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Abstract— Robust object pose tracking plays an important role
in robot manipulation, but it is still an open issue for quickly
moving targets as motion blur can reduce pose estimation
accuracy even for state-of-the-art RGB-D-based methods. An
event-camera is a low-latency sensor that is robust to motion
blur that can act complementary to RGB-D. We propose a
dual Kalman filter: the first filter estimates an object’s velocity
capitalising on the millisecond temporal-resolution data of
the event camera, the second filter fuses the tracked object
velocity with a low-frequency object pose estimated from a deep
neural network using RGB-D data. The full system outputs
high frequency, accurate object poses also for fast moving
objects. This work targets low-power robotics by replacing
high-cost GPU-based optical flow used in prior work with event
cameras that inherently extract the required signal without costly
processing. The proposed algorithm achieves comparable or
better performance when compared to two state-of-the-art 6-DoF
object pose estimation algorithms and one hybrid event/RGB-D
algorithm on benchmarks with simulated and real data. We
discuss the benefits and trade-offs for using the event-camera
and contribute algorithm, code, and datasets to the community
for to further the field of visual object tracking.

I. INTRODUCTION

The accurate and consistent estimation of the pose of
objects is a crucial capability for robots that need to act
in unconstrained and dynamic environments, as it plays a
key role in navigation, localisation and object manipulation.
While probabilistic methods [1], [2] form a strong baseline
for object pose estimation, the current-best performance
algorithms employ deep-learning[3], [4], [5], [6]. However,
these algorithms are designed for offline estimation or for
slowly moving targets, and accurate online object pose
tracking for fast moving objects is still an open problem.

A major difficulty when performing pose estimation for
fast-moving objects comes from traditional cameras having
an exposure time. If the object moves more than a few
pixels during the exposure period, the object appears blurred
across the image. High-frequency cameras might need special
illumination to cope with limited exposure time and data
transfer of high-resolution images becomes a bottle-neck in
many vision pipelines. In autonomous robots with limited
power and computational budget, inference time might be too
slow to process accurately fast moving targets, introducing
delays that result in inaccurate pose estimation, and therefore
unreliable robot behaviour. A solution is to combine pose
estimation with object velocity estimation to solve the issue
of slow inference and inaccuracy [7].
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Fig. 1: Overview of the proposed dual filtering framework
for fast moving object pose tracking. Velocity tracking is
performed in a Kalman filter based on event-camera data. A
DNN pose estimator provides low frequency object poses.
An Unscented Kalman filter fuses estimated object poses
with the object velocity and outputs high frequency, accurate
object poses.

Event cameras don’t have a fixed exposure time. Each
pixel has an independent circuit that monitors illumination
change and outputs data asynchronously with precise (sub-
millisecond) timing. An object moving across the field of view
produces events for each pixel that it passes over which can
be disentangled in time and space. As such, event-cameras
are useful sensors for solving motion blur problems. In
addition, the intrinsically compressed data signal can be used
to realise low-latency and low-cost visual processing [8].
However, event-cameras measure illumination change and
not the absolute pixel brightness, and therefore are not as
suited to absolute pose estimation when compared to RGB-D.

In this work we explore augmenting an RGB-D 6-DoF pose
tracking algorithm with data from an event-camera to improve
accuracy for fast-moving objects. In particular we take an
approach similar to our previous work, ROFT [7], which
demonstrated state-of-the-art performance. ROFT employs a
dual Kalman filter approach: an inner loop estimates 6-DoF
velocity from observations of optical flow, while an outer
loop estimates the 6-DoF pose, fusing the velocity estimate
with direct pose estimates from a Deep Neural Network
(DOPE [3]). The optical flow used for velocity estimation is
calculated from consecutive measures of dense pixel intensity
images. Such a system relies on the use of power-hungry
GPU hardware and is still subjected to poor performance if
the camera imagery contains motion blur.

