
A Best-Effort Approach for Run-Time Channel Prioritization in
Real-Time Robotic Application

Ali Paikan, Ugo Pattacini, Daniele Domenichelli,
Marco Randazzo, Giorgio Metta and Lorenzo Natale

Abstract— Application domains of robotic systems are
growing in complexity. It seems therefore plausible that
robotic software will continue to be designed to be executed
on distributed computer architectures interconnected through
a network. It is a common practice today to rely on
best-effort performance and assume that the latter are adequate
given enough computational and networking resources. This
approach however does not make best use of the available
resources and, maybe more importantly, does not guarantee
that performance remain constant over time. Real-time and
Quality of Service become therefore important aspects in the
software architecture of a robot. This article describes an
approach for introducing these concepts in a publish-subscribe
software middleware. The key contribution of our approach
is that it leverages on the services provided by the operating
system (scheduling priority and packet QoS) and abstracts them
in a set of levels of priority that can be assigned dynamically,
and with the granularity of individual communication channels.
We implemented our approach on the YARP middleware and
performed an experimental evaluation that demonstrates its
benefit for increasing determinism and reducing latency in data
communication. We further demonstrate this in a real-robot
experiment that shows increased performance in a closed-loop
scenario.

I. INTRODUCTION

Recent advancements in different fields of robotic
research are making within reach applications of growing
complexity integrating force control, vision, speech and
learning. It is therefore conceivable that robotic software
applications will continue to require a mixture of on-board
and remote computation. Many state-of-the-art humanoid
robots such as iCub [1], Armar [2] and HRP [3] rely
on distributed computation on a cluster of computers.
A de–facto standard in terms of software architecture
is the adoption of distributed frameworks (ROS [4],
YARP [5], OROCOS [6] and Open-RTM [7]). This is
dictated not only by computational requirements but also
by established best practices in software engineering, i.e.
the so-called separation of concerns [8]. In this context
the publish/subscribe [9] paradigm is widely adopted thank
to the levels of decoupling it offers such as anonymity,
asynchronism and time decoupling. In a publish/subscribe
model, a publisher (sender) registers itself into a central event
service as an entity that can provide specific events (e.g.,
characterized by a type). In an asynchronous way, subscribers

A. Paikan, U. Pattacini, D. Domenichelli, Marco Randazzo, G.
Metta and L. Natale are with the Istituto Italiano di Tecnologia (IIT),
Genova, Italy. Emails: ali.paikan, ugo.pattacini,
daniele.domenichelli, marco.randazzo,
giorgio.metta, lorenzo.natale @iit.it

SwitchHost 2

Host 1

Arm 
Interface

Host 1

Camera
Interface

Arm
Controller

Object
Detector

Host 1

Fig. 1: An example of distributed control architecture in
a network consisting of two nodes (Host1, Host2). The
arrows represent communication and the data–flow between
components.

(receiver) express interests and receive one or more of
the available events without any knowledge of the number
and identity of publishers. Overall this allows achieving a
level of decoupling that has fostered the adoption of the
publish/subscribe paradigm in different domains including
robotics.

Many robotic applications require real-time functionalities
especially when timing constraints on task execution, data
processing and synchronization are crucial. In the past, many
frameworks for real-time robotics have been proposed [10].
They focus on supporting software engineering practices for
code reuse, interface standardization or component-based
programming. There are also some real-time frameworks
(such as any-time algorithm [11] or SeART [12]) which
focus on tasks reconfiguration and run-time prioritization
in case the computational resources are not adequate to
schedule all tasks. However, these frameworks do not address
communication issues. In a distributed architecture these are
non-negligible aspects: care must be taken to avoid mutual
interference between components in the communication
layer. In this paper we propose to deal with this problem by
providing some functionalities in the middleware that allow
assigning different priorities to individual communication
channels (we call this approach “channel prioritization” ).

