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Abstract— Latest deep learning methods for object detection
provide remarkable performance, but have limits when used in
robotic applications. One of the most relevant issues is the long
training time, which is due to the large size and imbalance
of the associated training sets, characterized by few positive
and a large number of negative examples (i.e. background).
Proposed approaches are based on end-to-end learning by
back-propagation [22] or kernel methods trained with Hard
Negatives Mining on top of deep features [8]. These solutions
are effective, but prohibitively slow for on-line applications.

In this paper we propose a novel pipeline for object detection
that overcomes this problem and provides comparable perfor-
mance, with a 60x training speedup. Our pipeline combines (i)
the Region Proposal Network and the deep feature extractor
from [22] to efficiently select candidate RoIs and encode them
into powerful representations, with (ii) the FALKON [23]
algorithm, a novel kernel-based method that allows fast training
on large scale problems (millions of points). We address the
size and imbalance of training data by exploiting the stochastic
subsampling intrinsic into the method and a novel, fast,
bootstrapping approach.

We assess the effectiveness of the approach on a standard
Computer Vision dataset (PASCAL VOC 2007 [5]) and demon-
strate its applicability to a real robotic scenario with the
iCubWorld Transformations [18] dataset.

I. INTRODUCTION

Visual recognition and localization of objects is crucial
for robotic platforms. This problem is known in Computer
Vision as object detection, where the objects represented
in an image are localized with a bounding box and then
associated to a label. Deep learning has remarkably boosted
the performance of the state of the art [4], [24], [14], [26],
[8], [22], [15], [1] but training such systems require large
amount of data and it is slow. For robotic applications it is
desirable to use methods that allow robots to quickly adapt
to the environment.

In previous work [18], [19] we proposed an interactive
method that allows the robot to automatically acquire anno-
tated images by interacting with a human and demonstrated
that data acquired in this way allows training an object
detection algorithm (i.e. Faster R-CNN [22]) with good
accuracy [16].

However, in [16] training was performed off-line as
in [22], i.e., by fine-tuning the model on the task at hand.
Most latest architectures for object detection are learned
end-to-end by gradient descent with back-propagation [22],
[15], [1], [21]. This is achieved by formulating a single
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optimization problem, to learn, jointly, the three stages of the
classical detection pipeline: extraction of candidate regions,
feature encoding and regions classification (see [10] for
a comprehensive overview). This training protocol require
massive computational resources and hours/days of training.
In this paper we propose an object detection pipeline that
can be trained on-line, (i.e. in seconds), without sacrificing
detection performance.

We adopt an approach that is similar to Region-CNN [8],
in which each stage of the pipeline is trained independently.
This approach is more suitable for an online learning because
the region proposals and the deep representation can be
kept fixed while the final region classification is trained. For
instance, Region-CNN uses Selective Search [31] and a pre-
trained CNN to get candidate regions and encode them into
features, on top of which Support Vector Machines (SVMs)
are trained.

Training neural models for object detection is compu-
tationally demanding. This is due to the large number of
candidate regions that are extracted from the training images,
especially from the background. Typically a time consuming
process is applied to extract a small number of negative
examples on which to train the system. Such process aims at
selecting a subset of negative examples that are meaningful
(i.e. ‘hard’) and whose size is comparable to the available
positive examples, thus re-balancing the dataset. As an
example training in Region-CNN uses the Hard Negative
Mining procedure of [30] and it requires hours to complete.

We compose our pipeline by first adopting the Region
Proposal Newtork (RPN) presented in Faster R-CNN [22]
for learning the candidate regions: this is a double-layer
Convolutional Neural Network (CNN) that can be trained
offline in relatively short time and, since it is object-agnostic,
can be used for multiple object detection tasks. Using another
deep CNN we encode each region into a set of feature
vectors. These feature vectors are then fed to a kernel-based
classifier which is trained online. In doing so, for the first
off-line part, we basically adopt the architecture of Faster
R-CNN [22], except that the RPN and the feature extractor
CNN are learned on one task, and then re-used on different
tasks.

This choice is motivated by the literature suggesting that
deep CNNs provide powerful and general features which can
be used for multiple tasks [27], [3], [11], [8], [18].

For region classification we adopt FALKON [23], a recent
kernel-based method for large-scale datasets. We leverage
on the stochastic sampling of the kernel centers performed
by FALKON and propose an approximated version of the
Hard Negative Mining procedure, to efficiently re-balance the



training set. We show that depending on the desired compu-
tation time, this procedure can be tuned to subsample more
or less extensively the training set without compromising
performance.