The event camera is a strong contender to replace optical
flow computation for observations of velocity. The sparse



signal promises lightweight processing that inherently con-
tains the illumination change signal from which velocity
can be estimated, and the high-temporal resolution event-
based data stream goes a long way to eliminate motion blur
problems. However an observation model is still required to
convert discrete spatio-temporal events into a 6-DoF velocity
error signal. We therefore adopt a generative event model
that has shown promising performance in 6-DoF camera pose
estimation [9]. The generative event model produces a Kalman
filter innovation based on the expectation of event firing-rate
given the object’s edge contrast and current velocity estimate.

The full 6-DoF object pose estimation system includes
the generative event model wrapped in a Kalman filter for
6-DoF object velocity estimation, fused with any off-the-shelf
RGB-D object pose estimator (we use both DOPE [3] and
DeepTrack [6] in our experiments without further pipeline
modification) wrapped in an Unscented Kalman filter [10],
as illustrated in Fig. 1.

The main contributions can be summarised as:

o The generative-event observation model from [9] adapted
from 6-DoF camera pose estimation to 6-DoF object
pose estimation.

o Integration of event-camera into a hybrid RGB-D
pipeline, replacing the need for optical flow.

o Comparison to two state-of-the-art RGB-D algorithms
([7], [11]) on synthetic and real datasets comprising
objects from YCB Model Set [12] - made available to
the community.

o Quantitative comparison of data-driven ([13]) v.s. model-
based approach for velocity estimation with event-
cameras.

o Discussion on the advantages and disadvantages on
the event-based integration and generative model with
recommendations for future directions.

II. RELATED WORK

Visual object pose tracking has been approached using
traditional Bayesian filtering techniques, in which the prior
probability distribution and the observation probability distri-
bution are fused assuming underlying Gaussian distributions,
as in Kalman filtering [1], or other more general distributions,
as in Particle filtering [14]. These techniques can be optimal
for all systems that are modelled precisely, but can fail due
to non-modelled effects such as dynamic lighting, reflections,
camera blur, deformable objects or occlusions.

Data-driven approaches, i.e. deep neural networks (DNN),
have been employed for visual object pose tracking and
are able to account for many difficult-to-model system
characteristics, so long as a variation of these characteristics
occur in the datasets used to train the models [11], [15].
Despite the impressive performance of recent DNNs for visual
object pose tracking, they are fundamentally limited if the
sensor data is not appropriate for the tracking task.

Event-cameras [16] are vision sensors that produce a signal
in a completely novel way when compared with traditional
cameras. Instead of sampling the entire pixel-array at a
fixed polling rate, each pixel in an event-camera has an

independent circuitry that detects change in light levels. Doing
so has the advantage of lower latency, higher sample-rate (i.e.
asynchronous), and a compressed signal. However, the visual
signal is also different as image-frames are not produced
and the signal is only present during object motion. Event-
cameras have the potential to unlock visual tracking for tasks
(e.g. fast-motion) that even state-of-the-art trackers cannot
achieve due to their reliance on image-frames.

A strong body of work for object tracking with event
cameras on the image plane exists [17], [18], [19], especially
for static cameras, in which only the object produces any
signal and simple clustering of pixels is a valid approach.
Object pose estimation and tracking methods have relied on
hybrid approaches which combine frames and events [13],
[20]. In [13] events are processed in a DNN to give a pose
differential signal, and frames (and also depth) are processed
in another DNN to refine the final pose output. In [20] a event-
based trajectory optimization and a frame-based alignment
module were proposed for 6-DoF object pose tracking.
Hybrid event-camera and frame-based camera approaches
have proven to be successful also in other tasks, such as
high-rate feature tracking [21], and simultaneous localisation
and mapping [22]. Complex motion techniques using only
events have been limited to camera pose estimation [9] and
PTAM [23] (with mixed results), in which the full sensor
array (not only signal from a single object) increase the
observability of the problem and help to achieve convergence.
Due to the complementary nature of camera pose tracking
and object pose tracking, such methods are still influential.

In our work we propose a hybrid method on two fronts.
Firstly, we introduce a novel hybrid frame-based/event-based
method in which we take advantage of fast incremental
updates from events, and slower but globally accurate predic-
tions from a state-of-the-art frame-based pose estimator [3].
Secondly, our technique combines a data driven DNN for pose
estimation, enabling robustness to difficult to model visual
problems, with a visual-geometry-based systems modelling
approach for velocity estimation from events.

