tivates the need for fast, online verification. We achieve this
by creating a set of execution monitors offline. Monitors re-
ceive input from the real system during execution, and fire if
a property is violated, or if we reach a state that is inconsis-
tent with our models. We create and execute monitors using
ROSMonitoring (Ferrando et al. 2020).

Developer Survey
To support toolchain development, we surveyed 60 soft-
ware developers, system/test engineers, researchers, and
managers who are building autonomous systems across
academia and industry. The survey was conducted during
toolchain development and considered robot deliberation
models and the use of formal verification for robot testing.
Full survey results are available online (Chen et al. 2024).

A substantial number of respondents (30%) are develop-
ing autonomous robots for outdoor, unstructured environ-
ments. Our toolchain improves the robustness of robot delib-
eration in these often dynamic and uncertain environments.
With regards to modelling, 78% of respondents have used
BTs regularly in the past year, and 64% have used FSMs.
Further, 53% of respondents chose BTs as their preferred de-
liberation model. Our toolchain uses BTs and FSMs during
modelling, making it familiar and accessible to developers.

Few respondents currently include model checking in
their test pipeline (15%). Instead, developers largely rely
on simulations (88%), manual testing (78%), and unit tests
(44%). However, when asked whether they feel the need
for a more systematic testing or verification approach for
their system, 78% of respondents answered ‘definitely yes’
or ‘rather yes’. Developers want to ‘make [their] system
more robust’ and handle the complexity of robot systems,
as ‘it’s very difficult to abstract away or mock all the nec-
essary pieces to thoroughly test behaviours’. Respondents
are generally willing to expend effort writing formal mod-
els if it admits more systematic testing or verification; if a
score of one is definitely yes to expending effort, and five
is definitely no, the average score was 2.67. This suggests
there is demand among the robotics community for tools
that support the use of formal methods to increase robustness
and allow for the verification of robot deliberation systems.
Our toolchain addresses this problem by formally modelling
the complete robotic architecture using familiar formalisms,
lowering the entry barrier for developers.

Conclusion
In this paper, we argued that a verifiable robotic toolchain
is essential for handling the complexities of unstructured,
dynamic, and uncertain environments. We have proposed a
multi-layer toolchain which utilises formal models at each
layer to admit verification for evaluating robot robustness.
This is supported with state-of-the-art solutions for situation
understanding and planning. The success of our toolchain is
dependent upon its adoption in the robotics community. Our
toolchain uses familiar modelling formalisms, and will be
open sourced to allow for easy integration and extension.
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Colledanchise, M.; and Ögren, P. 2018. Behavior Trees in
Robotics and AI: An Introduction. CRC Press.

Espiau, B.; Kapellos, K.; and Jourdan, M. 1996. Formal
Verification in Robotics: Why and How? In Proceedings of
Robotics Research: The Seventh International Symposium,
225–236. Springer.

Ferrando, A.; Cardoso, R. C.; Fisher, M.; Ancona, D.;
Franceschini, L.; and Mascardi, V. 2020. ROSMonitoring: A
Runtime Verification Framework for ROS. In Proceedings
of the Annual Towards Autonomous Robotic Systems Con-
ference (TAROS), 387–399. Springer.

Hensel, C.; Junges, S.; Katoen, J.-P.; Quatmann, T.; and
Volk, M. 2022. The Probabilistic Model Checker Storm. In-
ternational Journal on Software Tools for Technology Trans-
fer, 1–22.
Ingrand, F. 2019. Recent Trends in Formal Validation and
Verification of Autonomous Robots Software. In Proceed-
ings of the IEEE International Conference on Robotic Com-
puting (IRC), 321–328. IEEE.
Jiao, Z.; Niu, Y.; Zhang, Z.; Zhu, S.-C.; Zhu, Y.; and Liu, H.
2022. Sequential Manipulation Planning on Scene Graph. In
Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 8203–8210. IEEE.
Koymans, R. 1990. Specifying Real-Time Properties with
Metric Temporal Logic. Real-Time Systems, 2(4): 255–299.
Legay, A.; Delahaye, B.; and Bensalem, S. 2010. Statisti-
cal Model Checking: An Overview. In Proceedings of the
International Conference on Runtime Verification, 122–135.
Lier, F.; Wienke, J.; Nordmann, A.; Wachsmuth, S.; and
Wrede, S. 2014. The Cognitive Interaction Toolkit–
Improving Reproducibility of Robotic Systems Experi-
ments. In Proceedings of the International Conference on
Simulation, Modeling, and Programming for Autonomous
Robots, 400–411. Springer.
Lifschitz, V. 2019. Answer Set Programming, volume 3.
Springer Heidelberg.
Martinez, J.; Ruiz, A.; Radermacher, A.; and Tonetta, S.
2021. Assumptions and Guarantees for Composable Models
in Papyrus for Robotics. In Proceedings of the IEEE/ACM
International Workshop on Robotics Software Engineering
(RoSE), 1–4. IEEE.
Meywerk, T.; Walter, M.; Herdt, V.; Kleinekathöfer, J.;
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