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Robots and humans receive partial, fragmentary hints about the
world’s state through their respective sensors. These hints—tiny
patches of light intensity, frequency components of sound,
etc.—are far removed from the world of objects which we feel
and perceive so effortlessly around us. The study of infant
development and the construction of robots are both deeply
concerned with how this apparent gap between the world and our
experience of it is bridged. In this paper, we focus on some
fundamental problems in perception which have attracted the
attention of researchers in both robotics and infant development.
Our goal was to identify points of contact already existing
between the two fields, and also important questions identified
in one field that could fruitfully be addressed in the other. We
start with the problem of object segregation: how do infants and
robots determine visually where one object ends and another
begins? For object segregation, both the fields have examined the
idea of using ‘key events’ where perception is in some way
simplified and the infant or robot acquires knowledge that can be
exploited at other times. We propose that the identification of the
key events themselves constitutes a point of contact between the
fields. Although the specific algorithms used in robots do not
necessarily map directly to infant strategies, the overall
‘algorithmic skeleton’ formed by the set of algorithms needed
to identify and exploit key events may in fact form the basis for
mutual dialogue. We then look more broadly at the role of
embodiment in humans and robots, and see the opportunities it
affords for development. Copyright © 2008 John Wiley & Sons,
Ltd.
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INTRODUCTION

Imagine if your body’s sensory experience were presented to you as column after
column of numbers. One number might represent the amount of light hitting a
particular photoreceptor, another might be related to the pressure on a tiny patch
of skin. Imagine further that you can only control your body by putting numbers
in a spreadsheet, with different numbers controlling different muscles and organs
in different ways.

This is how a robot experiences the world. It is also a (crude) model of how
humans experience the world. Of course, our sensing and actuation are not
encoded as numbers in the same sense, but aspects of the world and our
bodies are transformed to and from internal signals that, in themselves, bear
no trace of the signals’ origin. For example, a neuron firing selectively to a
red stimulus is not itself necessarily red. In telepresence applications (Steuer,
1992), this model becomes literal, with an interface of numbers lying between
the human operator and a remote environment. Understanding how to build
robots requires understanding in detail how it is possible to sense and respond
to the world, in terms of an interface of numbers representing sensor
readings and actuator settings rather than symbolic descriptions of the
world.

How closely does this match the concerns of psychology? In works concerned
with modelling phenomena deeply rooted in culture, history, and biology,
connections may exist at a rather high-level abstraction—for example, one can
investigate theories of how language evolves in a group (Steels, 1997). In works
concerned with immediate perception of the environment, we believe that there
is a value in forging connections at a detailed level. We expect that there will be
commonality between how infants and successful robots operate at the
information-processing level, given the common constraints imposed and
opportunities afforded by the physical world they share. For example, natural
environments are of mixed, inconstant observability—there are properties of the
environment that can be perceived easily under some circumstances and with
great difficulty (or not at all) under others. This network of opportunities and
frustrations should place limits on information processing that applies both to
infants and robots with human-like sensors.

In this paper, we focus on early perceptual development in infants. The
perceptual judgements infants make may change over time, showing an
evolving sensitivity to various cues. This progression may be at least
partially due to knowledge gained from experience. We identify opportunities
that can be exploited by both infants and robots to perceive properties of their
environment that cannot be directly perceived in other circumstances. We review
some of what is known about how robots and infants can exploit such
opportunities to learn how object properties not directly given in the display
correlate with observable properties. The topics we focus on are object
segregation and intermodal integration. In the last section, we discuss the role
of the body for perception and how this contributes to creating points of contacts
between the two fields.

OBJECT SEGREGATION

The world around us has a structure, and to an adult it appears to be made up of
more-or-less well-defined objects. Perceiving the world this way sounds trivial,
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Figure 1. An example from Martin, Fowlkes, and Malik (2004) to highlight the difficulties
of bottom-up segmentation. For the image shown on the left, humans see the definite
boundaries shown in white in the middle image. The best machine segmentation of a set of
algorithms gives the result shown on the right—a mess. This seems a very difficult scene to
segment without having some training at least for the specific kinds of materials in the
scene.

but from an engineering perspective, it is heart-breakingly complex. As Spelke
wrote in 1990:

... the ability to organize unexpected, cluttered, and changing arrays into objects is
mysterious: so mysterious that no existing mechanical vision system can accomplish
this task in any general manner. (Spelke, 1990)