III. METHODOLOGY

Given an input stream of RGB {I;} and depth {Dy}
images, a stream of events {£;} and an initial estimate of
the object pose, the proposed pipeline tracks the 6D pose and
velocity of the object with respect to the camera frame, for
every frame k. We use different indexes for the RGB-D frames
and the events to indicate that they have different temporal
resolutions. We also assume that a stream of (non-perfect)
pose measurements {7}, € SE(3)} is available. The poses T,
can be obtained using, for example, a deep learning-based
network for pose estimation. We are interested in the scenario
in which the output frequency of the network is lower than
that of the RGB-D source, i.e., the poses T} are available only
for some k, which is typical for heavy processing required
of pose detection.

The proposed pipeline has two Kalman filter stages:

1) (III-A) 6-DoF velocity, Vj, estimation with an error

signal generated following [9], which requires events,



{E;}, as well as RGB, {I};}, and D, { Dy, }, information
in order to estimate edge gradient magnitudes.

2) (III-B) 6-DoF pose, x, estimation from the fusion of
velocity, Vi, and pose observations, {7} }.

A. Object velocity estimation

From the stream of RGB {I;} and depth images {Dy},
and a stream of events {E;}, we track the 6-DoF object
velocity V using a Kalman Filter. We assume that each event
is represented as

where p; € [—1,1] is the event polarity, u; € R? is the
Cartesian coordinate of the pixel that has emitted the event
in the camera plane and ¢; € R is the timestamp associated
to the event. The filtering process is defined as:

1) State definition: We draw from the Screw Theory [24]
and we define the state as the spatial velocity V

V=[vo wl, 2)

where w € R3 is the angular velocity of the object and
vo € R? is the velocity of a point which coincides with the
origin of the camera instantaneously and moves as if it was
rigidly attached to the object.

2) Motion model: We assume that the underlying dynamics
of the state vector V is described by the following motion
model:

Virr = oV +w,
w~N (0, diag(Q'Ln QW))

where the a-scaled velocity increments Vi, — ) are
Gaussian with covariance Q, € R3*3 and Q, € R3*3
associated to the linear and angular velocity, respectively.
o < 1 € R counteracts the particular phenomenon that
events have no observation of 0 velocity as there is simply
no data. The dampened motion model is a functional method,
but a more appropriate observation model may result in a
better solution.

3) Measurement model: We build upon prior work [9],
and assume that an event E; is generated at pixel u; if the
change in brightness |Alog(I)| exceeds a threshold C, for
that pixel. Here, we use I as the generic intensity image as
seen by the event camera. According to [9], the change in
brightness can be approximated as

3)

|Alog(I)| ~ V,,log(1)T1,;A 5, 4)

where V, log(I) € R? is the image gradient evaluated in
u;, u; € R? is the pixel velocity, and A, ; is the time
elapsed from the last firing event at the same pixel location.
Taking into account the event polarity and the aforementioned
threshold, the event E; is fully specified by the following
[9]:

—p;Vy,log(I)T;A j — C =~ 0. S

In practice, we substitute the intensity image [/ with the
nearest in time RGB image I, from the input stream.

Moreover, we predict 11; as a function of the estimated spatial
velocity Vg, as done in [7]:

u = Ju (D) Vs, (6)

with J, € R?*6 a suitable matrix [7] depending on the RGB-
D camera instrincs parameters, the pixel coordinates and the
depth image Dj, at location u;.

In a Kalman filtering context, we then define the event
measurement model for the j-th event as follows:

Yo (Vi) = (=p;Vu,log(Ik) " Ju, (Di) Ay ;) Vi — C. - (7)

Finally, we collect all events within a given temporal window
in the overall measurement model

Uk Vk) = |Ye, (Vi) | + v uj € D,

(3)
vV~ N(O, RE)7

where we assume to know the set {2 of pixels belonging
to the surface of the object that caused an event within
the temporal window. The cardinality of the set is |Q| =
L. Moreover, v represents additive Gaussian noise with
measurement noise covariance Ry € RLXL,

Given the definition in Eq. (5), which tells that the LHS of
the equation should vanish, we match the measurement model
in Eq. (8) with a set of zero-valued pseudo-measurements
[25]:

ye =0 c R )

4) Kalman filtering: We combine the models in Egs. (3)
and (8) within a Kalman Filter [26] in order to track the
object velocity Vi. At each step k, the previous state is
propagated through the motion model in Eq. (3) to obtain
the predicted state V, . Then, a correction step incorporates
the measurements y~ in the state belief V, according to the
measurement model in Eq. (8).