We validate the pipeline on a subset of the PASCAL
VOC 2007 [5], by comparing performance and training time
with Faster R-CNN. Finally, we experiment with a real-
world robotic application to demonstrate that the proposed
approach allows learning a novel task (10 classes × 10k
images) in few seconds. To this end, we use the iCubWorld
Transformations Dataset [18], a robotic benchmark for object
recognition and detection.

II. RELATED WORK

The problem of object detection can be naturally
decomposed into two subtasks: (1) objects localization and
(2) image classification. Historically many approaches have
been proposed which address these tasks in different ways.
They can be grouped as follows:

Grid-based object detectors. In this case a classifier is
applied on a dense image grid, obtained using a Sliding
Window paradigm [12], [6] or a fixed stride. The work of
LeCun et al. [12] is one of the first where convolutional
neural networks were applied in a Sliding Window fashion.
More recently, other grid-based approaches have been
proposed like SSD (Single-Shot MultiBox Detector) [15]
and YOLO (You Only Look Once) [20], [21].

Region-based object detectors. Algorithms belonging to
this group perform detection only on a set of “candidate” Re-
gions of Interest (RoIs), selected with a separate process (see
e.g., Region-CNN (R-CNN) [8] and its optimizations Fast R-
CNN [7], Faster R-CNN [22], Region-FCN [1] and Mask R-
CNN [9]). These architectures employ different methods for
predicting RoIs. For example Region-CNN usually relies on
Selective Search [31], while Faster R-CNN uses a dedicated
CNN, called Region Proposal Network (RPN) [22]. The
RPN is a double-layer Convolutional Neural Network, which
is trained on the data to discriminate background from
potential objects. The main advantage of this approach is
that it provides a limited number of predicted RoIs with low
computation time [22].

Among these architectures we can distinguish between
those which are trained end-to-end [1], [9], [22] and those
which need a multi-stage learning process [8].

In this work we propose a pipeline that exploits the
benefits of an RPN for RoIs prediction while relying on a
two-stage training procedure to allow fast model adaptation
to new tasks.

The problem of background selection. The problem with
grid-based and region-based detectors is that they produce
a large number of RoIs, most of which originate from
the background. Because negative examples are computed
from these RoIs, this leads to a training set that is large
and highly unbalanced. The size of the training set makes

learning computationally unfeasible, and the fact that positive
examples are underrepresented inevitably bias the result of
the training.

In the literature, methods have been proposed to deal with
these issues. The first solution to be introduced was based
on bootstrapping [30] (now often named as Hard Negative
Mining [8]). This approach performs an iterative training,
which selects a set of ‘hard’ negatives, i.e. negative examples
that are difficult to classify. This solution is still currently
adopted in the state of the art like R-CNN [8], and it has been
adapted recently to be used during back-propagation [28],
[7].

More recently, a new object detector has been proposed
(i.e. RetinaNet [13]). It is a CNN based approach in which a
novel loss function, called Focal Loss, is adopted for training
end-to-end and deal with class imbalance. This new function
is designed to down-weight easy negative examples such
that their contribution to the total loss is small even if their
number is large.

These solutions are effective and produce impressive
results. However they are intrinsically slow because they
rely on backpropagation, while bootstrapping requires to
iteratively visit all negative examples in the training set.
Training such systems takes hours even for medium scale
datasets of few thousands of images, on servers equipped
with powerful GPUs as the one used for the experimental
evaluation of this work (an NVIDIA(R) Tesla P100 GPU).

In this work we propose a novel approach to (i) select
hard negatives, by implementing an approximated and faster
bootstrapping procedure, and (ii) account for the imbalance
between positive and negative regions by relying on a
Nÿstrom based kernel method (namely FALKON [23]).

III. METHODS

We considered the scenario in which a human teaches the
robot to detect a set of novel object instances (TARGET-
TASK in the following). We suppose that the visual system
of the robot has been previously trained on a different set
of objects (PREV-TASK in the following), and that the
convolutional weights are detained for future use.

We propose an object detection method that can be trained
on-the-fly (i.e. at run time) on the TARGET-TASK, by
relying on some of the components previously trained on
PREV-TASK. Referring to a typical detection pipeline,
composed of (i) a region proposal stage, (ii) a feature
extraction stage and (iii) a final classification stage, we
propose an approach which learns (i) the region proposals
and (ii) the feature extractor, on PREV-TASK, such that,
when the robot is required to learn the TARGET-TASK,
only the final classification stage is re-trained online. Our
major contribution consists in an efficient approach to per-
form the latter step, which remarkably reduce training time
while retaining performance. Specifically, we propose to use
a set of FALKON classifiers, Regularized Least Squares
(RLS) regressors for bounding boxes refinement, and an
approximated method for selecting positive and negative
samples.