This approach is better explained by considering the
distributed robot control example in Fig. 1. The network
here is composed of two computer nodes (Host1 and Host2)
which are connected using an Ethernet switch. Host1 is a
machine at the robot side which provides different interfaces
to access actuators and sensors. For example, Arm Interface
is a software component which allows to remotely read
encoders and to command the actuators of the arm. Camera



Interface captures images from the cameras and streams
them out across the network. In addition, Host2 executes
the Arm Controller component which controls the arm in
close-loop, sending e.g. velocity commands to the motors.
It needs to access the encoders data and to command the
motors within few milliseconds by communicating with the
Arm Interface over the network. We consider the case in
which the robot is visually tracking and reaching for an
object; in this case a requirement is that the Object Detector
component receives visual feedback within a few decades of
milliseconds. The Arm Controller component is time-critical:
it requires higher controlling rate with lowest jitter during the
execution of the application. To achieve this we can prioritize
the communication channel between Arm Interface and Arm
Controller (bold line) so that bandwidth and resources used
by other channels (Camera Interface – Object Detector, but
also other data streams from modules that are not shown
here) do not interfere with the messages traveling from the
first channel. In other words, messages from Arm Controller
need to be guaranteed (in a best–effort sense) to reach Arm
Interface with lowest latency and vice versa. Depending on
the application context, priority of channels may need to be
dynamically changed at run–time as demonstrated in [12].

This paper presents an approach for run-time prioritization
of communication channels in robotic applications. The
approach focuses on publish/subscribe architecture and
leverages the operating system functionalities to prioritize
specific communication channels between publishers
and subscribers. We extend the properties of individual
connection channels with a priority level which affects
the priority of the threads that handle the communication
and the network packet’s type of service. We implemented
our approach on the YARP [5] middleware. We performed
experimental analysis that demonstrate a significant
improvement in the communication performance and in
the performance of a controller in a closed-loop scenario.
The approach does not require specific components for
message prioritization and it does not add any overhead to
the communication. In addition and, more importantly, it
allows for remote configuration of Quality of Service (QoS)
and for run-time, dynamic prioritization of communication
channels. The rest of the paper is organized as follows.
Section II outlines the related work. Section III describes
the common problems of channel prioritization and explains
how it can be integrated in a publish/subscribe middleware.
The actual implementation of channel prioritization in
the YARP middleware and its experimental evaluation are
presented in Section IV. Finally, Section V presents the
conclusions and future work.

II. OVERVIEW AND RELATED WORKS

The problem of message prioritization in real-time
communication is not new and has received a lot of attention
in the field of real-time networking, sensor networks,
high-performance computing and robotics. Depending on
how the real-time communication is implemented, the
frameworks for message prioritization can be categorized in
different classes. Some frameworks use customized protocols

or specific network for real-time communication. These
frameworks usually replace, either partially or entirely, the
standard protocol stack of the operating system with their
own implementation for packet prioritization and scheduling.
For example, RTnet Stack [13] modifies the standard Linux
IP stack to provide a framework for exchanging data under
hard real-time constraints. Within this category, many other
protocol and frameworks can be found in the fields of sensor
networks and Fieldbus such as RAP [14] and EtherCAT [15].

Other frameworks are based on an unreliable (i.e.
standard Ethernet) network links and extend them with
different functionalities for Quality of Service (QoS)
to achieve deterministic message exchange. Real-time
CORBA [16] model is an extension of the CORBA Event
Service to support low latency, periodic rate-based event
processing, efficient event filtering and correlation. TAO is
an implementation of real-time CORBA which uses Event
Channels to dispatch events to consumers on behalf of
suppliers. In TAO, message prioritization can be achieved
by configuring the real-time event channels with multiple
scheduling policies (e.g. maximum urgency first). Similarly,
channels can be built with varying levels of support for
preemption. This flexibility allows applications to request
allocation of resources for different application requirements.

Various architectures aims at providing publish/subscribe
in QoS-enabled component middlewares such as RTSE [16]
and RTNS[17]. Deng et al. [18] provided a comprehensive
survey of these architectures and described different
design choices for implementing real-time publish/subscribe
services. The actual implementation, however, varies on the
point in the middleware in which a service is integrated.
For example, for CORBA [19], the different choices can
be the component itself, the container or the component
server. A well-known example of this type of frameworks
is the OMG Data Distribution Service (DDS) [20], which
represents a standard for QoS-enabled publish/subscribe
communication for mission-critical distributed systems. DDS
is designed to achieve location independence, scalability and
platform portability. Multiple implementations of DDS are
available, either commercially (RTI Connext DDS [21]) or
from open-source projects OpenSplice [22]).

In robotics, Kuo et al. [23] proposed a distributed
real-time software framework based on CORBA. It provides
facilities such as priority-banded connection to integrate and
simplify the real-time CORBA API. Martinez et al. [24]
described the adaptation of some DDS implementations in a
robotic middleware based on ICE (RoboComp) and compares
it with previous implementation demonstrating noticeable
improvements in terms of throughput, latency and jitter.