This is still true today. This ability to assign boundaries to objects in visually
presented scenes (called ‘object segregation’ in psychology or ‘object
segmentation’ in engineering) cannot yet be successfully automated for arbitrary
object sets in unconstrained environments (see Figure 1). On the engineering part,
there has been some algorithmic progress; for example, given local measures of
similarity between each neighbouring element of a visual scene, a globally
appropriate set of boundaries can be inferred in efficient and well-founded ways
(see, for example, Felzenszwalb & Huttenlocher, 2004; Shi & Malik, 2000). There
is also a growing awareness of the importance of collecting and exploiting
empirical knowledge about the statistical combinations of materials, shapes,
lighting, and viewpoints that actually occur in our world (see, for example,
Martin et al., 2004). Of course, such knowledge can only be captured and used
effectively because of algorithmic advances in machine learning, but the
knowledge itself is not specified by an algorithm. Empirical, non-algorithmic
knowledge of this kind now plays a key role in machine perception tasks of all
sorts. For example, face detection took a step forward with Viola and Jone (2004);
the success of this work was due to both algorithmic innovation and better
exploitation of knowledge (features learned from 5000 hand-labelled face
examples). Automatic speech recognition is successful largely because of the
collection and exploitation of extensive corpuses of clearly labelled phoneme or
phoneme-pair examples that cover well the domain of utterances to be
recognized. These two examples clarify the ways the ‘knowledge’ can play a
role in machine perception. The bulk of the ‘knowledge’ used in such systems
takes the form of labelled examples—examples of input from the sensors (a vector
of numbers) and the corresponding desired output interpretation (another vector
of numbers). More-or-less general purpose machine-learning algorithms can then
approximate the mapping from sensor input to desired output interpretation
based on the examples (called the training set), and apply that approximation to
novel situations (called the test set). Generally, this approximation will be very
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poor unless we transform the sensory input in a manner that highlights
properties that the programmer believes may be relevant. This transformation is
called preprocessing and feature selection. This transformation and a corresponding
transformation that applies the results of the learning system back to the original
problem together make up a very important part of the full system. This
‘infrastructure’ is often downplayed or not reported. For this paper, we will
group all this infrastructure and call it the algorithmic skeleton. This set of carefully
interlocking algorithms is designed so that, when fed with appropriate training
data, it produces a functional system. Without the algorithmic skeleton, there
would be no way to make sense of the training data, and without the data,
perception would be crude and uninformed.

The algorithmic skeleton, seen as a set of choices about preprocessing and
feature selection, gives a specific bias to the final performance of the interlocking
algorithms. With it, the designer guides the learning system towards an
interpretation of data likely to be appropriate for the domain in which the
system will find itself. Clearly, this is also a crucial point where informed choices
can be made starting from infant studies or from neuroscience evidence. These
biases and choices are ‘knowledge’ that is just as important as the data that come
from the specific interaction of the learning machine with the environment. An
ongoing research goal is to maximize the amount that a system can learn with the
minimum of hand-designed bias (Bell & Sejnowski, 1997; Simoncelli &
Olshausen, 2001). This generally means adding algorithms to infer extra
parameters from data rather than setting them from human judgement. This
can seem a little confusing, since in the quest to reduce the need for designer bias,
we actually increase designer effort—the designer is now adding complex
algorithms rather than picking a few numbers. What is really happening is that
bias is not being removed, but rather moved to a higher level of abstraction. This
is very valuable because it can greatly increase the number of situations in which
a fixed algorithmic skeleton can be successfully applied.

What, then, is a good algorithmic skeleton for object segregation? What set of
algorithms, coupled with what kind of training data, would lead to best
performance? We review suggestive results in both infant development research
and robotics.

Segregation Skills in Infants

By 4-5 months of age, infants can visually parse simple displays like the one in
Figure 2 into units, based on something like a subset of static Gestalt
principles—see, for example, Needham (1998, 2000). Initial studies indicated
that infants use a collection of features to parse the displays (Needham &
Baillargeon, 1997, 1998; Needham, 1998); subsequent studies suggested that
object shape is the key feature that young infants use to identify boundaries
between adjacent objects (Needham, 1999). Compared with adult judgements, we
would expect such strategies to lead to many incorrect parsings, but they will
also provide reasonable best guess interpretations of uniform objects in complex
displays.