Fig. 1: Overview of the proposed on-line object detection
pipeline. For a detailed description see Sec. III.

In this Section, we describe the main steps of the proposed
pipeline. We first motivate the choices of the region proposal
and feature extraction method (Sec. III-A). Then, we focus
on the classifier algorithm (Sec. III-C), and describe how it
addresses the large imbalance between positive and negative
examples. Finally we describe the procedure for selecting
background samples (Sec. III-D).

A. Pipeline Overview

We refer to Fig. 1 for a pictorial representation of each
stage of the pipeline. For the first stages, we adopt the
architecture of Faster R-CNN [22]. We exploit the class-
agnostic Region Proposal Network (RPN) to predict a set
of candidate RoIs. Each of them is then associated to a
deep feature map by means of the so-called RoI pooling
layer [7]. This allows to encode each proposed region into
a deep representation, using only one forward pass of the
convolutional feature extraction layers. Specifically, we adopt
the CNN model proposed in [33] as convolutional backbone
of the algorithm (whose integration in Faster R-CNN is
publicly available1).

Finally, in Faster R-CNN, the pooled features from the
region proposals are processed by the so-called detection
network, which is composed of two fully-connected layers
and two final output layers for class prediction and bounding
box refinement. In our pipeline, we keep the two fully con-
nected layers, but replace the two output layers respectively
with the FALKON classifiers and Regularized Least Squares
(RLS) regressors for the refinement of the bounding boxes.

B. Training

In the considered scenario, we train Faster R-CNN on the
PREV-TASK in order to learn the RPN and the convolu-
tional and fully connected layers (CNN feature extractor).
When learning the TARGET-TASK, we use these com-
ponents to extract and encode region proposals into deep
features, and we train online only the FALKON classifiers
and RLS regressors.

To learn the RPN and the CNN feature extractor, we
adopted the 4-Steps Alternating Training method proposed

1https://github.com/rbgirshick/py-faster-rcnn/
tree/master/models/pascal_voc/ZF

in [22]. This method alternates the optimization of the RPN
and the detection network, thus learning shared convolutional
features. In the first two steps, respectively the RPN and the
Detector are learned from scratch, while the shared convo-
lutional layers and the fully-connected layers are fine-tuned,
starting from weights previously trained on ImageNet (the
image classification task of Large-Scale Visual Recognition
Challenge (ILSVRC) 2012 [2]). In the two latter steps, the
shared convolutional layers are frozen, and the RPN and the
detection network are fine-tuned on the target detection task
(in our section PREV-TASK). We refer the reader to [22]
for a detailed explanation of the architecture and this training
procedure.

In the following section, we describe more in detail the
algorithm and learning of the remaining part of the pipeline,
which is the core of the proposed approach.

C. FALKON: efficient regions classification

The candidate RoIs extracted by the RPN represent poten-
tial object locations, which need to be classified as belonging
to either one of the considered classes (namely, the object in-
stances of our TARGET-TASK), or rejected as background.

We address a multiclass classification task by learning a
set of binary classifiers, one for each class, in a one-vs-
all fashion. For each category, we collect the training set
by selecting and labeling candidate RoIs as either positive
samples (i.e. belonging to the class, indicated as P in the
following) or negative ones (i.e. background or other classes,
indicated as N in the following). This results in a large
dataset.

Training standard kernel methods for classification on
large datasets can be prohibitive, because it requires to solve
the linear system (also known as Kernel Ridge Regression
or KRR): (Knn + λnI)α = ŷ, where n is the number of
training points {(x1, y1), ..., (xn, yn)}, (Knn)ij = K(xi, xj)
is the Kernel matrix and λ is a regularization parameter.

It can be easily observed that this problem does not scale
well with the number of samples n. Just storing K requires
O(n2) in memory space while computing and inverting Knn

(i.e. learning phase) requires O(n2c+ n3) in time (where c
is the kernel evaluation cost). FALKON [23] approximates
the KRR problem using a Nÿstrom method [32], [29] by
stochastically sampling a subset of M � n training points
as Kernel centers. In addition it uses the conjugate gradient
method [25] associated with a preliminary preconditioning,
for an iterative and faster solution of the associated linear
system.