The approach proposed in this paper falls in the second
category of the work described above, as it does not
need customized protocols nor specific communication
link/hardware: it relies only on standard Ethernet network
and exploits the operating system functionalities for
scheduling and prioritizing threads and data packets. Our
approach aggregates QoS parameters and thread scheduling
priorities providing a simple abstraction consisting in



User Code

.
 
.
 
.

Output

Output

Output

.
 
.
 
.

Input

Input

Input

Port Object

Command

readwrite

From other processes

output stream

output stream

input stream

input stream

Fig. 2: The internal structure of a YARP port object.

different priority levels. Such priority levels are not assigned
to topics/data sources but to individual connections. This
means that the same data source can have different
priority levels, from the highest value when it needs to
be delivered to time-critical components (e.g. closed-loop
controller) to the lowest when requested for unimportant
tasks (e.g. visualization). Finally, priority levels can be
assigned dynamically and tuned depending on the context
and application. At the implementation level, our solution is
completely distributed (i.e. it does not rely on a centralized
broker) and it directly interfaces with the sockets of the
operating systems and thus does not require any additional
dependency.

III. COMMUNICATION CHANNEL PRIORITIZATION

A way to implement a publish/subscribe system is by using
an intermediate broker to which publishers post messages.
The broker then performs a store-and-forward function to
deliver messages to subscribers that are registered with it.
To implement message prioritization in such scenario the
broker can simply route messages with a desired order.
For example a subscriber to a specific topic may need to
receive a copy of a message before another subscriber. The
centralized approach, however, becomes easily inefficient
and does not scale well. A more efficient approach is to
let components share meta–data (describing for example the
type of messages) and establish peer-to-peer connections
between publishers and subscribers. For example, Data
Distribution Service (DDS) uses IP multicast, YARP and
ROS use a centralized name server for storing meta–data
and perform naming lookup (the approach implemented in
YARP will be described in the following section). Achieving
message prioritization in such distributed systems is more
difficult because there is no central authority that can control
message delivery. In the following sections we use YARP to
describe how channel prioritization can be implemented in a
publish/subscribe framework without any centralized broker.

A. Overview of YARP

YARP is a multi–platform distributed robotic middleware
which consists of a set of libraries, communication protocols,
and tools to keep software modules and hardware devices
cleanly decoupled. Communication uses special objects
called “port”. Using ports publishers can send data to

User 

thread

/subscriber1Input

Command

User 

thread

/subscriber2Input

Command

User 

thread

/publisher1

Output

Output

Command
Data packets

Fig. 3: An example of components asynchronous
communication in YARP. A publisher is pushing messages
to two different subscribers using separate dedicated threads.

any number of receivers (subscribers), either within the
same process, crossing the boundaries of processes and,
using network protocols, even across machines. YARP
manages connections in a way that decouples publishers
and subscribers. A port is an active object that can manage
multiple connections either as input or output (see Fig. 2).
Two ports can be connected after naming lookup on a central
server and exchange data in a distributed, independent way.
It is worth noting that each connection has a state that can be
manipulated by external (administrative) commands, which
in turn manage the connection and/or obtain state information
from it. Ports can be connected using standard protocols (e.g.
TCP, UDP, MCAST) either programmatically or at runtime
using administrative commands. A single port may transmit
the same message across several connections using different
protocols including custom “carrier” objects that implement
new protocols [25], [26].

B. Integration in YARP

Asynchronous communication in YARP can be achieved in
different ways. One way to do this in a protocol–independent
manner is to configure the port object to send and receive
user data in separate threads. A conceptual example is
depicted in Fig. 3 in which an asynchronous publisher
(Publisher 1) pushes data to two different subscribers
using a separate dedicated thread for each communication
channel. This decouples timing between a publisher and its
subscribers and reduces the amount of time spent in the user
thread for sending data. Inside the subscribers a dedicated
thread reads data from a communication channel.

Generally speaking, using dedicated threads for
communication introduces extra computational time to
the component execution due to thread scheduling and
context–switching overhead. However, dedicated threads
can provide a better implementation abstraction and
potentially can be exploited for the implementation of
prioritized communication channels. Real–time properties
and QoS attributes can be configured at different scopes,
i.e., user thread, dedicated communication thread and data
packets. Configuring real–time properties such as priority



or scheduling policy of the user thread can be done either
programmatically from the user code or automatically
using component middleware functionalities and dedicated
tools [12] (although this is beyond the scope of this paper).