Infants do not come prepared from birth to segregate objects into units that
match adult judgement. It appears that infants learn over time how object
features can be used to predict object boundaries. More than 20 years ago,
Kellman and Spelke (1983) suggested that infants may be born with knowledge
about solid, three-dimensional objects and that this knowledge could help them
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Figure 2. Object segregation is not necessarily well defined. On the left, there is a simple
scenario, taken from Needham (2001), showing a rectangle attached to a yellow tube. Two
plausible ways to segregate this scene are shown in the middle, depending on whether the
tube and rectangle make up a single object. For comparison, automatically acquired
boundaries are shown on the right, produced using the algorithm in Felzenszwalb and
Huttenlocher (2004). This algorithm does image segmentation, seeking to produce regions
that correspond to whole objects (such as the yellow tube) or at least to object parts (such
all the blue rectangle and all the small white patches on its surface, and various parts of the
background). Ideally, regions that extend across object boundaries are avoided. Image
segmentation is less ambitious than object segregation, and allows context information to
be factored in as a higher level process operating on a region level rather than pixel level.
This figure is available in colour online at www.interscience.wiley.com/journal/icd.

interpret portions of a moving object as connected to other portions that were
moving in unison. This assertion was put to the test by Slater and his colleagues
(Slater et al., 1990), a test that resulted in a new conception of the neonate’s visual
world. Rather than interpreting common motion as a cue to object unity, neonates
appeared to interpret the visible portions of a partly occluded object as clearly
separate from each other, even when undergoing common motion. This finding
was important because it revealed one way in which learning likely changes how
infants interpret their visual world.

Although segregating adjacent objects present a very similar kind of perceptual
problem (‘are these surfaces connected or not’), the critical components of success
might be quite different. Early work with adjacent objects indicated that at 3
months of age, infants tend to group all touching surfaces into a single unit
(Kestenbaum, Termine, & Spelke, 1987). Subsequent experiments have revealed
that soon after this point in development, infants begin to analyse the perceptual
differences between adjacent surfaces and segregate surfaces with different
features (but not those with similar features) into separate units (Needham, 2000).
Although infants can use the boundary seam between two objects as a source of
information about the likely separation between them (Kaufman & Needham,
1999), other work comparing boundary-occluded and fully visible versions of the
same displays suggests that boundary information is not the only information
infants use to parse the objects in a display (Needham, 1998). Still later,
8.5-month-old infants have shown to also use information about specific objects
or classes of objects to guide their judgement (Needham, Cantlon, & Holley,
2006).

It might be that extensive amounts of experience are required to ‘train up’ this
system. However, it might also be that infants learn on the basis of relatively few
exposures to key events (Baillargeon, 1999). This possibility was investigated
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within the context of object segregation by asking how infants’ parsing of a
display would be altered by a brief prior exposure to one of the objects in the test
display.

In this paradigm, a test display was used that was known to be ambiguous to
4.5-month-old infants. Infants were given a prior experience that could help
disambiguate the test display. This prior experience consisted of a brief exposure
(visual only) to a portion of the test display. If infants used this prior experience
to help them interpret the test display, they should see the display as two
separate objects rather than a single aggregate. In that case, they should look
reliably longer when the objects moved as a single unit (unexpected) than when
they move separately (expected). If, however, the prior experience was ineffective
in altering infants’ interpretation of the display, their behaviour should be similar
to the infants in the initial study with no particular prior experience (Needham &
Baillargeon, 1998). In fact, prior experiences with either portion of the test display
turned out to be effective in facilitating infants’ parsing of the test display.

Segregation Skills in Robots

This idea that exposure to key events could influence segregation is intuitive, and
evidently operative in infants. Yet, it is not generally studied or used in
mechanical systems for object segregation. In this section, we attempt to
reformulate robotics work by the authors in these terms. For object segregation
in robotics, we will interpret ‘key events’ as moments in the robot’s experience
where the true boundary of an object can be reliably inferred. They offer an
opportunity to determine correlates of the boundary that can be detected outside
of the limited context of the key events themselves. Thus, with an appropriate
algorithmic skeleton, information learned during key events can be applied more
broadly. Key events used by infants include seeing an object in isolation or seeing
objects in relative motion, as discussed in segregation skills in infants section. In
the authors’ work, algorithmic skeletons have been developed for exploiting
constrained analogues of these situations.

Natale, Orabona, Metta, and Sandini (2005) used a very simple key event to
learn about objects—holding an object up to the face. The robot can be handed an
object or happen to grasp it, and will then hold it up close to its cameras. This
gives a good view of its surface features, allowing the robot to do some learning
and later correctly segregate the object out from the background visually even
when out of its grasp (see Figure 3). This is similar to an isolated presentation of
an object, as in Needham’s experiments. In real environments, true isolation is
very unlikely, and actively moving an object so that it dominates the scene can be
beneficial. Fitzpatrick and Metta (2003) used the ‘key event’ hitting an object with
the handfarm. This is a constrained form of relative object motion. In the real
world, all sorts of strange motions happen which can be hard to parse, so it is
simpler at least to begin with to focus on situations the robot can initiate and at
least partially control. Motion caused by body impact has some technical
advantages; the impactor (the arm) is modelled and can be tracked, and since the
moment and place of impact can be detected quite precisely, unrelated motion in
the scene can be largely filtered out.