FALKON requires O(M2) in memory space and
O(nMt + M3) for the kernel computation and inversion.
Since it has been shown that choices of M � n preserve
statistical properties [23], accuracy is retained, while we gain
a significant boost in computation performance.

We refer the reader to [23] for a detailed description of the
method. In our pipeline, we adopted the publicly available
FALKON implementation2.

2https://github.com/LCSL/FALKON_paper



D. Background samples selection

We propose two strategies in order to (i) select hard
negatives and (ii) account for the imbalance between
positive and negative regions. As it will be shown in
the experimental Sec. IV, adopting these strategies in
combination with FALKON proved to be fundamental in
order to reduce the training time without losing accuracy.

Approximated Hard Negatives Mining. A first component
of our approach is an approximation of the Hard Negatives
Mining method adopted in [8] and proposed in [30]. Core
idea behind the original method is to gradually grow (boot-
strap) the set of negative examples by repeatedly training
and testing the detector and by including in the training set
only those samples which are hard to classify correctly for
the detector.

This idea is implemented with an iterative procedure
which, for each class, visits all images in the training set
and, for each image i:

1) tests the model trained at the previous iteration
(modeli−1) on all negative regions in the ith image,
to select the hard ones, maintaining a number of NH

i ;
2) learns a new model (modeli) on the train set com-

posed by the union of the P positives (which
are fixed) and the hard negatives collected so far
(Nchosen i−1

⋃
NH

i );
3) tests modeli on the negatives on which it has been

trained in order to prune the easy ones maintaining a
number of Nchosen i.

The output of this procedure is a number of Nchosen final

(hard) negatives examples, which, jointly with the P positive
regions, are used to train the final version of the model. The
procedure is repeated for all the binary classifiers that are
trained on the multiclass problem.

Such an approach is clearly time consuming, because it
iterates over all images in the training set and processes
all negative regions proposed by the RPN. Therefore, in
our pipeline we propose to use an approximation, which
consists in (i) considering a random subset of all negative
regions extracted by the RPN from all training images and
(ii) dividing the sampled regions into a number nB mini-
batches (of size B). Finally we select a number of hard
negatives by applying the Hard Negatives Mining method,
described above, on each batch.

In Sec. IV we compare three variants of the proposed
approach:
FALKON + MINI BOOTSTRAP (nB × B): This is the
approximated procedure we outlined above, when both the
size of the mini-batches B and the number of bootstrapping
iterations nB are parameters that can be varied to tune the
procedure.
FALKON + FULL BOOTSTRAP: This is the strategy adopted
by [8]. It can be seen as performing our approximated
procedure when considering all negative regions in the
training set, setting each mini-batch to contain all the
negatives from each of the n images of the dataset (i.e.,

nB = n and B set as the number of negatives in each
image).
FALKON + RANDOM BKG: In this case we do not
perform any type of hard negatives selection, but we
randomly sample a subset from all the negative regions
proposed by the RPN. This can be seen as performing our
approximated procedure with nB = 0 and B set as the size
of the selected subset.

Rebalancing Nÿstrom centers. The second component of
our approach is the stochastic sampling of the Nÿstrom
centers performed by FALKON, to account for the positive-
negative imbalance. Specifically, we propose to condition
the stochastic sampling of the M centers in the algorithm, at
each iteration of the approximated bootstrapping procedure
described above, such that we take a number of P ′ positives
with P ′ = min

(
P, M2

)
, while we randomly choose the

remaining (M − P ′) centers among the Nchosen i−1
⋃
NH

i

negatives obtained at the ith iteration. This step is
fundamental because, when P � N , randomly sampling
the M centers among the union of the two sets might lead
to further reducing the number of positives with respect to
the number of negatives and, in the worst case, discarding
all positives from the sampled Nÿstrom centers.

The fundamental parameters of the proposed approach are
(i) the number of selected Nÿstrom centers (M ), (ii) the
number of bootstrapping iterations (nB), (iii) the size of the
mini-batches of negatives (B), and (iv) FALKON’s Gaussian
kernel parameters λ and σ. We cross-validated these latter
two using a one-fold cross-validation strategy, considering as
validation set a subset of 20% of the training set. In Sec. IV,
we provide experimental evaluation of the other parameters
which allow to tune the procedure to subsample more or
less extensively the training set, depending on the desired
computation time.