In our approach real–time properties can be configured
separately for each communication thread. In other words,
we modified YARP adding the possibility to change the
priority of the thread that handles data transmission over a
communication channel. When a publisher writes data to a
port, it passes it to the corresponding thread. At this point,
the operating system takes over being in charge of scheduling
the threads with respect to their real–time properties so that
highest–priority threads can write data to the socket before
the others.

As shown in Fig. 2, a port object can also subscribe
to multiple publishers using separate input channels. In
such a case, thread prioritization can be also applied at the
subscriber side to ensure that messages in a specific channel
will be delivered to the user with high priority (i.e. minimum
jitter).

C. Data packets prioritization
Configuring the real–time priorities of communication

threads guarantees that messages are written or read from
channels with specific priorities. Normally, when messages
are written to a socket they are handed over the operating
system and there is no control on the order in which they
are actually transmitted to the transport layer. Generally
speaking, there is no silver bullet to data packet prioritization
in computer networks. Some partial solutions exist and are
highly dependent on the network topology, infrastructure
and communication protocol. However in Ethernet local
area networks (LAN) data packets can have configurable
properties that specify priority of delivery with respect to
time and order.

To clarify the issue, we consider the network architecture
from Fig. 1. There are two places in our network in which
packet traffic congestions can potentially happen: i) in the
OS level (i.e. inside the network driver) when outbound
data from multiple applications are written to the network
interface controller of the Host1, ii) in the switch, when
packets from different ports (Host1 and 2) are forwarded
to a single port (Host3). These are common bottlenecks in
computer networking that become particularly critical when
the infrastructure does not have enough resources for routing
all traffic.

A driver queue bridges the IP stack and the network
interface controller (NIC). In some operating systems (e.g.,
Linux) there is an intermediate layer between the IP
stack and the driver queue which implements different
queuing policies. This layer is responsible for diverse traffic
management capabilities including traffic prioritization. For
example in Linux distributions, the default queuing policy
(i.e., pfifo_fast QDisc) [27] implements a simple three band
prioritization scheme based on the IP packet’s TOS [28] bits.
Within each band, packets follow a FIFO policy. However,
prioritization happens across bands: as long as there are
packets waiting in higher–priority band, the lower bands

will not be processed. To hand the user–level messages to
the network controller in a prioritized manner, it is enough
to provide a mechanism so that the TOS bits of the data
packets can be adjusted according to the desired priority of
the channels.

Multilayer network switches (i.e. operating on OSI layer
3 or 4) are capable of implementing different QoS such
as packet prioritization, classification and output queue
congestion management. They commonly use Differentiated
Services Code Point [29] (DSCP) which is the six most
significant bits in the TOS byte to indicate the priority of
an IP (V4 and V6) Packet. Differentiated services enable
different classes of prioritization which can be used to
provide low latency to critical network traffic while providing
simple best–effort service to non–critical applications. To
guarantee low–latency packet transfer from a publisher to
subscriber, the TOS bits can be adjusted properly to fall
into the highest–priority band of queuing policy and to form
a high–priority class of differentiated service in network
switches.

IV. IMPLEMENTATION AND RESULTS

As described earlier port administrative commands provide
a rich set of functionalities to monitor and change the
state of a port and its connections. To implement the
channel prioritization in YARP, these functionalities were
extended to allow tuning QoS and real–time properties of
port objects with the granularity of individual connections.
In the current implementation, the port administrator
provides two set of commands that affect the priority
of a communication channel: setting the scheduling
policy/priority of a communication thread and configuring
the TOS/DSCP bits for the data packets it delivers. For
example, we can simply configure real–time properties of
the output entity of /publisher1 from Fig. 3 using the
YARP tools as follows:

$ yarp admin rpc /publisher1
>> prop set /subscriber1 (sched

((policy SCHED_FIFO)
(priority 30)))

The first line "yarp admin rpc" simply opens
an administrative session with the port object of
/publisher1. The second line is the real command
to the administrative port. It adjusts the scheduling policy
and priority of the thread in /publisher1 which
handles the connection to /subscriber1 respectively to
SCHED_FIFO and 30 on Linux machines 1.