The algorithmic skeleton by Fitzpatrick and Metta (2003) processes views of the
arm moving, detects collisions of objects with the arm, and outputs boundary
estimates of whatever the arm collides with based on a motion cue. These
boundaries, and what they contain, are used as training data for another
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Figure 3. The upper row shows object segregation by the robot ‘Babybot’ based on prior
experience. The robot explores the visual appearances of an object that it has grasped; the
information collected in this way is used later on to segment the object (Natale et al., 2005).
Left: the robot. Middle: the robot’s view when holding up an object. Right: later
segmentation of the object. The lower row shows the robot ‘Cog’ detecting object
boundaries experimentally by poking (Fitzpatrick, 2003). During object motion, it finds
features of the object that contrast with other objects, and that are stable with respect to
certain geometric transformations. These features are then used to jointly detect and
segment the object in future views. Left: the robot. Middle: segmentations of a poked
object. Right: later segmentation of the object on a similarly coloured table. This figure is
available in colour online at www.interscience.wiley.com/journal/icd.

algorithm, whose purpose is to estimate boundaries from visual appearance
when motion information is not available. See Fitzpatrick (2003) for technical
details. As a basic overview, the classes of algorithms involved are as follows:

1. Behaviour system: An algorithm that drives the robot’s behaviour, so that it is
likely to hit things. This specific, rather idiosyncratic goal is chosen in order to
enable a broader set of outcomes.

2. Key event detection: An algorithm that detects the event of interest, in this case
when the arm/hand hits an object.

3. Training data extraction: An algorithm that can, within the specific context of the
key event, extract boundary information—in this case using object motion
caused by hitting.

4. Machine learning: An algorithm that uses the training data to identify features
that are predictive of boundaries and which can be extracted in other
situations outside the key event (for example, edge and color combinations).

5. Application of learning: An algorithm that actually uses those features to predict
boundaries. This must be integrated with the very first algorithm, to influence
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the robot’s behaviour in useful ways. In terms of observable behaviour, the
robot’s ability to attend and fixate specific objects increases, since they become
segregated from the background.

This skeleton gives the robot an initial behaviour that changes during learning,
once the robot actually starts hitting objects and extracting specific features
predictive of the boundaries of specific objects. A set of different algorithms
performing analogous roles are given by Natale ef al. (2005). Fitzpatrick and
Metta (2003) used a very specific condition (objects being hit by people or the
robot itself) to extract good motion-based object boundaries; surface features of
the object could then be used to segregate that object out in static presentations
(Fitzpatrick, 2003). Arsenio and Fitzpatrick (2005) used rhythmic motion of
objects to segment their boundaries both visually and acoustically. Arsenio and
Fitzpatrick (2005) developed a set of techniques for acquiring all sorts of
segmentations. Some methods work for small, grasp-size objects, others work
for large background objects like walls or tables. At the algorithmic level,
the technical concerns are quite diverse, but for a complete system all five
points listed above must be addressed. At the skeletal level, the concerns
seem quite close in spirit to those of infant perceptual development, apart
from differences of terminology caused by the synthetic rather than analytic
nature of robotics.

Specificity of Knowledge Gained from Experience

In the robotic-learning examples in the previous section (Fitzpatrick, 2003;
Natale et al., 2005), information learned by the robot is intended to be specific
to one particular object. The specificity could be varied algorithmically, by
adding or removing parts of a feature’s ‘identity’. Too much specificity, and the
feature will not be recognized in another context. Too little, and it will be
‘hallucinated’ everywhere. We return now to Needham'’s experiments, which
probed the question of generalization in the same experimental scenario
described in segregation skills in infants section. When changes were introduced
between the objects seen during familiarization and that seen as part of the
test display, an unexpected pattern emerged. Nearly, any change in the
object’s features introduced between familiarization and test prevented infants
from benefiting from this prior experience. So, even when infants saw a blue
box with yellow squares prior to testing, and the box used in testing had
white squares but was otherwise identical, they did not apply this prior
experience to the parsing of the test display. However, infants did benefit
from the prior exposure when the change was not in the features of the object
but rather in its orientation (Needham, 2001). A change in the orientation of
the box from horizontally to vertically oriented led to the facilitation in parsing
seen in some prior experiments. Thus, infants even as young as 4.5-5 months
of age know that to probe whether they have seen an object before, they
must attend to the object’s features rather than its spatial orientation (Needham,
2001).