The number of events L can be vary large, in the order
of thousands. In order to avoid processing high dimensional
measurements, which might be intractable [27], we process
the events sequentially as in [28]. The actual state prediction
and update equations are not reported for brevity and can be
found in [26], [28].

5) Mismatch between events and RGB-D frames: As
previously described, given an event at location u;, we use
the nearest in time RGB-D image I, and Dy in order to
evaluate the image gradient and obtain depth.

In order to account for the temporal distance between the
RGB-D frame and the actual firing time of the event ¢;, we
shift the pixel location u;, that we use to access to the RGB-D
frame, as follows:

ud = u; + Juj (Dk)Vk_(t(Ik) - tj)’

) (10)

where ¢([}) is the timestamp associated to the RGB-D frame
I, and V), is the predicted velocity of the object (see Sec. III-
A.4). As a result, we evaluate the image gradient as Vs (I1)
and depth as Dy, (u3).
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Fig. 2: Tracking errors for se(3)-TrackNet, ROFT and our algorithm showing RMS error of position (a) and RMS error of
rotation (b). Translation object motion along x, y, and z axes correspond to S1, S2 and S3. Rotational object motion along

the 2, y, and = axes corresponds to S4, S5, and S6.

B. Object pose tracking

The second stage of the pipeline fuses low frame-rate
pose measurements {7} } with the estimated velocities {V}},
available for all frames, using an Unscented Kalman Filter
in order to track the 6D pose of the object. In the following,
we detail the filtering process.

1) State definition: We define the state x to be tracked
over time as

(I

where ¢ € R3 is the Cartesian position and ¢ € H is a unitary
quaternion representing the 3D orientation.

2) Motion model: We assume that the state = evolves
according to the following constant velocity model with v©
and w as inputs:

tirr] _ [(Is + OkAg) ty +vp Ar
Qh+1 F(wr)qr

w ~ N(0,diag(Q+, Qq))-

Here, F'(w) is the standard quaternion kinematics transition
matrix [29], Q; € R3*3, Q, € R®*3 are the noise covariance
matrix for the translational and rotational components of the
state, respectively, and A is the sampling time. Furthermore,
@ represents the operation of adding noise taking into account
the quaternion arithmetic [29] and wy represents the skew-
symmetric matrix [30] obtained from wy. The term Wi Aty
accounts for the fact that v,? is the velocity of the object
measured at the origin of the camera.

3) Measurement model: We collect pose measurements in

a vector (T )
_|P
(1) = 7).

where p(T},) € R3, q(T) € H are the Cartesian position and
the quaternion components of the measured pose 7. The

z =t ql,

D w,

Tky1 = [ (12)

(13)

measurement model relating y;, with the state vector zy, is
expressed as

o) = | ] o

UV~ _/\/’(07 diag(Rt7 Rq))?

(14)

with R, € R**® and R, the noise covariance matrices
associated to the translational and rotational components of
the state. If pose measurements are not available at time k,
the equation simplifies to an empty measurement, i.e. the
update step of the filter is skipped.

4) Unscented Kalman filtering: Actual tracking of the state
xy, is performed using a quaternion-based Unscented Kalman
Filter [29] which is suitable for handling quaternions in both
the state and the measurements.

The UKF state prediction and update equations are not
reported for brevity and can be found in [10], [29].

IV. EXPERIMENTS AND RESULTS

Four experiments were performed to evaluate the proposed
algorithm:

e 6-DoF pose accuracy against state-of-the-art RGB-D
algorithms [13], [11] on simulated datasets comprsing
“003 cracker box”, “004 sugar box”, “005 tomato soup
can”, “006 mustard bottle” and “010 potted meat can”
from the YCB [12] Model Set.

e 6-DoF pose accuracy and 6-DoF velocity accuracy
against RGB-D-E [13] hybrid algorithm (that is not
trained, and cannot operate on the above YCB objects
used in the above dataset).