For packet priorities we have chosen four predefined
classes of DSCP. These classes are selected so that packets
can be treated similarly by the OS queuing policy (if
available) and in the network switch. For example a packet
with priority class Low will be in the lowest priority band
(Band 2) of the Linux queuing policy and will have the
lowest priority in the network switch. Table I provides a
list of these classes.

1The thread scheduling properties and policies are highly OS dependent
and a proper combination of priority and policy should be used.



TABLE I: Predefined classes of packet priority

Class DSCP QDisc
Low AF11 Band 2
Normal Default Band 1
High AF42 Band 0
Critical VA Band 0

Switch

Sub. 2

Sub. 3

Sub. 1

Pub. 1 Pub. 2

Pub. 3

Host 1

Host 2

Host 3

Fig. 4: An example of publish/subscribe architecture in a
LAN network consisting of three nodes (Host1, Host2 and
Host3) connected through an Ethernet switch. The arrows
represent data–flow from publishers to subscribers.

Analogously, data packet priority can be configured via
administrative commands by setting one of the predefined
priority class (or by directly configuring the DSCP/TOS bits):

$ yarp admin rpc /publisher1
>> prop set /subscriber1 (qos ((priority HIGH)))

This simply sets the outbound packets priority to HIGH for
the connection from /publisher1 to /subscriber1.

These two set of parameters can be set for every channel
in the same way and jointly define the actual priority of a
communication channel in our publish/subscribe architecture.

A. Evaluation of message round-trip time

To evaluate the effect of channel prioritization on the
messages round-trip time, we have devised two different
test cases. The first case deals with evaluating channel
prioritization when traffic congestion happens at the
network card (OS level) while the second one investigates
performance improvement due to channel prioritization at
the network switch.

Figure 4 demonstrates the network architecture for both
test cases. The nodes (Host 1 to 3) are Linux machines with
PREEMPT-RT kernel which are connected using Gigabit
Ethernet and a QoS–enabled switch (CISCO Catalyst 2960).
In each test case, only two separate channels between the
publishers and the subscribers are used. We measure the
round–trip time of messages in the first channel (from Pub.1
to Sub.1). This is done via acknowledgment packets from
Sub.1 to Pub.1 for each messages received by Pub.1. The
second channel (from Pub.2 to Sub.2 for the first case and
from Pub.3 to Sub.3 for the second case) produces arbitrary
but controllable network load. These channels are shown as
dashed-lines in Fig. 4.

For each test case, two different set of experiments have
been performed to measure packet trip time with and without

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

UDP load
UDP data

UDP load
TCP data

TCP load
UDP data

TCP load
TCP data

ti
m

e
 (

m
s
)

Average packets trip time (20% load at network card)

normal
qos

0.3

0.15

0.3
0.2

0.9

0.2

0.9

0.3

0

2

4

6

8

10

UDP load
UDP data

UDP load
TCP data

TCP load
UDP data

TCP load
TCP data

ti
m

e
 (

m
s
)

Average packets trip time (70% loadat network card)

normal
qos

0.9

0.2

0.9

0.2

6.7

0.3

6.7

0.4

0

5

10

15

20

UDP load
UDP data

UDP load
TCP data

TCP load
UDP data

TCP load
TCP data

ti
m

e
 (

m
s
)

Average packets trip time (20% load at switch)

normal
qos

5.0

28.5

4.5

10.0
0.4

0.3

0.5

0.2

0

50

100

150

200

UDP load
UDP data

UDP load
TCP data

TCP load
UDP data

TCP load
TCP data

ti
m

e
 (

m
s
)

Average packets trip time (70% load at switch)

normal
qos

14.0

169

7.5

142

0.4 0.2
0.3 1.2

Fig. 5: Evaluation results of channel prioritization at the
network card and switch for different loads and transport
protocols. The bars labeled as “qos” represent the test
results in presence of channel prioritization. The bars labeled
as “normal” represent the test results in absence of any
prioritization. The number above the bars represent the
standard deviations of samples.

channel prioritization. To achieve the highest priority for
the channel from Pub.1 to Sub.1, the scheduling policy
and priority of communication threads are respectively set
to SCHED_FIFO and 30. The thread priority is chosen
so that it is higher than the other processes during the
experiment but lower than network interrupt priorities. The
packet priority for the corresponding channel is also set
to HIGH (AF42/Band 0). The tests are repeated with two
different network loads (corresponding respectively to 20%
and 70% of the maximum bandwidth) generated by Pub.2
and Sub.2. Moreover, to see the effect of the underlying
communication protocol on channel prioritization we have
repeated the tests with different combination of TCP and
UDP both for the load and the measurement channels.