IV. EXPERIMENTS

In this section we provide experimental evaluation of the
proposed online object detection pipeline. We compare the
three different training protocols described in Sec. III-D
using Faster R-CNN as baseline.

In Sec. IV-B we test the pipeline in a robotic setting
using the ICUBWORLD TRANSFORMATIONS dataset [18],
considering the scenario described in Sec. III.

All experiments reported in this paper have been per-
formed on a machine equipped with Intel(R) Xeon(R) E5-
2690 v4 CPUs @2.60GHz, and a single NVIDIA(R) Tesla
P100 GPU. We set FALKON to not use more than 10GB of
RAM.

A. Experimental Validation on PASCAL VOC 2007

We validate our method on a subset of PASCAL VOC
2007 [5], a standard computer vision dataset. We report
performance in terms of (i) mAP (mean Average Precision),
as defined for PASCAL VOC 2007, and (ii) training time.
Specifically, we considered 7 classes among the 20 that



Method mAP [%] Train Time
Faster R-CNN 51,9 ∼25 min
FALKON + Full Bootstrap (∼ 1K×1000) 51,5 ∼8 min
FALKON + Random BKG (0× 7000) 47,7 ∼25 sec

TABLE I: Performance comparison on a subset of 7 classes
of the PASCAL VOC 2007. See the text (Sec. IV-A) for
details about the task and Sec. III-D for details about the
methods.

are available (aeroplane, bicycle, bird, boat, bottle, bus,
car). As train and test set we selected, from the VOC 2007
trainval and test sets, all the images that depict at least one
instance which belongs to one of the 7 classes. Overall we
collected a training set of ∼1K images and a test set of ∼2K.

Approximated Hard Negatives Mining. As a first valida-
tion, we explored different configurations of the FALKON
+ MINI BOOTSTRAP approach proposed in Sec. III-D. We
vary the number of bootstrapping iterations (nB) between
0 (i.e., no bootstrapping) and 1K (i.e., full bootstrapping,
by visiting all training images one by one), with varying
size of background batches (B). Coherently, we observed an
improvement in mAP (and training time) when progressively
performing a more extensive bootstrap.

We report, in Table I, the results provided by two “ex-
treme” training conditions, comparing them with the base-
line represented by fine-tuning Faster R-CNN’s last layers
(which we consider the “upper bound” for the expected
mAP). We consider (i) FALKON + RANDOM BKG, for
which we did not perform bootstrapping and set the number
of randomly sampled background regions to 7000 (higher
values did not improve performance), and (ii) FALKON
+ FULL BOOTSTRAP. In this latter case, as explained in
Sec. III-D, we performed as many bootstrapping iterations
as the number of training images (1K), processing a batch of
∼1000 background regions for each visited image. In both
experiments, in this case, we set the number of Nÿstrom
centers equal to the number of training points (this parameter
is investigated in more details in the next paragraph).

When fine-tuning Faster R-CNN, we froze all layers (RPN
and CNN’s layers up to fc7), except the last fully con-
nected layers for classification and bounding box regression
(namely, cls and bbox-reg) which we trained from scratch.
For this step we set the number of iterations to 15K.

As it can be observed from Table I, we could train
a detection model in ∼25 seconds, with a 4% gap in
performance with respect to the mAP provided by fine-
tuning Faster R-CNN’s last layers (which however requires
∼25 minutes). Moreover, we were able to reproduce state
of the art performance (up to 0.4%) in 8 minutes. In
Sec. IV-B, we show that, on the robot, it is possible to
find a bootstrapping configuration that remarkably reduce
training time while retaining performance.

Rebalancing Nÿstrom centers. As a second validation, in
Fig. 2 we report performance on the same task when varying

the number of Nÿstrom centers (M parameter in Sec. III-
C). For this experiment, we considered the FALKON +
RANDOM BKG configuration of Table I, and progressively
decreased M , by applying, for each value, the rebalancing
approach described in Sec. III-D. For each value of M ,
we report the mAP (Left), the training time (Center) and
the testing time (Right). It can be observed that mAP
performance degrades only when using very few centers, and
that a value of M =∼ 500 is sufficient to achieve optimal
performance, fast training (∼12 seconds) and testing time
(around ∼10 FPS, obtained by dividing the number of tested
images, ∼2K, by the reported testing time for M = 500, i.e.,
∼225 seconds).