« An ablation study evaluating the contribution of the
velocity compared to pose to the entire pipeline perfor-
mance.
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Fig. 3: A comparison of ours and RGB-D-E for both velocity and pose tracking. The definition of S1-S6 are the same as in

Fig. 2.

o Qualitative comparison on real data from an ATIS [16]
calibrated against a RealSense.

Simulated datasets were generated by rendering object
meshes against a background using Unreal Engine. RGB and
depth was sampled at 500 Hz, and an “artificial event-camera’
used the logarithmic-image-differences to produce events.
Pose observations, T}, are calculated at 10 Hz, and velocity
estimates are computed at 60 Hz to match a typical RGB-D
camera frequency.

i

A. Comparison with RGB-D object pose trackers

We investigated the performance of event-frame fusion
on 36 synthetic datasets of 6 objects from the YCB model
set [12], namely “003 cracker box”, “004 sugar box”, “005
tomato soup can”, “006 mustard bottle” and “010 potted meat
can”!. For each object 6 datasets were created corresponding
to 1 m/s translation-along the x, y, and 2z axes (corresponding
to labels S1, S2, and S3) as well as 4 rad/s rotation-around
the same axes (corresponding to labels S3, S4, and S5).

The proposed algorithm was compared to ROFT [7], the
main difference being the estimate of velocity coming from
frame-based optical flow instead of events. In addition, the
algorithm was compared to the state-of-the-art DNN-based
se(3)-TrackNet [11].

The datasets have fast object motion, but due to the
synthetic production, do not have motion blur. Therefore,
se(3)-TrackNet may struggle as it is not designed for large
jumps in object position between frames. If the relative pose

I'chosen as a DOPE model trained on these models is publicly available.

change of the object is larger than presented at training time
the data-driven method can fail. Instead ROFT is designed for
fast motions, and should not fail due to real-world limitations
of RGB-D cameras (i.e. motion blur).

Our method achieved comparable positional tracking
performance to ROFT (sometime with higher, sometimes
lower performance), and obtained more stable tracking results
compared to se(3)-TrackNet, which fails for some objects
in translations, as shown in Fig. 2. The proposed algo-
rithm shows promising performance for rotational estimation
compared with ROFT indicating that the events may be
more informative for rotation estimation. Indeed, the optical
flow used by ROFT assumes linear visual motion between
consecutive frames, while events can continuously measure
the non-linear visual change associated with object rotations.

The translations along = and y axes (S1 and S2) most
likely exceed the velocities of data on which se(3)-TrackNet
was trained, instead velocities along z (S3) were probably
included in training data; as indicated by the tracking failures
and successes in Fig. 2.

In general the result in Fig. 2 indicates that events
are an appropriate visual signal to use for 6-DoF object
velocity estimation and are comparable to the the optical
flow commonly used in traditional computer vision. Further
evaluation is required with real camera data to understand
the magnitude of degradation of ROFT due to motion blur
(not present in synthetic datasets) - as we did not test ROFT
on real data in this work.
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Fig. 4: Ablation study showing the benefit of events on the pose estimation smoothness.(a): sample trajectories from a
sequence involving translation along the x-axis of the object “010 potted meat can”. (b): sample trajectories from a sequence
involving rotation around the z axis of the object “006 mustard bottle”.

B. Comparison to hybrid RGB-D and Events pose trackers

The sole state-of-the-art in event-based 6-DoF pose estima-
tion is the hybrid RGB-D-E algorithm [13]. Similar to ours,
it is also a two step method, however in RGB-D-E both steps
are data driven convolutional neural networks. The first step
in RGB-D-E is an estimate of pose velocity from events in a
small time window. Differently for ours, the second step is a
refinement that combines the updated pose and the RGB-D
information to give a final pose estimate. The refinement
network requires a minimum error between the event updated
pose and the RGB-D observation to avoid failure.