Fig. 5 illustrates the measured average and standard
deviation of the packets trip time with (bars labeled as “qos”)
and without channel prioritization (bars labeled as “normal”)
for different protocols and network loads. The number above
the bars represent the standard deviations of samples.

Top plots from Fig. 5 demonstrate the comparison when
the two publishers (Pub.1 and Pub.2) are on the same
machine and produce outbound traffic congestion at the
network card only. In general, as it can be seen in the plots,
channel prioritization produces slightly lower (in average)
and more deterministic (smaller standard deviation) packet
trip time. This effect is more remarkable when the network is
loaded at the 70% of the maximum bandwidth. Notice that in
this case, Pub.1 and Pub.2 are located on the same machine
(see Fig. 4) and the network load is generated by Pub.2.
In this case traffic congestion happens at the level of the
network card driver with consequent higher latency in packet



motor encoder

velocity command

Remote PC Robot PC104

Arm

Interface

/velocityInput

Command

/encoderoutput

Command

5ms

/V output

Command

/Theta Input

Command

V = kp(θd - θ)5ms

Fig. 6: The velocity control loop.

delivery time. By prioritizing the measurement channel (bold
arrow in Fig. 4), the communication thread in Pub.1 receives
higher priority by the operating system. Moreover, since
packets from Pub.1 are prioritized (AF42/Band 0), they get
highest priority also in the network queue and are pushed to
the network physical layer before the packets from Pub.2.

Bottom plots from Fig. 5 demonstrate the results of the
second test case when publishers (Pub.1 and Pub.3) from
separate machines are used for the experiment and traffic
congestion occurs at the network switch. The only difference
in this case is that Pub.1 pushes larger packets to Sub.1. The
reason for this is that larger data packets create higher traffic
congestion in the switch. This explains why the packet trip
times measured in this experiment are slightly higher than
in the previous case. However, as it can be seen in Fig. 5,
channel prioritization greatly improved the performance
(resulting in lower latency) especially when the network is
highly loaded (70%). It can also be observed a big difference
in packet trip times when different communication protocols
are used. The reason is that the TCP communication protocol
uses the bandwidth in a smart way to achieve lower
latency. Moreover, QoS–enabled network switches also have
different routing policies for different packet sizes. However,
as it can be seen from the results, messages transmitted
through prioritized channels are comparatively less affected
by different transport protocols.

B. A velocity control experiment

To further validate the advantages of channel prioritization,
we have carried out an experiment involving the control
of a joint of a real robot. At this aim we have used the
iCub robot and its distributed system. As shown in Fig. 6,
two tasks running on two different PCs. They are employed
in a classical closed-loop scheme whose aim is to attain
a desired joint angular position by sending proper velocity
commands to the corresponding motor. The Arm Interface on
the Robot PC104 provides a YARP port (/encoder) that
publishes robot motor encoders data every 5ms and another
port (/velocity) that receives velocity commands. A
controller task on the Remote PC reads the encoder values
(every 5ms) from its input port (/Theta) which is connected
to the /encoder port. It then calculates the velocity
command and sends it to Arm Interface through the channel
connecting /V to /velocity.

Similarly to the previous section, we prioritized the two

0 0.4 0.8 1.2

θ
 [

d
e

g
]

0

10

20

30

40
load = 40%

t [s]

0 0.4 0.8 1.2

τ
R

T
 [

m
s]

0

10

20

30

40

0 0.4 0.8 1.2

0

10

20

30

40
load = 80%

t [s]

0 0.4 0.8 1.2
0

10

20

30

40

Fig. 7: Evaluation of the joint velocity control experiment.
Both system step responses θ and round-trip time τRT are
depicted in the case of 40% (left) and 80% (right) network
loads. The responses corresponding to the use of QoS
are in red, whereas the system responses without channel
prioritization are in blue. Results are reported in terms of
average and confidence interval of 95%.

communication channels in the control architecture. We also
used some arbitrary channels to create two different network
loads (i.e. 40% and 80%) during the experiment. We recorded
the joint step response θ of the system under the disturbance
of such network loads and compared the effects in the
overshoots and round-trip time τRT

2 with and without QoS
(channel prioritization).