These results also support two additional conclusions. First, infants’” object
representations include detailed information about the object’s features. Because
infants” application of their prior experience to the parsing of the test display was
so dependent on something close to an exact match between the features, one
must conclude that a highly detailed representation is formed on the initial
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exposure and maintained during the inter-trial-interval. Because these features
are remembered and used in the absence of the initial item and in the presence of
a different item, this is strong evidence for infants’ representational abilities.
Secondly, 4.5-month-old infants are conservative generalizers—they do not
extend information from one object to another very readily. But would they
extend information from a group of objects to a new object that is a member of
that group?

Generalization of Knowledge Gained from Experience

This question was investigated by Needham, Dueker, and Lockhead (2005) in a
study using the same test display and a similar procedure as by Needham (2001).
Infants were given prior experiences with collections of objects, no one of which
was an effective cue to the composition of the test display when seen prior to
testing. A set of three similar objects seen simultaneously prior to test did
facilitate 4.5-month-old infants segregation of the test display. But no subset of
these three objects seen prior to testing facilitated infants’ segregation of the test
display. Also, not just any three objects functioned in this way—sets that had no
variation within them or that were too different from the relevant test item
provided no facilitation. Thus, experience with multiple objects that are varied
but that are similar to the target item is important to infants’ transfer of their
experience to the target display. This finding with artificial objects was tested in a
more natural setting by investigating infants’ parsing of a test display consisting
of a novel key ring (Needham et al., 2006). According to a strict application of
organizational principles using object features, the display should be seen as
composed of (at least) two separate objects—the keys on one side of the screen
and the separate ring on the other side. However, to the extent that infants
recognize the display as a member of a familiar category—key rings—they
should group the keys and ring into a single unit that should move as a whole.
The findings indicate that by 8.5 months of age, infants parse the display into a
single unit, expecting the keys and ring to move together. Younger infants do not
see the display as a single unit, and instead parse the keys and ring into separate
units. Infants of both ages interpreted an altered display, in which the identifiable
portions of the key ring were hidden by patterned covers, as composed of two
separate units. Together, these findings provide evidence that the studies of
controlled prior exposure described in the previous section are consistent with
the process as it occurs under natural circumstances. Infants’ ordinary
experiences present them with multiple similar exemplars of key rings, and
these exposures build a representation that can then be applied to novel (and yet
similar) instances of the key ring category, altering the interpretation that would
come from feature-based principles alone. Supporting a differentiation view of
the development of generalization, Bahrick’s findings suggest that young (i.e. 2-
month-old) infants are more likely to generalize farther from the specific
experiences they received than infants just a few months older (Bahrick, 2002).
This finding suggests that experience might serve to initially narrow and then
extend the range of stimuli over which young children will generalize.

These results from infant development suggest a path for robotics to follow.
There is currently no developmental robotics work to point to on generalization
of object categories, despite its importance. Robotics work in this area could
potentially aid infant psychologists since there is a strong theoretical framework
in machine learning for issues of generalization.
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Intermodal Integration

We have talked about ‘key events’ in which object boundaries are easier to
perceive. In general, the ease with which any particular object property can be
estimated varies from situation to situation. Robots and infants can exploit the
easy times to learn statistical correlates that are available in less clear-cut
situations. For example, cross-modal signals are a particularly rich source of
correlates and have been investigated in robotics and machine perception. Most
events have components that are accessible through different senses: a bouncing
ball can be seen as well as heard; the position of the observer’s own hand can be
seen and felt as it moves through the visual field. Although these perceptual
experiences are clearly separate from each other, composing separate ‘channels’,
we also recognize meaningful correspondences between the input from these
channels. How these channels are related in humans is not entirely clear.
Different approaches to the development of intermodal perception posit that
infants’ sensory experiences are (a) unified at birth and must be differentiated
from each other over development, or (b) separated at birth and must be linked
through repeated pairings. Although the time frame over which either of these
processes would occur has not been well defined, research findings do suggest
that intermodal correspondences are detected early in development.

On what basis do infants detect these correspondences? Some of the earliest
work on this topic revealed that even newborn infants look for the source of a
sound (Butterworth & Castillo, 1976) and by 4 months of age have specific
expectations about what they should see when they find the source of the sound
(Spelke, 1976). More recent investigations of infants” auditory-visual correspon-
dences have identified important roles for synchrony and other amodal
properties of objects—properties that can be detected across multiple perceptual
modalities. An impact (e.g. a ball bouncing) provides amodal information
because the sound of the ball hitting the surface is coincident with a sudden
change in the direction of the ball’s path of motion. Some researchers have
argued that detection and use of amodal object properties serve to bootstrap the
use of more idiosyncratic properties (e.g. the kind of sound made by an object
when it hits a surface). Bahrick and Lickliter have shown that babies (and
bobwhite quail) learn better and faster from multimodal stimulation (see their
Intermodal Redundancy Hypothesis, Bahrick & Lickliter, 2000).