B. Experiments on the ICUBWORLD TRANSFORMATION
dataset

To evaluate the effectiveness of the proposed pipeline
in a robotic scenario, we consider the ICUBWORLD
TRANSFORMATIONS dataset (ICWT in the following).

iCubWorld Transformations. This dataset has been
automatically acquired in a natural teacher-learner setting by
using the iCub robot [17]. The teacher shows an object in
front of the robot, which moves the eyes to fixate and track
it. Using its stereo system, the robot segments the object
by selecting those points which are closest to the cameras3.
The bounding box that contains the segmented object, is
then stored jointly with the label of the object which is
provided verbally by the teacher. We refer to [19] for a
complete description of the acquisition setup and to [18] for
details about the dataset, which is publicly available4.

Experimental Setup. For our experiments we considered
the scenario described in Sec. III and we defined the two
tasks (PREV-TASK and TARGET-TASK) as two object
identification tasks among 10 object instances. We randomly
chose one object instance from each of the 20 different
categories in the dataset, and split them into two sets of
10 objects each. We show an example image for each object
considered in both tasks in Fig. 3.

For each task, we considered, as training set for each
object, the union of the 4 image sequences available in
ICWT, corresponding to the 2D ROT, 3D ROT, BKG and
SCALE viewpoint transformations, taking into account both
acquisition days. Overall this leads to a set of ∼10K images.
As a test set for each object we used the remaining MIX
sequence, in both acquisition days. We refer to [18] for
details about the dataset’s sequences.

We trained Faster R-CNN end-to-end on PREV-TASK,
setting the number of iterations to 40K when learning the
RPN and to 20K when learning the CNN detector. We finally
trained the FALKON classifiers and evaluated performance
on the test set of TARGET-TASK.

3This approach assumes that the object of interest is the closest entity to
the robot in the scene, which in practice holds in our scenario

4https://robotology.github.io/iCubWorld/



Fig. 2: The three plots refer to the experiment discussed in Sec. IV-A and report the mAP (Left), training time (Center) and
testing time (Right) for increasing values of the number of Nÿstrom’s centers (M ) when using FALKON.

As for PASCAL VOC, we considered Faster R-CNN as
a baseline. To this end, we used the model obtained by
training end-to-end on PREV-TASK, and froze all layers
(RPN and CNN’s layers up to fc7), while learning from
scratch only the last fully connected layers for classification
and bounding box regression (namely, cls and bbox-reg).
For this step we set the number of iterations to 20K.

Results. In Table II we compare the performance of Faster
R-CNN baseline with the methods FALKON + RANDOM
BKG and FALKON + MINI BOOTSTRAP (Sec. III-D).

Based on the empirical observations from Sec. IV-A, in
these experiments we use a relatively large value of Nÿstrom
centers (around half the size of the training set), because
this does not have a negative impact on the training time as
demonstrated by the experiments in Table I.

As in PASCAL VOC, for FALKON + RANDOM BKG
we set the number of randomly sampled background regions
to 6000, because we observed that further increasing this
parameter did not improve performance.

Regarding FALKON + MINI BOOTSTRAP, we observed
that a few bootstrapping iterations already give performance
that are comparable to the Faster R-CNN. As an example, in
Table II we report two different configurations of FALKON
+ MINI BOOTSTRAP: (i) nB = 4 and B = 2500 (FALKON
+ MINI BOOTSTRAP (4× 2500)) and (ii) nB = 10 and B =
1500 (FALKON + MINI BOOTSTRAP (10× 1500)).

It can be noticed that FALKON + RANDOM BKG has the
fastest training time but with lowest mAP. On the contrary,
the proposed bootstrap method, FALKON + MINI BOOT-
STRAP (4 × 2500) provides comparable mAP performance
which are comparable with those obtained with Faster R-
CNN, with just 40 seconds of training (in contrast fine-tuning
Faster R-CNN takes 40 minutes). Moreover, FALKON +
MINI BOOTSTRAP (10×1500) outperforms fine-tuning with
a train time of ∼ 50 seconds.

V. CONCLUSIONS

In this paper we propose a system for object detection that
combines Faster R-CNN [22], with FALKON [23], a kernel-
based method specifically designed for large-scale datasets.
In addition, we include a novel approximated technique for

pruning the training set by selecting hard negative examples.
Our approach can be trained much faster than Faster R-
CNN (≈ 60×) while preserving comparable detection per-
formance.

Fast learning methods are fundamental for robots to
quickly adapt to their environment. Deep-learning methods
for object detection achieve remarkable performance, but are
slot to train. This hinder their adoption in those scenarios
that require robots to learn online. In this sense the work
described in this paper is an important step toward the
implementation of more adaptive robotic systems.
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