Fig. 7 depicts the average and the 95% confidence interval
computed over 10 successive trials. It clearly illustrates how
the system behaved robustly in the case of 40% load, that
is the performances were almost equivalent irrespective of
the use of our QoS. Conversely, when the network load
was increased up to 80%, the QoS was remarkably able to
keep the step response unchanged. Importantly, in this latter
case, the system without channel prioritization overshoots
the target (its response is under-damped). This significant
performance variation was caused by network collisions that
produce an increased delay in the closed-loop. This is well
visible in Fig. 7, i.e. when QoS is not enabled the round-trip
time is approximately twice as high (see also Tab II). This
experiment demonstrates that channel prioritization is a key
factor that prevents external disturbances from negatively
affecting the control loop delay, thus preserving the original
stability margins of the system.

2Round-trip time in this case is computed in Remote PC by embedding
a time-stamp in the velocity commands. This time-stamp is received by
Robot PC104 and propagated in the subsequent encoder message back to
RemotePC which computes τRT . In this experiment, τRT is affected by the
rates of the controller and Arm Interface threads (both running with period
Ts = 5ms). Therefore, it holds τRT = n ·Ts, where the positive integer n might
vary instantaneously depending on the channel’s conditions.



TABLE II: Results of the joint velocity control experiment.
Maximum values of the overshoot are reported as well as the
average of the round-trip time τRT along with the maximum
of the 95% confidence interval (in parentheses).

Overshoot [%] τRT [ms]
Network Loads 40% 80% 40% 80%
Normal 3 11.8 7.14 (18.25) 14.37 (35.12)
QoS 1.3 2.5 6.57 (13.16) 7.15 (13.33)

V. CONCLUSIONS

This article described an approach to integrate channel
prioritization in a publish/subscribe middleware. In our
approach specific communication channels can be prioritized
to ensure, in a best–effort sense, the minimum message
delivery time from publishers to subscribers.

The approach simply leverages the operating system
functionalities such as real–time thread scheduling and
IP packet type of service bits to deal with the typical
bottlenecks that cause network congestions in local network.
In addition, our approach does not require centralized
broker for message prioritization and for this reason it can
be applied to peer-to-peer publish-subscribe architectures.
Finally (although not investigated in this paper), it allows
for remote and dynamic configuration of the parameters that
control the communication priorities.

We implemented our approach in the YARP middleware
and evaluated it in different scenarios demonstrating
significant improvement in jitter and latency of message
delivery, especially in presence of heavily loaded network.
Moreover, using a classical closed-loop control experiment
we demonstrated that channel prioritization guarantees that
stability margins remain unvaried and prevent increase of the
delays in the control loop under heavy network loads. These
results make our approach particularly useful in distributed
time–critical applications. Future work will investigate
mechanisms for monitoring communication channels for
automatically selecting optimal prioritization policies.

ACKNOWLEDGMENT

This project has received funding from the European
Union’s Seventh Framework Programme for research,
technological development and demonstration under grant
agreement No. 270273 (Xperience), project No. 611832
(WALK-MAN) and project No. 612139 (WYSIWYD).

REFERENCES

[1] G. Metta, G. Sandini, and D. Vernon, “The iCub humanoid robot: an
open platform for research in embodied cognition,” Proceedings of
the 8th workshop on performance metrics for intelligent systems, pp.
50–56, 2008.

[2] T. Asfour, K. Regenstein, P. Azad, J. Schröder, A. Bierbaum,
N. Vahrenkamp, and R. Dillmann, “ARMAR-III: An integrated
humanoid platform for sensory-motor control,” in IEEE-RAS
International Conference on Humanoid Robots (Humanoids), 2006,
pp. 169–175.

[3] K. Kaneko, K. Harada, F. Kanehiro, G. Miyamori, and K. Akachi,
“Humanoid robot hrp-3,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2008, pp. 2471–2478.

[4] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, 2009.

[5] P. Fitzpatrick, G. Metta, and L. Natale, “Towards long-lived robot
genes,” Robotics and Autonomous Systems, vol. 56, no. 1, pp. 29–45,
Jan. 2008.

[6] H. Bruyninckx, “Open robot control software: the OROCOS project,”
in IEEE International Conference on Robotics and Automation, vol. 3.
IEEE, 2001, pp. 2523–2528.