RGB-D-E is a data-driven approach and the publicly
available model weights are trained only on a single dragon
object and therefore cannot operate on the YCB objects used
in the datasets discussed in Section IV-A. Instead, to enable
a valid comparison we generated a further set of sequences
with the dragon object mesh using an identical approach as
outlined above. However, as DOPE was not trained on the
dragon we instead used DeepTrack [6], which is trained on
the dragon, as the source of T}. To have a fair comparison
with our pipeline, we set the output rate of RGB-D-E to 60
Hz.

As the algorithms have a similar two-step approach we
compare both velocity estimation, see Fig.4a, and pose
estimation, see Fig. 4b. The proposed algorithm (model-based
approach) achieves a lower velocity estimation error compared
to RGB-D-E (data-driven CNN). Additional data could be
used to train the velocity estimation network to improve
performance, however as there is a known mathematical
model that relates visual flow and 6-DoF velocity (i.e. the
image Jacobian J,, in equation (6) in Section III), perhaps a
data-driven approach at this level is less beneficial to the full
pipeline. In addition, the data-driven CNN has to be trained
for each object specifically, while the model-based approach

TABLE I: Average RMSE of all motion sequences by different
selected disable components

Methods ep(cm) er(deg)
Ours 3.76 7.95

Ours (w/o DOPE) | 8.00 2147
Ours (w/o velocity)| 4.63 9.86

is object-agnostic.

However, the final pose from RGB-D-E has a higher
accuracy than our proposed algorithm, see Fig. 4b. The
refinement network of RGB-D-E was run at 60 Hz compared
to the 10 Hz of DeepTrack used by our algorithm, which
gives RGB-D-E an advantage at this second stage of pose
estimation. In addition, the RGB-D-E refinement network
assumes that the prior pose and RGB-D observation have
only a small error between them, while our tracking pipeline
we can handle observations globally (i.e. across the image
plane) as we rely on a deep neural network for 6D object
pose estimation as the source of our measurements. Therefore
our proposed algorithm can use the object detector also for
pose initialisation and failure recovery.

The combined result considering Fig.4a and Fig. 4b
indicates that the strongest component for RGB-D-E is not in
the extraction of velocities from events, but in the refinement
network.

C. Ablation studies

To validate the effectiveness of different components in our
algorithm, they are selectively disabled and the algorithm is
tested against all motion sequences of the datasets comprising
objects from the YCB Model Set. The average RMSE of
position and rotation tracking are reported in Table I and, in
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Fig. 5: Real Datasets taken with an ATIS and RealSense
stereo pair. Top row: qualitative results for the object “003
cracker box” during translation along the x axis (on the left)
and rotation about the z axis (on the right). Bottom row:
qualitative results for the object “006 mustard bottle” during
translation along the y axis (on the left) and rotation about
the x axis (on the right).

combination with Fig. 4, indicate the benefit of both proposed
components of the pipeline.

Without the outer loop fusing velocities with pose obser-
vations, the integrated pose will drift as expected. Instead
without velocity estimation from the events the error in pose
is clearly shown in Fig. 4 and further evidence for the benefit
of events in the pipeline is shown in Section IV-D. The full
pipeline produces smooth trajectories without drift.

D. Validation on the real dataset

Real datasets were used to validate the approach consider-
ing all additional sources of noise from real sensors. The ATIS
Gen3 (640 x 480) and a RealSense D415 RGB-D camera
were calibrated as a stereo pair and the depth information was
used to re-project events onto the RealSense camera image
plane. Fig. 5 shows the “003 cracker box” object in a x-axis
translation motion and a rotation about the z-axis, as well
as the “006 mustard bottle” object in a y-axis translation
motion and rotation about the z-axis. These samples are
taken from real-world sequences and can also be found in
the video provided as supplementary material. The objects
are moved as fast as possible by a human operator within
the visual field-of-view. The pose estimated by the algorithm
is used to render the object mesh onto the image, which can
be qualitatively compared to the RGB image taken from the
RealSense to evaluate the algorithm performance.