In robotics, amodal properties such as location have been used—for example,
sound localization can aid visual detection of a talking person. Timing has also
been used. Prince and Hollich (2005) developed specific models of audio-visual
synchrony detection and evaluated compatibility with infant performance. Arsenio
and Fitzpatrick (2005) exploited the specific timing cue of regular repetition to form
correspondences across sensor modalities. From an engineering perspective, the
redundant information supplied by repetition makes this form of timing
information easier to detect reliably than synchrony of a single event in the
presence of background activity. However, in the model of Lewkowicz (2000), the
ordering during infant development is opposite. A more complete understanding
of the practical benefits of different types of intermodal regularity for robots and
infants is a clear and important point of contact between the respective fields.

THE ROLE OF EMBODIMENT

The study of perception in biological systems cannot neglect the role of the body
and its morphology in the generation of the sensory information reaching the
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brain. One of the big steps forward in neurophysiology during the last 20 years in
understanding brain function is the realization that the brain controls actions
rather than movements. That is, the most basic unit of control is not the activation
of a specific muscle but rather an action unit that includes a goal, a motive for
acting, specific modes of perception tailored to this goal, and the recombination
of functional modules and synergies of muscles to attain the goal (Hoftsen, 2004).
This shift in perspective is supported by evidence accumulated through the
study of the motor system in animals and humans: for a comprehensive
treatment, see, for example, (Rizzolatti & Craighero, 2004; Rizzolatti & Gentilucci,
1988).

A modern view of biological motor control considers multiple controllers that
are goal specific (rather than effector specific) and multiple homunculi and
somatotopies that expand into multiple controllers for these goals. This particular
type of generalization is, for example, crystal clear in one of the premotor areas
that is correlated to the act of grasping. This area, called F5 (frontal area 5),
contains neurons that are used for grasping with the left hand, the right hand or
even with the mouth (Gallese, Fadiga, Fogassi, & Rizzolatti, 1996).

The next conceptual step in changing our view of the control of movement was
made by the discovery of sensory neurons (e.g. visual) in this same premotor
cortex, area F5. As far as objects are concerned, it is now well established that the
premotor cortex responds both to the sight of objects (visual response), and to a
grasping action directed at the same object (motoric response) (Gallese et al.,
1996). The two representations—motoric and visual—not only coexist in the same
brain areas but also they coexist in the same population of neurons.

Similar responses have been found in the parietal cortex. This forms such a
conspicuously bi-directional connection with the premotor cortex that is useful to
speak of the fronto-parietal system. Parietal neurons have been found to respond
to geometric global object features (e.g. their orientation in 3D) which seem in fact
well tuned to the control of action. But the fronto-parietal circuitry is also active
when an intended movement does not become an actual one. The natural
question to be posed is that what is the purpose of this activation: potential motor
action or true object recognition? Multisensory neurons are testimonies of how
much action and perception, body and brain are deeply intertwined in shaping
each other during development and throughout adulthood.

Active Perception and the Body in Infants

Through the body, the brain performs actions to explore the environment and
collect information about its properties and rules. Early in development,
exploration of the world occurs through the eyes, hands, and mouth. Infants’
earliest competence for exploration is with the eyes—they engage in active visual
exploration of the world around them from the first moments following birth
(Haith, 1980; Salapatek, 1968). With age and experience, their scanning of visual
displays becomes more comprehensive and focused on meaningful features.
More recent work has shown that infants’ scanning patterns constrain their
learning (Johnson & Johnson, 2000; Johnson, Slemmer, & Amso, 2004).

Over the first few months of life, infants gain more control over their limbs and
develop a sense of themselves as agents in the world as they make the transition
into reaching (Rochat & Striano, 2000; Thelen et al., 1993; White, Castle, & Held,
1964). They often engage in prolonged periods of visual attention to their own
hands (White et al., 1964). Interestingly, monkeys deprived of early visual access
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to one of their arms engaged in intense scrutiny of the arm once they were
allowed an unobstructed view of it (Held & Bauer, 1967; see also White, 1971, for
related findings with human infants). These results suggest that infants’ learning
about objects and their own action skills may benefit in very specific ways from
their own actions on the world. They exploit the capabilities of their bodies early
on to scan objects visually and to explore them with their eyes, mouth, and hands
(Rochat, 1983, 1989; Ruff, 1984).

The use of hands for object exploration has received additional attention. In
their experiments with human adults, Lederman and Klazky (1987) have
identified a set of stereotyped hand movements (exploratory procedures) used
when haptically exploring objects to determine properties like weight, shape,
texture, and temperature. Lederman and Klatzky showed that to each property
can be associated a preferential exploratory procedure which is, if not required, at
least best suited for its identification.