[7] N. Ando, T. Suehiro, and T. Kotoku, “A software platform
for component based rt-system development: OpenRTM-Aist,”
Simulation, Modeling, and Programming for Autonomous Robots, pp.
87–98, 2008.

[8] D. Brugali and A. Shakhimardanov, “Component-based robotic
engineering (part ii),” Robotics & Automation Magazine, IEEE,
vol. 17, no. 1, pp. 100–112, 2010.

[9] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
many faces of publish/subscribe,” ACM Computing Surveys, vol. 35,
no. 2, pp. 114–131, June 2003.

[10] H. Kopetz, Real-time systems: design principles for distributed
embedded applications. Springer Science & Business Media, 2011.

[11] T. L. Dean and M. S. Boddy, “An analysis of time-dependent
planning.” in AAAI, vol. 88, 1988, pp. 49–54.

[12] F. Mastrogiovanni, A. Paikan, and A. Sgorbissa, “Semantic-aware
real-time scheduling in robotics,” IEEE Transactions on Robotics,
vol. 29, no. 1, pp. 118–135, 2013.

[13] J. Kiszka and B. Wagner, “RTnet - a flexible hard real-time networking
framework,” IEEE Conference on Emerging Technologies and Factory
Automation, vol. 1, 2005.

[14] B. Blum, T. Abdelzaher, and J. Stankovic, “RAP: a real-time
communication architecture for large-scale wireless sensor networks,”
Proceedings. Eighth IEEE Real-Time and Embedded Technology and
Applications Symposium, pp. 55–66, 2002.

[15] M. Felser, “Real-time ethernet–industry prospective,” Proceedings of
the IEEE, vol. 93, no. 6, pp. 1118–1129, 2005.

[16] T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The design and
performance of a real-time corba event service,” ACM SIGPLAN
Notices, vol. 32, no. 10, pp. 184–200, 1997.

[17] P. Gore, I. Pyarali, C. D. Gill, and D. C. Schmidt, “The design and
performance of a real-time notification service,” in Real-Time and
Embedded Technology and Applications Symposium. IEEE, 2004,
pp. 112–120.

[18] G. Deng, M. Xiong, J. Balasubramanian, and G. Edwards,
“Evaluating real-time publish/subscribe service integration approaches
in QoS-enabled component middleware,” in 10th IEEE International
Symposium on Object and Component-Oriented Real-Time Distributed
Computing, 2007, pp. 222–227.

[19] OMG, “Common Object Request Broker Architecture
(CORBA/IIOP).v3.1,” OMG, Tech. Rep., Jan. 2008.

[20] G. Pardo-Castellote, “Omg data-distribution service: Architectural
overview,” in 23rd International Conference on Distributed Computing
Systems Workshops. IEEE, 2003, pp. 200–206.

[21] R. Connext, “RTI Connext DDS Professional.” [Online]. Available:
http://www.rti.com/products/dds/

[22] PrismTech, “OpenSplice Data Distribution Service.” [Online].
Available: http://www.prismtech.com/vortex/vortex-opensplice

[23] Y.-h. Kuo and B. Macdonald, “A Distributed Real-time Software
Framework for Robotic Applications,” in International Conference on
Robotics and Automation, no. April, 2005, pp. 64–69.

[24] J. Martinez, A. Romero-Garcés, L. Manso, and P. Bustos, “Improving
a Robotics Framework with Real-Time and High-Performance
Features,” in Simulation, Modeling, and Programming for Autonomous
Robots (Simpar). Springer-Verlag New York Inc, 2010, p. 263.

[25] A. Paikan, P. Fitzpatrick, G. Metta, and L. Natale, “Data Flow
Port Monitoring and Arbitration,” Software Engineering for Robotics,
vol. 5, no. 1, pp. 80–88, 2014.

[26] A. Paikan, V. Tikhanoff, G. Metta, and L. Natale, “Enhancing software
module reusability using port plug–ins: an experiment with the iCub
robot,” in Proc. IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2014.

[27] W. Almesberger, J. H. Salim, and A. Kuznetsov, “Differentiated
services on linux,” in Globecom99, no. LCA-CONF-1999-019, 1999,
pp. 831–836.

[28] P. Almquist, “Type of service in the internet protocol suite,” 1992.
[29] K. Nichols, S. Blake, F. Baker, and D. Black, “Definition of the

differentiated services field (DS field) in the IPv4 and IPv6 headers,”
1998.