The advantage of using events can be seen by comparing
“Ours (w/o velocity)” with “Ours”. While our algorithm shows
a majority overlap between the projected pose and the RGB
image for all frames over time, the pose-only method does
not update the pose between frames (10 Hz), and therefore
the pose lags behind the true position between detections.

se(3)-TrackNet has a result similar to that of “Ours
(wlo velocity)” for the cracker box, however the cause is
different. The fast-motion induces motion-blur in the images,

which causes tracking failure as the relative 6D pose is
not estimated correctly. Even though the se(3)-TrackNet has
a high frequency, it is the traditional RGB-D sensor that
causes the failure. The mustard bottle is tracked correctly for
the y-axis translation, but for the rotation about the x-axis
the motion-blur of the frame may have caused the inherent
features that se(3)-TrackNet uses to be distorted and tracking
is unsuccessful.

The qualitative evaluation on real data demonstrates the
sensor is as important for the tracking as the algorithm, and
that using an event-camera is a promising approach as they
do not suffer from motion blur as do traditional cameras. The
real datasets also prove that the algorithm is robust to the
noise and visual artefacts that come along with real data.

V. LIMITATIONS

Results indicate that events are an appropriate replacement
for optical flow in a dual Kalman filter approach, as shown
by comparable performance between ROFT and our proposed
algorithm. The event-camera improves robustness to high-
speed motion and motion-blur problems but requires addi-
tional hardware in the system. While multi-camera setups are
becoming the norm for commercial devices (e.g. RealSense
or smart phones), simple hardware set-ups avoid additional
problems with calibration and additional points of failure.
However, due to the relatively young field of computer vision
with event-cameras, further improvements could be made to
object pose detection with event data, and in doing so could
lead to a event-camera only 6-DoF solution.

Despite achieving strong results for velocity estimation
with event-cameras, the observation model [9] for events is
still unsatisfactory for several reasons and is the first point
of improvement for the algorithm. While technically sound,
the model requires multiple events to fire at the same pixel
location and discards any information for pixels which only
fire a single time. In practice and anecdotally, we have found
that the timing of the first pixel is the most accurate, while
the timing of successive events contain the most noise and
uncertainty. In disregarding the information of the first event
firing, much useful information is left unused by the velocity
estimation algorithm.

In addition the velocity error signal used for correction in
the Kalman filter is calculated as a temporal error, and is only
one dimensional, while the visual sensor is two dimensional
in space. Increasing the dimensionality of the velocity error
signal increases the observability of the system and leads to
more accurate results. Due to this, the proposed algorithm
requires some tuning of the Kalman filter measurement
uncertainty for the velocity estimation to ensure accurate
convergence. Therefore, while we show all motions are
capable of being tracked, some a-priori knowledge on the
types of motion help for stronger convergence. For a more
robust algorithm this issue would need to be addressed, and
we suggest a two dimensional error vector would be the first
option to investigate.

The measurement model implemented requires both image
gradients and depth to operate. Therefore the velocity obser-



vations are limited by the frame-rate of these other sensors,
which also limits the frequency of operation. It is possible to
keep a similar architecture, but swap out the measurement
model to measure velocity with a different method, e.g. using
both the spatio-temporal information (and not only temporal)
from the event data.

Finally, in order to operate the algorithm in real-time further
optimisation, and possibly trade-off between accuracy and
computational complexity is required.

VI. CONCLUSIONS

In this work, we propose a hybrid method that uses events
for object velocity estimation and RGB-D for object pose
estimation, with information fused in a dual Kalman filter
implementation for tracking of fast moving objects in 6-
DoF. We show that the proposed algorithm is comparable
to a optical flow method for velocity estimation, but should
be more light-weight and more robust to motion-blur - a
necessity for highly dynamic robots. In addition the proposed
algorithm has higher velocity estimation accuracy, which does
not require training on each individual object, compared to
the state-of-the-art that uses events for 6-DoF object velocity
estimation. We have also validated that the proposed algorithm
successfully tracks fast moving objects in a real-world hybrid
event-RGB-D stereo pair setup.

We have discussed the major limitations of the system to
provide direction for the community to further improve on
event-based 6-DoF tracking. The datasets and code are also
provided open-source.
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