These observations support the theory that motor development and the body
play an important role in perceptual development in infancy (Bushnell &
Boudreau, 1993). Proper control of at least the head, the arm, and the hand is
required before infants can reliably and repetitively engage in interaction with
objects. During the first months of life, the inability of infants to perform skilful
movements with the hand would prevent them from haptically exploring the
environment and perceive properties of objects like weight, volume, hardness,
and shape. But, even more surprisingly, motor development could affect the
developmental course of object visual perception (like three-dimensional shape).
Further support to this theory comes from the recent experiment by Needham
and colleagues (Needham, Barret, & Peterman, 2002), where the ability of pre-
reaching infants to grasp objects was artificially anticipated by means of mittens
with palms covered with velcro that stuck to some toys prepared by the
experimenters. The results showed that those infants whose grasping ability had
been enhanced by the glove were more interested in objects than a reference
group of the same age that developed ‘normally’. This suggests that, although
artificial, the boost in motor development produced by the glove anticipated the
infants’ interest towards objects.

Exploiting actions for learning and perception requires the ability to match
actions with the agents that caused it. The sense of agency (Jeannerod, 2002) gives
humans a sense of ownership of their actions and implies the existence of an
internal representation of the body. Although some sort of self-recognition is
already present at birth, at least in the form of a simple hand-eye coordination
(Meer, Weel, & Lee, 1995), it is during the first months of development that
infants learn to recognize their body as a separate entity acting in the world
(Rochat, & Striano, 2000). It is believed that to develop this ability infants exploit
correlations across different sensorial channels (combined double touch/
correlation between proprioception and vision).

Active Perception and the Body in Robots

In robotics, we have the possibility to study the link between action and
perception, and its implications on the realization of artificial systems. Robots,
like infants, can exploit the physical interaction with the environment to enrich
and control their sensorial experience. However, these abilities do not come for
free. Very much like an infant, the robot must first learn to identify and control its
body, so that the interaction with the environment is meaningful and, at least to a
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certain extent, safe. Indeed, motor control is challenging especially when it
involves the physical interaction between the robot and the world.

Inspired by the developmental psychology literature, roboticists have begun to
investigate the problem of self-recognition in robotics (Gold & Scassellati, 2005;
Metta & Fitzpatrick, 2003; Natale et al., 2005; Yoshikawa, Hosoda, & Asada, 2003).
Although different in several respects, in each of these efforts the robot looks for
intermodal similarities and invariances to identify its body from the rest of the
world. In the work of Yoshikawa (Yoshikawa et al., 2003), the rationale is that for
any given posture the body of the robot is invariant with respect to the rest of the
world. The correlation between visual information and proprioceptive feedback
is learned by a neural network that is trained to predict the position of the arms
in the visual field. Gold and Scassellati (2005) approached the self-recognition
problem by exploiting knowledge of the time elapsing between the actions of the
robot and the associated sensorial feedback. In the work of Metta and Fitzpatrick
(2003) and Natale et al. (2005), actions are instead used for generating visual
motion with a known pattern. Similarities in the proprioceptive and visual flow
are searched to visually identify the hand of the robot. Periodicity in this case
enhances and simplifies the identification. The robot learns a multimodal
representation of its hand that allows a robust identification in the visual field.

In our experience with robots we identified three scenarios in which the body
proved to be useful in solving perceptual tasks:

1. Direct exploration: The body in this case is the interface to extract information
about the objects. For example, in the work of Natale, Metta, and Sandini
(2004) haptic information was employed to distinguish objects with different
shapes, a task that would be much more difficult if performed visually. In the
work of Torres-Jara, Natale, and Fitzpatrick (2005), the robot learned to
recognize a few objects by using the sound they generate upon contact with
the fingers.

2. Controlled exploration: Use the body to perform actions to simplify perception.
The robot can deliberately generate redundant information by performing
periodic actions in the environment. The robot can also initiate actions and
wait for the appearance of consequences (Fitzpatrick & Metta, 2003).

3. The body as a reference frame: During action the hand is the place where
important events are most likely to occur. The ability to direct the attention of
the robot towards the hand is particularly helpful during learning; (Natale
et al., 2005) showed how this ability allows the robot to learn a visual model of
the objects it manages to grasp by simply inspecting the hand when touch is
detected on the palm (see Figure 3). In similar situations, the same behaviour
could allow the robot to direct the gaze to the hand if something unexpected
touches it. Eye-hand coordination seems thus important to establish a link
between different sensory channels like touch and vision.

Specificity and Generalization of Knowledge Gained through the Motor System

Study of the motor system has shown the specificity of the coding of object and
action information in the brain. For example, Gallese et al. (1996) have shown that
neurons in the premotor area F5 respond to the execution of specific actions, for
example grasping—and not just any grasp, but specific grasps such as pinch
grasp rather than power grasp. At the same time, F5 neurons also generalize and
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many of them are independent of the effector being employed, e.g. left versus
right hand. For visuo-motor neurons, specificity and generalization are some-
times complementary, with visual responses typically being broader (less
specific) than motoric ones. A category of visuo-motor neuron (mirror neurons)
is also related to the recognition of observed actions and similar considerations of
specificity versus generalization apply.

It is striking how the brain neatly balances between specificity (allowing
recognition and execution of the intended action) and generalization (to the
degree of making the effector unimportant). Another way of looking at these
results is to say that the goal is important (thus specificity of the action) but not
the means by which it is achieved (left versus right hand) (Rizzolatti & Craighero,
2004).

Robotics had adopted the idea of the active recruitment of the motor system for
the construction of perceptual abilities even before the discovery of mirror
neurons. For example, the Active Vision paradigm in computer vision (Blake &
Yuille, 1992) proposed that the movement of sensors could aid the perceptual
system by extracting information directly in relation to the goal of the observer.
Similarly, in the field of speech processing, Liberman as early as 1967 (Liberman,
Copper, Shankweiler, & Studdert-Kennedy, 1967) suggested that speech produc-
tion and perception are served by a common pathway and by common
mechanisms. While at that time, Liberman’s ideas were merely conjectures,
now they can be defended with scientific argument because of the advancement
of the understanding of the physiology of the motor system (Rizzolatti & Arbib,
1998). More recently, Hinton and Nair (2006) proposed a remarkably similar
approach for the recognition of handwritten digits and commented on a possible
parallel with speech.

More specifically, many authors have either explicitly modelled mirror neurons
or approximately borrowed the general idea of common processing modules
shared by action production and action understanding (see, for example:
Demeris & Johnson, 2003; Fagg & Arbib, 1998; Miall, 2003; Oztop, Kawato, &
Arbib, 2006). With respect to generalization, the authors were able to show how
inferring the motor representation before classification can improve performance.
In a set of experiments (Metta, Sandini, Natale, Craighero, & Fadiga, 2006),
human grasping actions including visual and motor data were analysed with
machine-learning methods. It was possible to show that the performance of a
visual classifier is improved by mapping visual information into a motoric
representation as a preprocessing stage. In particular, both the complexity of the
classifier is lower and generalization to novel grasp views is improved. These
results can both as supporting on one hand the role of embodiment, and on the
other, highlighting the benefit to robotics of learning about the acquisition
(development) of certain motor skills in humans (grasping in this case).

CONCLUSIONS

In the field of humanoid robotics, researchers have a special respect and
admiration for the abilities of infants. They watch their newborn children with
particular interest, and their spouses have to constantly be alert for the tell-tale
signs of them running an ad hoc experiment. It can be depressing to compare the
outcome of a five-year, multi-million-euro/dollar/yen project with what an
infant can do after four months. Infants are so clearly doing what we want robots
to do; is there any way to learn from research on infant development?

Copyright © 2008 John Wiley & Sons, Ltd. Inf. Child Dev. 17: 7-24 (2008)
DOI: 10.1002/icd



Challenges in Object Perception for Robots and Infants 21

Conversely, can infant development research be illuminated by the struggles
faced in robotics? Clearly, both domains struggle with questions of origins of
abilities and constraints on learning—if we can discover these constraints in the
human, perhaps it could facilitate success in the robot. Similarly, facets of what is
learned in robotics can guide infant researchers to look for previously
unsuspected difficulties that infants might experience.

Is there a way to create a model of development that applies both to infants and
robots? Evolution may have selected for propensities in the basic cognitive
system of the human infant that could be beneficial for the humanoid robot as
well. Considering ways in which the human infant and humanoid robot could
learn within the context of a highly structured natural environment, it seems
possible that similar sensory constraints and opportunities will mould both the
unfolding of an infant’s sensitivities to different cues, and the organization of the
set of algorithms used by robots to achieve sophisticated perception. So, at least
at the level of identifying ‘key events’ and mutually reinforcing cues, a shared
model is possible. Of course, there is a lot that would not fit in the model, and this
is as it should be. It would be solely concerned with the class of functional,
information-driven constraints. We have not in this paper developed such a
model; that would be premature. We have identified some points of connection
that could grow into much more. We hope that the paper will serve as a one more
link in the growing contact between the fields.
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